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Xavier Blanc, Bernard Ducomet

Global weak solutions to the 1D compressible
Euler equations with radiation

SUMMARY

We consider the Cauchy problem for the equations of one-dimensional motion of a compressible inviscid gas
coupled with radiation through a radiative transfer equation. Assuming suitable hypotheses on the transport
coefficients and the data, we prove that the problem admits a weak solution. More precisely, we show that
a sequence of approximate solutions constructed by a generalized Glimm’s scheme admits a subsequence
converging to an entropic solution of the problem.
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1 Introduction

The purpose of radiation hydrodynamics is to include the effects of radiation into the hydrodynamical framework.
When the equilibrium holds between the matter and the radiation, a simple way to do that is to include local
radiative terms into the state functions and the transport coefficients. On the other hand, radiation is described
by photons, which are massless particles traveling at the speed c of light, characterized by their frequency v € R,
their energy E = hv (where h is the Planck’s constant), their momentum 7 = h—c" Q, where € € S2 is a vector of
the 2-unit sphere. Statistical mechanics allows us to describe macroscopically an assembly of massless photons
of energy F and momentum p’ by using a distribution function: the radiative intensity I(x,t, ﬁ, v). Using this
intensity, one can derive global quantities by integrating with respect to the angular and frequency variables:
the spectral radiative energy density Er(z,t) per unit volume is then Eg(z,t) :=1 [ [I(z,¢, Q,v) dQ dv, and
the spectral radiative flux Fr(z,t) = [ [ @ I(z,t,Q,v) dQ dv.

In the absence of radiation the hydrodynamical system is derived from the fundamental conservation laws
(mass, momentum and energy) by using the Boltzmann’s equation satisfied by the f,,(x,¥,t) and Chapman-
Enskog’s expansion. One gets then formally the compressible Euler system for matter. When radiation is taken
into account at a macroscopic level, supplementary source terms appear, coupling matter variables to radiative
intensity I, which is supposed to satisfy a transport equation: the so called radiative transfer equation, an
integro-differential equation early discussed by Chandrasekhar in [4].

Supposing that the matter is at local thermodynamical equilibrium (LTE) and in the non-relativistic frame-
work (the velocity of matter is much less than the velocity of light: 7?2 < ¢?), the coupled system satisfied by
the density p, the velocity i, the temperature ¥ and the radiative intensity I in R® reads [3] [26] [27]

Op + div, (p?) = 0,
04(p¥) + div, (p¥ @ 7) + Vup = =Sk,
O(pE) + diva((pE + p)V) = =S,

1 -
SO+ GV,I=5,

where F = % @2 + e is the total energy with e the internal energy, p the pressure, and Sp and Sg are the
radiative force and energy source terms, described below.
Let us describe the various coupling terms in the right-hand sides of (1) (see[25]).



In the radiative source splitted into two parts S = S, . + S, the first contribution
Sa’e(;v,t,ﬁ,u) = —0,1 (:mt,ﬁ,u) + 0.8 (z,t,v),

is the absorption-emission contribution, and the second one

Sy(z,t,Q,v) = —o,1 (x,t,ﬁ,z/) + &/ I (x,t,ﬁ’,y> dsy,
™ S2

is the scattering contribution.
The radiative energy is

Sg(x,t) ::/ S(z,t,Q,v) dQ dv,
Ry JS2

The radiative flux is

Sp(x,t) = %/R /32 Q S(z,t,Q,v) d dv.
+

In the radiative transfer equation (the last equation of (1)) the functions o, and o, appearing in the radiative
source S describe in a phenomenological way the absorption-emission and scattering properties (frequency
and angular transitions) of the interaction photon-matter and the function B describes the thermodynamical
equilibrium distribution.

Let us note that the foundations of the previous system have been described by Pomraning [27] and Mihalas
and Weibel-Mihalas [26] in the full framework of special relativity (oversimplified in the previous considerations).
The coupled system (1) has been recently investigated by Lowrie, Morel, Hittinger [25], Buet, Després [3] with
a special attention to asymptotic regimes, and by Dubroca-Feugeas [7], Lin [20] and Lin-Coulombel-Goudon
[21] for numerical aspects. Concerning the existence of solutions, a proof of local-in-time existence and blow-up
of solutions has been proposed by Zhong and Jiang [33] (see also the recent papers by Jiang and Wang [15] [16]
for a 1D related “Euler -Boltzmann” model), moreover a simplified version of the system has been investigated
by Golse and Perthame [11].

