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Abstract

Finite triangular matrices with a dedicated type for the diagonal elements can be profitably

represented by a nested data type, i. e., a heterogeneous family of inductive data types, while

infinite triangular matrices form an example of a nested coinductive type, which is a heterogeneous

family of coinductive data types.

Redecoration for infinite triangular matrices is taken up from previous work involving the

first author, and it is shown that redecoration forms a comonad with respect to bisimilarity.

The main result, however, is a validation of the original algorithm against a model based

on infinite streams of infinite streams. The two formulations are even provably equivalent, and

the second is identified as a special instance of the generic cobind operation resulting from the

well-known comultiplication operation on streams that creates the stream of successive tails of

a given stream. Thus, perhaps surprisingly, the verification of redecoration is easier for infinite

triangular matrices than for their finite counterpart.

All the results have been obtained and are fully formalized in the current version of the Coq

theorem proving environment where these coinductive datatypes are fully supported since the

version 8.1, released in 2007. Nonetheless, instead of displaying the Coq development, we have

chosen to write the paper in standard mathematical and type-theoretic language. Thus, it should

be accessible without any specific knowledge about Coq.

Keywords and phrases nested datatype, coinduction, theorem proving, Coq

1 Introduction

Redecoration for the finite triangles has been verified against a list-based model in previous

work [10]. This is the point of departure for our present paper.

Finite triangles can be represented by “triangular matrices”, i. e., finite square matrices,

where the part below the diagonal has been cut off. Equivalently, one may see them as sym-

metric matrices where the redundant information below the diagonal has been omitted. The

elements on the diagonal play a different role than the other elements in many mathematical

applications, e. g., one might require that the diagonal elements are invertible (non-zero).

This is modeled as follows: a type E of elements outside the diagonal is fixed throughout

(we won’t mention it as parameter of any of our definitions), and there is a type of diagonal

elements that enters all definitions as an explicit parameter. More technically, if A is the

type of diagonal elements, then Trifin A shall denote the type of finite triangular matrices

with A’s on the diagonal and E’s outside (see Figure 1). Then, Trifin becomes a family of
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types, indexed over all types, hence a type transformation. Moreover, the different Trifin A

are inductive datatypes that are all defined simultaneously, hence they are an “inductive

family of types” or “nested datatype” [4].
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Figure 1 Dividing a triangle into columns

If we cut the triangle into the first column and the rest, we get one element of A and

a “trapezium”, with an uppermost row solely consisting of E’s. In order not to have to

ensure explicitly by a dependent type that the number of columns is coherent, the solution

is to transform the trapezium into a triangle, integrating the side diagonal (just above the

diagonal) into the diagonal itself, as shown in Figure 2. From the left to the right, the

lowermost element of E in each column is paired with the element of A on the diagonal, and

the other elements of E remain untouched.
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Figure 2

Following this remark, the triangles can be defined theoretically [1], and in Coq and

Isabelle by the following constructors [10]:

a : A
sgfin a : Trifin A

a : A t : Trifin(E × A)

constrfin a t : Trifin A

◮ Remark. In this paper, single-lined inference rules denote inductive definitions, double-lined

inference rules are for coinductive definitions.

In more theoretical terms, Trifin is modeled as the least solution to the fixed-point

equation

Trifin A = A + A × Trifin (E × A)

The left summand corresponds to a triangle that only consists of a single element of A (a

singleton), thus ensuring the base case.

The algorithm of redecoration (see work by Uustalu and Vene for the general categorical

notion [14]) is the following: for a given redecoration rule f : Trifin A → B, it is a function

redec f that redecorates A-triangles t (elements of Trifin A) into B-triangles by applying f

to the whole triangle t to obtain the new top element, and then by successively applying

the same operation to the triangle cut out from the remaining trapezium. This ends in the

singleton case where f is applied to it and the result is turned into a triangle by applying

sgfin. This algorithm only changes the diagonal elements in A into elements of B, as shown

in Figure 3. We do not give the formal definition of redecoration for finite triangles here.
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Figure 3 Redecoration

The redecoration for infinite triangles [1] has not yet been verified. This is what we intend

to do in this paper.