As our goal is to prove global existence of solutions for the system (1), we restrict from now our study to
the mono-dimensional geometry. The system (1) rewrites

Op + 0 (pv) =0,
B (pv) + 8z (pv* + p) = —Sr,
O(pE) + 0:((pE + p)v)) = —Sp, 2)

1
EatI + wamf = S,

where E = % v% 4 e is the total energy with e(p, S) the internal energy and p(p, S) the pressure.

In order to simplify the study of the fluid part of the system we can use p,v and S as new variables (¢ and S
being the temperature and the entropy of matter) and using the thermodynamical identity ¥9dS = dF + pd (%),
we rewrite (1) as

9ep + 0z (pv) = 0,

Oy + v0,v + 1 Oxp = fl Sr, 3
p p 3)

1
S +v9,S = p (vSF — SE) ,

and the transfer equation is
1
= 0 +wd,I =S, (4)
c

for (z,t) € R x Ry, where the pressure is p = p(p, S).



It will be convenient to use in the sequel the vector notation U :=

ne ™

Then (3) rewrites
8tU + fanU =9,

with
v P 0
. Pp Ps
fU(U) L ; v pS )
0 0 v
and
0
1
- S
9(I,U) == p F (5)
_ (uSp — Sp)
0 VOF E

After an elementary computation, putting ¢* = p,, one gets the three eigenpairs for f(U)

p
MU)=v—c¢, r(U) = — |,

0

Ps
/\Q(U) =, TQ(U) = 0 y

and

p

A3(U) =v+e, r3(U) = c

0

The corresponding pairs of Riemann invariants are
P S
720~ 5 72—y +/ w5
w

Z$ =v, 28 =p(p, S),

and

P

In (2) the radiative intensity I = I(z,t,v,w), depends also on two extra variables: the radiation frequency
v € R, and the angular variable w € S := [~1,1].

The absorption-emission and scattering terms rewrite

Sa,e(x7tay7w) = O'a(t7’/7 12 19) [B(Va 19) - I(I,t,l/,(.d)] ’ (6)
and

Ss(z,t,v,w) = os(t, v, p, ) [f(x,t,v) - I(m,t,y,w)} , (7)

where I(z,t,v) == %fil I(z,t,v,w) dw.



The function B(v,d) depending on the temperature and the frequency, describes the equilibrium state
_hv_ -1
B(v,9) = 2hvc? (eksﬂ - 1) : (8)

where kp is the Boltzmann’s constant and A is the Planck’s constant, and corresponds to the Planck’s equilibrium
distribution of photons in a cavity at temperature ¥ (black body).

The coefficients o, and o, are positive but their evaluation is a difficult problem of quantum mechanics and
their general form is not known (an expression of o, used for stars of moderate mass is given by the Kramers

C(v) (1 e

3 kp? ), where C' is a positive function).
v

In the following we will also assume that o, and o, are positive, and bounded from above: there exists
Ga(t),75(t) > 0 in L}(R*) N CO(RT) (that is, integrable and continuous) such that

formula o, (v,9) =

0 < 0ult,v,p,9) < Talt),

and
0 g Js(tvlja 12 7‘9) < ﬁ(t)

Remark 1. The above assumptions are very restrictive. In particular, they do not allow o, and o5 to depend
only on p,¥ and v, as it is physically relevant. The meaning of this, which is made precise below in (21), (22),
(23), (24), is that the coupling between radiation and hydrodynamics should be weak in the limit t — oco. This
limitation is not satisfactory, and is closely linked with the method we use here to prove our result.

We define the radiative energy

1 1 o0
ER:= 7/ / I(z,t,v,w) dv dw, (9)
cJ-1Jo

the radiative flux )
Fgr:= / / wl(z,t,v,w) dv dw, (10)
-1Jo
and the radiative pressure

1 1 00
Pg = f/ / W I(z,t,v,w) dv dw, (11)
¢cJJo

Finally, the radiative energy source rewrites

1 00
Sg = / / S(z,t,v,w) dv dw, (12)
-1Jo

and the radiative force

1 [e's)
Sp = 1/ / wS(z,t,v,w) dv dw. (13)
€J-1Jo

From the equation (4) and the definitions (9)-(13), one also derives, after integrating in frequency and angular
variables, the equations

0:ERr + 0,Fr = Sk,
1 14
cjﬁtFR+arPR:SF- ( )
We consider finally the Cauchy problem
, U (2,t) + 0:(f(U(z,1))) = g(U(x, 1), 1), X
L O (@, v,0) + W, I, v, ) = S (U, 1), 1w, 1,v,)) (15)
c

with initial conditions
Uy for x<—N,

Ul,_o=Uo(z)=| U%=x) for |z|<N, (16)
Uy for >N,



and for any v € Ry
Io(w,v) for z < —N,
Il,_y = Io(z,w,v) Io(x,w,u) for |z| < N, (17)
Io(w,v) for x> N,

with N > 0, U% and I° are measurable functions, U, is a constant state, I, = B(v, Vs ) Where ¥ is the
temperature associated with Ug.

Denoting by 1 := p~! the specific volume, pressure p(p, S), internal energy e(p, S) and temperature 9(p, S)
are related by the thermodynamical relations

p=—de and ¥ = dse. (18)

We assume that state functions e and p (resp. o, and o) are C? (resp C!) functions of their arguments and
we suppose that e satisfies the following stability conditions

e(n,S) >0, 9dye(n,S) <0, dse(n,S) >0,

672]776(7775) >0, 872,56(7],5) <0, 87?7’77,] (n,S) <0, (19)

SEIJIrlooe(n’ S) = +OO7 SEIEloo 8?76(777 S) = O

These conditions imply that for any couple (1, p), there is a unique S := S(n,p) such that d,e(n,S) = —p and
we note (1, p) := e(n, S(n,p)). After Smith [30], we assume that

2
. p
= < —.
Ly (i p) = 0, Ol < 5 (20)
Here, 0yp|_ denotes the partial derivative of p = p(n,¢) as a function of n = 1/p and € = e.
Finally, we give the conditions we need on o, and os: we assume that
3hg € C° [(0700)2] . sup gq(v, p,9) < ha(p, 9)T4(t), (21)
veRL
3hs € CO [(07 00)2} ) sup JS(V7 P 19) < hs(pa ﬁ)a(t)’ (22)
veER
3ha € C°[(0,00)],  sup (10,00, p,9)| + 0900 (Vs p, D)) < halp, 9)7a(t), (23)
vERL
and ~ -
3hs € C°[(0,00)%] . sup (10,05(v, p, )| + |09 (v, p,9)]) < hs(p, 0)T5(2). (24)
veR

Here, CY means continuous, and &, and &, are supposed to be in L'(RT) N C%(R*). A simple argument then
proves that

Lemma 1. Assume that (21) is satisfied, and that g is defined by (5). Then, there exists hg € C°[(0,00) x [0,00)],
such that, for any I >0 in L}, , ([~1,1] x R") and any U e Ry x R x Ry,

[ st < no (101111 -sapesn) G20 + 75000 (29)

Moreover, there exists hy € C°[(0,00) x [0,00)], such that, for any I > 0 in L' (Ry x [-1,1]) and any U €
Ry xR xRy,

l9(L,0)] <y (JU1, g 1,1y ) (@at) + 75(0) (26)

Finally, if in addition (23) is satisfied, there exists hy € C° [(O,oo)2 X [0700)2] such that for any Iy, Is > 0 in
L' (R, x [-1,1]) and any (Uy,Us) € (Ry x R x R})?,

ARSI (ARGANTA PR TA ARy

% ([ = Usl + 11 = Bllzy -1 e | @alt) +75(8) . (27)



Proof: Recall that, according to (7), S =0, (B —I) + 0 (I~ - I) , hence, applying (21) and (22),

/ / |S|(z, t, v, w)dwdr < / / Ga(t)ha(p,9)|B — I|dwd1/+/ / 75 () hs(p, 9| — I|dwdv.
0 0

Next, we use the fact that fooo Bdv = av¥*, for some pure constant a > 0, finding

o] 1
| [ 18l tov)dwdn < ma(©ba(p.9) (a0 + Ty, -11e)) + 275Ob0 )Ty, 1150
0 —1 )

[e%s) 1 [e%s) 1
i<t [T [ s [T [ s
P Jo -1 PV Jo -1

hence (26). As for (27), the same kind of proof applies. O

This gives (25). Next, we have

2 The approximating scheme

The idea is first to freeze the unknown U in the second equation of (15) which allows to find I as the solution of
a linear Boltzmann’s equation. Then plugging I into the quasilinear hyperbolic part (first equation (15)) we get
U by solving this system by using a discrete scheme mixing Glimm-Liu scheme for the conservative part and a
fractional step method for the source term, using ideas of T.-P. Liu [23], Hong-Lefloch [12] and Dafermos-Hsiao
[6].