Reasoning about nested coinductive types naturally rests on observational equality, just

as for ordinary coinductive types, and since version 8.2, Coq greatly helps in using the

rewrite mechanism for Leibniz equality also for the notion of bisimilarity of infinite triangular

matrices. With respect to that notion of equality, redecoration is shown to form a (sligthly

weakened form of) comonad, and its implementation is compared with an alternative one

based on streams of streams.

These new results come with a full formalization in Coq [9], and limitations of what Coq

recognizes as a guarded definition make the theoretical development more challenging, but

we still obtained smooth results without an excessive overhead that would be imposed by a

naive dualization of the formalization for the finite triangles [10].

In Section 2, inspired by the previous theoretical development [1], we introduce the

dual to the definition of finite triangles [10]. We present it with all the tools necessary to

define redecoration. We then propose a definition for the redecoration algorithm on these

infinite triangles and add further tools and properties. In Section 3, we change the point of

view in the observation of the triangles. We give an alternative definition for the infinite

triangles, considering this new approach, and provide various tools. We also show that

this new representation is equivalent to the previous one. Finally, we propose two ways of

defining redecoration, trying always to simplify and generalize our definitions and show their

adequation with previous definitions.

Since the results are fully formalized in the current version of Coq, hence ensuring

complete and sound proofs, we took the liberty to write the paper in standard mathematical

and type-theoretic language and also to omit most proofs. Therefore, it should be accessible

without any specific knowledge about Coq. For the study of the development [9], the Coq’Art

book [3] should mostly suffice, but the (type) class mechanism [12] and the revised setoid

rewriting mechanism based on it have to be consulted elsewhere – by default in the Coq

Reference Manual [13].

2 Reference Representation with a Coinductive Family

Dually to the representation of finite triangles discussed in the introduction, “triangular

matrices” are now introduced as infinite square matrices, where the part below the diagonal

has been cut off. Recall that a type E of elements outside the diagonal is fixed throughout.

If A is the type of diagonal elements, then Tri A shall denote the type of infinite triangular

matrices with A’s on the diagonal and E’s outside. The different Tri A are coinductive

datatypes that are all defined simultaneously, as was the case for Trifin, hence they are a

“coinductive family of types” or “nested codatatype”, as will be developed below.



2.1 Infinite triangles as nested coinductive type

Infinite triangles can also be visualized as in Figure 1, this time with the dots representing

an infinite extension.

If we now cut the triangle into the first column and the rest, we get one element of A (as

before for Trifin) and a trapezium, with an uppermost row consisting of infinitely many E’s.

The n-th column consists of an element of A on the diagonal and n elements of E above

the diagonal, as in the case of Trifin. As before, we do not want to parameterize the type of

the columns by their index and instead integrate the side diagonal into the diagonal – and

this has to be done corecursively [1]. This integration is possible since trapeziums are again

in one-to-one correspondence to triangles, as shown in Figure 2, now interpreted infinitely.

In this figure, the trapezium to the left is considered as the “trapezium view” of the triangle

to the right. Vice versa, the triangle to the right is the “triangle view” of the trapezium to

the left.

We now formalize triangles through the following constructor that has to be interpreted

coinductively.

◮ Definition 1 (Tri, defined coinductively).

a : A t : Tri(E × A)

constr a t : Tri A

with A a type variable.

This means that the types Tri A for all types A are simultaneously conceived as greatest

solution to the fixed-point equation

Tri A = A × Tri(E × A),

and constr has two arguments instead of a pair of type A × Tri(E × A) just for technical

convenience.

The second argument to constr corresponds to the triangle view of the trapezium in our

visualization in Figure 1, but there is no passage between a trapezium and a triangle – this

is only the motivation. In the formalization, there are only infinite triangles, but we set

Trap A := Tri(E × A) to hint to the trapezium view of these triangles.

◮ Definition 2 (Projections).

top : ∀A. Tri A → A rest : ∀A. Tri A → Trap A

top (constr a r) := a rest (constr a r) := r

This definition by pattern matching implicitly uses the direction from right to left in the

above fixed-point equation. Thus, the top element and the trapezium part of a triangle are

calculated by unfolding the fixed point.