2.1 An iterative method

In order to achieve this program, we first consider the family (U*, I*) = (p,v%, S%, I*) defined inductively for
{>1by
O U (2,1) + 0o f (U (2, 1)) = ¢,

) (28)
- oI (x,t, v, w) + wdp I (z,t,v,w) = S,
for (x,t) € R x Ry, where
0
I
g = s :
1
pIZﬂz (UZSIZ? B S%)
with
1 oo 1 1 00
St = / / ST dv dw, S&:= 7/ / wSWULTY dv dw,
—1Jo cJ-1Jo
for ~
S(‘/v W) = Ua(tv v, V)[B(Vv V) - W] + Us(tv v, V) [W - W}a
and
St =sU I,
with initial conditions
Ué|t:0 =Uy (1’), (29)
and
I, _, = Io(z,v,w). (30)

We define the sequence {(U*, I)}s>1 as follows.



1. Solving first the linear Boltzmann’s equation
1
— O I N (x,t, v, W) + w I (2, t,v,w) = S,
c
with
Il|t=0 = I()(.I', I/,OJ),

and

St =8(Uo, I),
gives I'(z,t,v,w) for x € R and 0 < t < At.
2. Then solving the hyperbolic system
QU (1) + 0u(f (U (1)) = g,

with
U1|t:0 = Uo(),
defines Ul(x,t) for x € R and 0 < t < At.
3. Supposing now that for any ¢ > 1, we know (U*~!, I*71) for z € R and (£ — 2)At < t < (£ — 1)At, we
solve the linear Boltzmann’s equation
1 -
- oI (.t v, w) + wd I (z,t,v,w) = S(U, T,
with source .
Ul(x,t) = U Yz, (£ — 1)At),
and initial data
¢ -1
I opyar = I, (6= 1AL v, w),
which gives I*(z,t,v,w) for x € R and (¢ — 1)At < t < (At.
4. Plugging then I(z,t,v,w) in the right-hand side, we solve the hyperbolic system
0U" (x,t) + 8x(f(U (2, 1)) = ",

with
U, _yn, = UMz, LAL),

which defines U(x,t) for z € R and (£ — 1)At < ¢ < (AL,

2.2 The Riemann problem for the radiative transfer equation
We consider for (z,t,w,v) € R x [0,T] x [-1,1] x Ry the problem
Ol (z,t,v,w) + cwdyI(x,t,v,w) =cS fort > to,

I (w,v) for z < xo,

I|t:0 = I ((L‘,OJ71/) = ‘ IR(W,V) for xT > xo,

where tg > 0,
S=0,(v,U)[B(v,U) — I(z,t,v,w)] + os(v,U) {f(m,tw) - I(x,tw,w)} )
- 1/t
I(x,t,v) = 5/ I(z,t,v,w) dw,
-1
and )
hv -
B(v,U) = 2h13c™? (e’“E“9 — 1) ,
and

Up for xz < xg,

Ul,t) = ’ Ur for x > xg,

The following standard result holds (see [8] and [10]).



Proposition 1. Suppose that I'™ € L™(R x [-1,1] x Ry) and that
(x,t,w,v) = a(z, t,w,v) = oq(v,w, p(x,t), ¥z, 1)) + os(V,w, p(z,t), ¥z, t)) € LR x [0,T] x [-1,1] x R;),

where o, = 0 and o4 > 0.
The problem (31) has a unique generalized solution I € L>(R x [0,T] x [-1,1] x R4).
Morever suppose that

(z,t,w,v) = Q(z,t,w,v) = 04 (v, w, p(x,t), Iz, t))B(v,(x,t)) € L°(R x [0,T] x [-1,1] x Ry).
The following bound holds

I(z,t,w,v) < ||Im||L°°(Rx[—1,1]xR+) + T”QHL‘”(RX[&T]><[—1,1]><]R+)- (32)

Proof: Although this classical result is well-known, it is not easy to find it in the literature. We therefore provide
a proof, borrowed from [10], which uses only elementary arguments. Applying the method of characteristics to
the transport equation (31) and using the notations

Az, t,v) :==c(oa(v,U(t,x)) + os(v,U(t, ))),
KI(z,t,w,v) = gas(u, U(Lm))/ I(z,t,w,v) dw,

-1

and
Oz, t,v) := co,(v,U(t,x))B(v,U(t, x)),

for any (z,t,w,v) € (Rx[0,T] x [-1,1] x R4 ) and for I € L>*(R x [0,T] x [-1,1] x R4 ), one checks the formula
I=F[I'QI+TI, (33)

where
]:[Iin, Q](l‘, t,w, l/) — Jin (33 — cwt,w, l/)€7 IS A(z+e(r—t)w,mw,w) dr

¢
+/ Q(z+c(s —tw,s,w,v)e” Ji Ate(r—tiomww) dr gg
0

and
t

TI(z,t,w,v)= | KI(z+c(s—t)w,s,w,v)e” Ji Ate(r—twmwy) dr gg
0

One also checks in the same stroke
t
I(x,t,w,v) = I'"(x — cwt,w, V) +/ (KI+Q— Al (x + ¢(s — t)w, s,w,v) ds (34)
0