In order to obtain the triangle that arises by cutting off the top row of a trapezium, we

have to go through all the columns.

◮ Definition 3 (cut : ∀A.Trap A → Tri A, defined corecursively).

cut (constr 〈e, a〉 r) := constr a (cut r)

The definition does pattern matching on elements of Trap A and constructs an element

of the coinductive type Tri A. The subterm cut r represents a corecursive call to cut, which

is accepted also by the Coq system as admissible corecursion since it is placed directly as an

argument to the constructor constr .



2.2 Redecoration for infinite triangles

We are heading for a corecursive definition of the generic redecoration operation redec on

triangles. It has type

∀A∀B. (Tri A → B) → Tri A → Tri B,

which is the type of a coextension operation for Tri viewed as support of a comonad.

Coextension – also called cobind – is the dual of the extension / bind operation of a monad,

which is so successfully used in the functional programming language Haskell. The counit for

the comonad we are about to construct is our top operation.

Redecoration for Tri follows the same pattern as for Trifin , but the successive applications

of the same operation will never reach a base case, as there is none in Tri.

Formally, this is done by a corecursive definition, where redec f t for t of type Tri A has

to call itself with second argument of type Trap A, hence f is not even type-correct as a first

argument in that corecursive call. Instead of f : Tri A → B, a “lifted” version of f is needed

that has type Tri(E × A) → E × B.

◮ Definition 4 (lift : ∀A∀B. (Tri A → B) → Tri(E × A) → E × B).

lift f r := 〈fst(top r), f(cut r)〉 ,

where fst is the first projection (from a pair to its first component).

The definition is illustrated in Figure 4.
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Figure 4 Definition of lifting

The formal definition of redecoration is as follows:

◮ Definition 5 (redec : ∀A∀B. (Tri A → B) → Tri A → Tri B, defined corecursively).

redec f t := constr (f t)
(

redec (lift f) (rest t)
)

,

see Figure 5. This definition is accepted since it is guarded: the corecursive call to redec is

as second argument to constr , and it does not matter that the argument f becomes lift f

there. A function argument that becomes more complicated in the recursive call is typical of

recursion on nested datatypes, see, e. g., [1].

This completes the definition, but leaves open the question if this is really (in what sense)

the cobind of a comonad and if it corresponds to operations that are easier to understand

than corecursion on nested codatatypes. We note that recursion schemes for nested datatypes

have been subject of a long line of research, starting from work by Bird and colleagues [4, 5].

2.3 Properties of redecoration

It is well-known that propositional equality = (called Leibniz equality in Coq since t1 = t2

allows the replacement of t1 by t2 in any mathematical context) cannot suffice as criterion for
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Figure 5 Definition of redecoration

the correctness of elements that are calculated in coinductive types. Propositional equality

cannot be established by coinductive reasoning because this is confined to coinductively

defined conclusions, and propositional equality is not coinductive (in Coq, it is defined

inductively). We write Rel C for the type of the binary relations on C, and we use these

relations in infix notation. In Coq, their type is C → C → Prop, where Prop is the universe

of propositions.

◮ Definition 6 (≃ : ∀A. Rel(Tri A), defined coinductively).

t1 , t2 : Tri A top t1 = top t2 rest t1 ≃ rest t2

t1 ≃ t2

It is easy to show that ≃ is an equivalence relation for any argument type A. It is an

equivalence relation but not a congruence: for every operation of interest we have to establish

compatibility with bisimilarity. This is in particular easily done for the projection functions

top and rest and for the cut operation.

Using this notion of bisimilarity, we can show that redec is extensional in its function

argument (modulo ≃), using full extensionality of lift:

◮ Lemma 7. ∀A∀B∀(f f ′ : Tri A → B). (∀t, f t = f ′ t) ⇒ ∀t, lift f t = lift f ′ t

◮ Lemma 8. ∀A∀B∀(f f ′ : Tri A → B). (∀t, f t = f ′ t) ⇒ ∀t, redec f t ≃ redec f ′ t

The main properties of redec we are interested in express that top and redec together

constitute a comonad for “functor” Tri. The precise categorical definition in coextension

form (with a cobind operation instead of the traditional comultiplication) is, e. g., given in

[14]. Here, we give the constructive notion we use in this paper, and it is parameterized by

an equivalence relation while classically, only mathematical equality = is employed.

◮ Definition 9 (Constructive comonad). A constructive comonad consists of a type transforma-

tion T , a function counit : ∀A. T A → A, a function cobind : ∀A∀B.(T A → B) → T A → T B

and an equivalence relation ≅ : ∀A. Rel(T A) such that the following comonad laws hold:

∀A∀B∀fT A→B∀tT A. counit(cobind f t) = f t (1)

∀A∀tT A. cobind counitA t ≅ t (2)

∀A∀B∀fT A→B∀gT B→C∀tT A. cobind (g ◦ cobind f) t ≅ cobind g (cobind f t) (3)

Here, in order to save space, we gave the type information for the term variables as superscripts.

The index A to counit is meant to say that the type parameter to counit is set to A – in all

other cases, we leave type instantiation implicit.



◮ Definition 10 (Constructive weak comonad). A constructive weak comonad is defined as a

constructive comonad, but where the equation in (3) is restricted to functions g that are

compatible with ≅ in the following sense: ∀t t′, t ≅ t′ ⇒ g t = g t′.

◮ Lemma 11. The type transformation Tri, the projection function top and redec form a

constructive weak comonad with respect to ≃.

The first comonad law is satisfied in an especially strong form: top(redec f t) actually is

f t by definition. The other comonad laws go through with suitable generalizations of the

lemmas – in order to ensure guardedess of the proofs. The current solution is unspectacular,

but it was not obvious how to do it (much more complicated solutions were found on the

way and are now obsolete). We only show the strengthening of the second comonad law, but

it is the same style for the third one.

◮ Lemma 12 (strengthened form of second comonad law for redec).

∀A∀(f : Tri A → A). (∀(t : Tri A), f t = top t) ⇒ ∀(t : Tri A). redec f t ≃ t

The proof is by coinduction and uses Lemma 7. Obviously, this implies the second comonad

law. For all the details, see our formalization in Coq [9]. We only get a weak comonad

because proving pointwise equality of lift(g ◦ (redec f)) and (lift g) ◦ (redec(lift f)) requires

compatibility of g with ≃, and this is a crucial step for proving the third comonad law.

When defining the cut operation, one might naturally want to get also the part that has

been cut out (the elements of E). These elements are given by the following function:

◮ Definition 13 (es_cut : ∀A. Trap A → Str E, defined corecursively).

es_cut (constr 〈e, a〉 r) := e :: (es_cut r)

◮ Remark. In the standard library of Coq, the type of streams with elements in type C are

predefined, and we can represent this definition as follows:

c : C s : Str C

c :: s : Str C

The projection functions are called hd and tl. They are such that hd(c :: s) = c and

tl(c :: s) = s. We will also use the map function defined by map f (c :: s) = f c :: (map f s).

Using es_cut, we can define the first row of E elements in a triangle as

frow : ∀A. Tri A → Str E frow t := es_cut (rest t)

Once we have these definitions, we might want to be able to “glue” the two cut parts in

order to recreate the original trapezium. This is done by the function addes

◮ Definition 14 (addes : ∀A. Str E → Tri A → Trap A, defined corecursively).

addes (e :: es) (constr a r) := constr 〈e, a〉 (addes es r)

And it is then easy to show that addes indeed performs the gluing:

∀A∀(r : Trap A). addes (es_cut r) (cut r) ≃ r

3 Another Conception of Triangles

In this section, we show another way to perceive and represent infinite triangles. And we 

propose two ways of defining redecoration on this new representation.



3.1 A new definition using streams

In the previous section, we always visualized the infinite triangles by their columns. Indeed,

we said that a triangle was a first column with only one element of type A (the element of

the diagonal) and a trapezium, itself actually a triangle, as suggested in Figure 1.

While elements of the finite triangles in Trifin A (see Section 1) are (globally) finite, also

all the columns of our infinite triangles in Tri A are finite. In the work that we started from

for this article [10], redecoration on Trifin is verified against a model where triangles are

represented by finite lists of columns, where each column consists of the diagonal element in

A and a finite list of elements in E. A naive dualization of that approach would consist in

taking as representation of infinite triangles streams of columns that would be formed as for

the finite ones. This mixture of inductive and coinductive datatypes is notoriously difficult to

handle. We have been confronted with this problem many times in the last few years, as can

be seen in the second author’s thesis [11] which deals with this kind of problems particularly

in Coq. But in other proof assistants, the same kind of issues has appeared; there is also

an experimental solution in Agda [6, 7]. Still, the representation of infinite triangles mixing

inductive and coinductive datatypes can be carried out, but we refrain from presenting this

column-based approach here.

However, we can also visualize triangles the other way around. We now consider the

triangle by its rows, as suggested in Figure 6. Then, on any row, we have one element of
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Figure 6 Dividing a triangle into rows

type A and infinitely many elements of type E. And we also have infinitely many rows.

Here, nothing is finite (only the single element of A at the head of each row, but this is

not a problem), therefore, we do not have any embedded inductive type in our description –

unlike in the columnwise decomposition mentioned above. This new visualization can be

represented as a stream of pairs made of one element of type A and a stream of elements of

type E.

◮ Definition 15. Tri ′ A := Str(A × Str E)

Actually, following the definition of Str , we can read this new definition of the triangles as

consisting of three parts: the top element, the stream of elements of E of the first row and

the triangle corresponding to the rest, as shown in Figure 7.
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Figure 7 Conceptualizing a triangle as a triple

We define functions that allow us to access to each of these elements:



◮ Definition 16 (Projections).

top′ : ∀A. Tri ′ A → A frow′ : ∀A. Tri ′ A → Str E rest′ : ∀A. Tri ′ A → Tri ′ A

top′ (〈a, es〉 :: t) := a frow′ (〈a, es〉 :: t) := es rest′ (〈a, es〉 :: t) := t

Notice that rest and rest′ are conceptually different – the former yields the trapeziums after

cutting off the first column, the latter triangles after cutting off the first row.

To compare two elements of Tri ′, we need a notion of bisimilarity, which on Str is

pre-defined in Coq as follows:

◮ Definition 17 (≡ : ∀C. Rel(Str C), defined coinductively).

s1 , s2 : Str C hd s1 = hd s2 tl s1 ≡ tl s2

s1 ≡ s2

However, we cannot use it directly. Indeed, we would need to prove, for two triangles t1

and t2 that their first rows are Leibniz-equal, i. e., frow′ t1 = frow′ t2. This is too strict, since

the rows are defined partially coinductively (because of the stream of E’s). Therefore, we

need to define a new relation on Tri ′ that will compare the three elements of the triangles.

The tops can be compared through Leibniz equality, the first rows can be compared using ≡

and the rests with the relation on Tri ′, corecursively.

◮ Definition 18 (∼= : ∀A. Rel(Tri ′ A), defined coinductively).

t1 , t2 : Tri ′ A top′ t1 = top′ t2 frow′ t1 ≡ frow′ t2 rest′ t1
∼= rest′ t2

t1
∼= t2

It is immediate to show that ∼= is an equivalence relation.

In order to validate this view of the triangles, we want to show that it is indeed equivalent

to the original one. Therefore, we are going to show that there is a bijection between the

two definitions (modulo pointwise bisimilarity). To do so we define two conversion functions

(toStreamRep, from Tri to Tri ′ and fromStreamRep for the other way around) and show that

their compositions are pointwise bisimilar to the identity.

The two conversion functions are quite natural. To transform an element of Tri A into

an element of Tri ′ A, we need to reconstruct from the original triangle the three elements of

Tri ′ A. The top remains the original top, this is trivial. The first row of elements of E is

given by frow. Finally, the triangle has to be transformed again by toStreamRep from the

rest of the triangle with the first row cut out by the function cut. The calculation for the

different parts is represented in Figure 8.
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Figure 8 Definition of toStreamRep

◮ Definition 19 (toStreamRep : ∀A. Tri A → Tri ′ A, defined corecursively).

toStreamRep t := 〈top t, frow t〉 :: toStreamRep (cut (rest t))



The definition of fromStreamRep is also quite intuitive. We have to construct the two elements

that compose elements of type Tri. The top remains the top as before, this is again trivial.

For the rest, we have to “glue” the first row to the rest of the triangle (basically the inverse

of the cut and es_cut functions on Tri ′) before transforming it again. We call addes′ the

function that performs this operation, as shown in Figure 9.
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Figure 9 Definition of addes′

◮ Definition 20 (addes′ : ∀A. Str E → Tri ′ A → Tri ′(E × A), defined corecursively).

addes′ (e :: es) t := 〈〈e, top′ t〉, es〉 :: addes′ (frow′ t) (rest′ t)

◮ Definition 21 (fromStreamRep : ∀A. Tri ′ A → Tri A, defined corecursively).

fromStreamRep t := constr (top′ t)
(

fromStreamRep (addes′ (frow′ t) (rest′ t))
)

◮ Remark. Our first idea was to do the gluing after the transformation. Indeed, as the

transformation does not affect the elements of E, it seemed more natural to us not to

submit this part to the corecursive call of the transformation. Thus, we wanted to define

fromStreamRep coinductively as follows:

fromStreamRep t := constr (top′ t) (addes (frow′ t) (fromStreamRep (rest′ t)))

However, even if this seems harmless, this definition cannot be accepted by Coq since the

corecursive call to fromStreamRep is not guarded (it is an argument of addes and not of

a constructor). Nevertheless, we have shown that the solution to the previous equation

is unique with respect to pointwise bisimilarity and that fromStreamRep of Definition 21

satisfies it.

◮ Lemma 22. ∀A∀(t : Tri ′ A). toStreamRep (fromStreamRep t) ∼= t

Proof. To prove this result, we actually prove the following stronger result that we then

only instantiate to finish the proof:

∀A∀(t : Tri ′ A)(u : Tri A), toStreamRep (fromStreamRep t) ∼= u ⇒ t ∼= u

The proof of this statement is a simple coinduction, that uses some straightforward results

on cut and addes′. ◭

◮ Lemma 23. ∀A∀(t : Tri A). fromStreamRep (toStreamRep t) ≃ t

Proof. We use the same technique as before. We prove a stronger result that we instiantiate

to prove our lemma:

∀A∀(t : Tri A)(u : Tri ′ A). fromStreamRep (toStreamRep t) ≃ u ⇒ t ≃ u

Here again, the proof is a straightforward coinduction using compatibility of top and rest

with ≃ and a simple result on addes′. ◭



3.2 Redecoration on Tri
′

Thus, we have a completely different view of the triangles, but still, it is fully equivalent

to the original one. The interest of this view is that now the redecoration is very easy to

perform. Indeed, before, the tricky part was that we had to lift the function f to trapeziums,

and therefore to cut out the elements of E remaining (implicitly) from the first row. The

problem was that we roughly had to cut out a row, while we were reasoning on columns.

Here, as we directly reason on rows, it is much easier. As shown in Figure 10, the three

elements of the transformed triangle will be:

the top is the application of f to the whole triangle (as before)

the first row of elements of E is the same row as in the original triangle (and as we said

we have direct access to it)

the rest of the triangle is the application of the redecoration function to the rest

E E E

E E

E

A

A

A

A

. . .

E E E

E E

E

B

B

B

B

. . .

f

redec′ f

id

Figure 10 Definition of redecoration

Therefore, we can define the redecoration function for Tri ′ as follows:

◮ Definition 24 (redec′ : ∀A∀B. (Tri ′ A → B) → Tri ′ A → Tri ′ B, defined corecursively).

redec′ f t := 〈f t, frow′ t〉 :: redec′ f (rest′ t)

We can finally show that this new version of the redecoration is equivalent to the previous

one, modulo compatibility, using the conversion functions. We show that:

◮ Lemma 25.

∀f, (∀t t′, t ∼= t′ ⇒ f t = f t′)

⇒ ∀t, redec′ f t ∼= toStreamRep (redec (f ◦ toStreamRep) (fromStreamRep t))

◮ Lemma 26.

∀f, (∀t t′, t ≃ t′ ⇒ f t = f t′)

⇒ ∀t, redec f t ≃ fromStreamRep (redec′ (f ◦ fromStreamRep) (toStreamRep t))

◮ Remark. The compatibility hypotheses here are needed to work with Tri. Up to these

extra requirements, the two conversion functions yield an isomorphism of comonads (the

associated properties for top and top′ are immediate by definition).

3.3 Simplifying redecoration again

As the representation of infinite triangles Tri ′ is only as a stream of streams, we can use

standard functions on streams to define redecoration. Indeed, redecoration can be interpreted



as consisting of applying a function to each element of the diagonal of an infinite triangle,

where each element of the diagonal is itself a triangle (iterated tails of the given triangle).

We can thus decompose the redecoration operation into two steps: first transform the infinite

triangle into a triangle of triangles and then apply the transformation function on the elements

of the diagonal, as shown in Figure 11.
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Figure 11 Idea of another definition of redecoration

◮ Remark. Figure 11 is only a visualization of what happens, and has to be taken lightly. In

particular, all the elements of the diagonal of the middle triangle are infinite triangles, as we

said. But, in order to visualize better what we do, their size seems to decrease since we cut

out the first row of the previous element of the diagonal.

These two steps are then trivial to define on streams. Indeed, the first step consists of

replacing all the elements of A by the corresponding iterated tail of the triangle itself. In

fact, the information about the elements of E is redundant. Indeed, it is contained in the

terms of the diagonal themselves (the row of elements of E “to the right” of an element of

the diagonal is the first row of this element, minus the element of A). Therefore, we can

omit them and only concentrate on the triangles. Thus, we need to obtain the stream of all

the iterated tails of the initial triangle (see the first part of Figure 12). This is given by the

classical tails operation defined below:

◮ Definition 27 (tails : ∀C. Str C → Str(Str C), viewed coinductively). tails s := s :: tails(tl s)

◮ Remark. The function tails has the signature of the comultiplication operation in a comonad

based on Str according to the classical definition of comonads [8] (the term “comultiplication”

is not used there, but only the letter δ that is dual to the multiplication of a monad). See

Lemma 32 below for the constructive comonad based on Str .

In Figure 11, the second step only consists of applying f to all the elements of the diagonal.

In fact, the first step corresponds to transforming t of type Tri ′ A into

map
(

λx.〈x, frow′ x〉
)

(tails t) ,

and the second one consists in transforming s of type Tri ′(Tri ′ A) into

map
(

λ〈u, es〉. 〈f u, es〉
)

s .

We can alternatively see the transformation of t into tails t as the first step, and the two

successive map operations as the second step, which is therefore (by applying the functor law

for map saying that map’s compose) performed by map (lift′ f), with lift′ defined as follows:

◮ Definition 28 (lift′ : ∀A∀B. (Tri ′ A → B) → Tri ′ A → B × Str E).

lift′ f := λx.〈f x, frow′ x〉



As for rest and rest′, lift and lift′ are unrelated and belong to the respective point of view.

This new version of the redecoration operation is shown in Figure 12.
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Figure 12 Another definition of redecoration

Thus, we define a new version of the redecoration operation as follows:

◮ Definition 29 (redec′

alt : ∀A∀B. (Tri ′ A → B) → Tri ′ A → Tri ′ B).

redec′

alt f t := map (lift′ f) (tails t)

One can then easily show that this operation is equivalent to the previous one:

◮ Lemma 30. ∀A∀B∀(f : Tri ′ A → B)∀(t : Tri ′ A). redec′ f t ≡ redec′

alt f t

The proof is a straightforward coinduction.

It is interesting to note that here, we do not need the bisimulation relation defined on

Tri ′. We can directly use the standard relation on Str , ≡. This should not be surprising.

Indeed, here we only really manipulate streams. Those streams are made of pairs and we

only manipulate the finite part of each pair (the first element). The second one is only a

copy. Therefore the relation ∼= would be artificial here.

Let’s continue abstracting and define redec′

gen as follows:

◮ Definition 31 (redec′

gen : ∀A∀B. (Str A → B) → Str A → Str B).

redec′

gen f s := map f (tails s)

As we remarked previously, tails has the signature of a comultiplication for a comonad (in the

triple format [8]) based on Str , and it is well known that map is the functor (on morphisms)

for Str . Therefore, redec′

gen becomes the cobind operation of this comonad, generically. We

do not develop this piece of constructive category theory here, but only state the result for

this instance:

◮ Lemma 32. The type transformation Str , the projection function hd and redec′

gen form a

constructive comonad with respect to ≡.

This section is inspired by Adriano [2] who suggested a redecoration function for Haskell

lists just in this form. More precisely, a function slide :: ([a] -> b) -> [a] -> [b]

was defined by slide f = map f.tails. Note that Haskell lists can be finite and infinite,

thus this definition captured streams as well.

The function redec′

alt is an instance of redec′

gen, i. e., the following lemma is trivial:

◮ Lemma 33. ∀A∀B∀(f : Tri ′ A → B)(t : Tri ′ A). redec′

alt f t = redec′

gen (lift′ f) t



Therefore, it is natural to show the three laws of comonads for redec′

alt and the proofs are

much simplified by the use of redec′

gen. In particular, we can show a kind of commutativity

of lift′ with redec′

alt .

◮ Lemma 34. The type transformation Tri ′, the projection function top′ and redec′

alt form a

constructive comonad with respect to ≡ (more precisely, the equivalence relation is ≡A×Str E

for every A).

◮ Remark. Through the functions toStreamRep and fromStreamRep, one can then transfer

this comonad structure back to Tri. Since Lemma 25 and Lemma 26 require compatibility

of f with bisimilarity, this will not even give a constructive weak comonad, but the first

and third law have to be relativized to compatible f ’s as well. Still, this does not seem a

problematic constraint. Anyway, Lemma 11 has been proved independently of streams.

4 Conclusion

In this paper we have presented various verifications of the redecoration algorithm for infinite

triangles. We have first dualized directly the representation for finite triangles by a nested

inductive datatype to obtain a nested coinductive datatype. In both cases, the triangles are

visualized by their columns. We have implemented the corresponding redecoration algorithm

redec (already available [1] in higher-order parametric polymorphism) and shown that we

(only) obtained a constructive weak comonad (because of the compatibility hypothesis

required). In this part, the redecoration algorithm, although deduced directly from the finite

case, is quite tricky to manipulate because of the cutting and lifting it requires.

We then noticed that we could also consider the triangles by their rows, representing this

time the triangles by purely coinductive datatypes, Tri ′, where we only took advantage of

the existing type of streams (Str). This new visualization allowed us to define – keeping

the same algorithmic idea as before – a function of redecoration redec′ already simpler than

redec and equivalent to it, modulo compatibility. But taking advantage of this representation

by streams, we can simplify again the redecoration algorithm, using only standard functions

on streams. This new function redec′

alt is fully equivalent to redec′. Generalizing again, we

get nearly for free the cobind of the comonad Str , redec′

gen. This finally allows us to prove

the three comonad laws for redec′

alt .

In short, we have shown that the redecoration function, which is a quite subtle operation

if we translate it directly from the finite triangles, reduces to something very basic in the

completely infinite (i. e., in both directions) view of the infinite triangles. In this case, it is

much easier to work with only infinite elements than with partially finite ones in the sense of

consisting of infinitely many finitely presented columns. In fact, the stream representation is

even easier to manipulate than the representation of finite triangles, and the comonad laws

even hold with less restrictions due to constructivity.

Notice that the row-based view would not have given new insights for finite triangles.

Indeed, as they are symmetric, we would have obtained exactly the same representation as

for the column-based approach, only perceived with interchanged roles of rows and columns.

As a final remark on the Coq side, the improved support for setoid rewriting and the

class mechanism [12] has shown to be of great help for the formalization and verification

decribed in this paper.
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