Considering (33) as a fixed point equation, one is led to show the convergence of the series in

I:=Y T FII' Q). (35)

n>0
We denote by U = {U(z,t),x € R,t € Ry} . One has first
IF", Q| Lo @x—1,1x00) < 17w, v) | L @x—1,17x0) + TN QI Lo @x [~1,17x04)-
Moreover, we have, for any J € L (R x [0,7] x [-1,1] x RT),

|ICJ(:v,t,w7V)|<<c sup O'S(Z/,U)> sup |J(z,t,w V)|
v>0,UeU w'e[—1,1]

M)



Hence, we have

t
[T T (2, t,w,v) < /M(Z/I) sup | T" ' (z+c(s — ', 5,0, v)| ds

w'e[-1,1]
< Z/[ / sup ‘Tn_lJ(xl,S,w/7yl)’ ds
(z/,w’ v )ERX[—1,1] xR+
t1 tn—1
) / / / Sup |J (&'t ' V) |dEy, ... dty
(2w’ ,v")ERX[—-1,1] xR+
< #HJHW o

Applying this inequality to J = F [I in Q] , and summing over n, we thus have:

Z ||T F [I ’Q]||L°°(R><[O,T]><[71,1]><]R+) S Z T ||]:[I 7@ ||L°°(1R{><[0,T]><[71,1]><R+)'

n>=0 n=0

Hence, the sum (35) is normally convergent in L™ (R x [0, 7] x [-1,1] x R;). Moreover, if I'® > 0 and Q > 0
then F [Im, Q} > 0. Since, in addition, J > 0 implies 7(J) > 0, we infer that each term of the series (35) is
non-negative, so

(I'>0,Q>0) = I>0. (36)

NOW, deﬁning Z = ||Iin||Loo(R><[,171]><]R+) + t||Q||L°°(R><[O,T]><R+) — I, we Clearly have

OZ + cwdZ —KZ+AZ = —Q+ Q| rem®xjo,1)xR})
—K (11" | Lo R [=1,1) xRy ) + QN Lo (R [0,7]xRS))

FA ([T || oo Rx[=1,1) xRy ) F LIQ| Lo (R [0, xRS )
= 0,

where we have used the fact that \\Ii"||L°°(R><[71,1]xR+) + t)|Q|l Lo (Rx[0,7]x®,) is independent of w. Hence,
applying (36) to Z, we infer Z > 0, that is, (32). O

2.3 The generalized Riemann problem for radiative hydrodynamics

Given two states (Up,Ir) (Ug,Ir) and a point (zg,to), we consider now the generalized Riemann problem
GR(xo,to; UL, IL,Ur, IR)

U+ 0,f(U)=g(I,U) fort>ty, z€R,

Ol + cw0ypl =cS(I,U) fort>ty, xR, (w,v)e x[-1,1] xRy (37)
(Up,Ip) for x < xg,

(U(x,to), I(z,t0)) = ‘ (Ug, Ig) for z > .

After [12] we treat the hydrodynamical part of (37) as a perturbation of the classical Riemann problem
CRU(xo,t0;Ur, UR)

U+ 0, f(U)=0 fort>ty, z€R
Uy, for z < x, (38)

U(x,O) :’ Ur f0r$>$o,

for (z,t) € R x R,.

From general results (see Serre [29] and references therein) one knows that CRU (zg,to; UL, Ur) has a self-
similar solution W (€, 2o, to; Ur, Ur) with £ = 2= IO“ provided that the quantity |Ugr — U] is small enough, which
consists of at most 4 constant states U; i < 4 separated by shock waves, contact discontinuities or rarefaction
waves. We say that CR(xg,to; UL, Ug) is solved by the elementary waves (U;_1,U;) with ¢ = 1,...,4 if each U;



belongs to the i—wave curve W;(U;_1) issued from the state U;_; in phase space and (U;_1,U;) is called an
i—wave of CR(xo,to;UL,URr).

If the i—characteristic field is genuinely nonlinear then W;(U;_1) consists in two parts: the i—rarefaction
curve and the i—shock issued from U;_;. If the i—characteristic field is linearly degenerate then W;(U;_1)
consists in a C? curve of i—contact discontinuities.

Denoting by &; = €;(Ur, Ur; to, zo) the strength of the i—wave (U;_1,U;) along the i—curve, one can assume
that, if the ¢—characteristic field is genuinely nonlinear then e; > 0 for an i—rarefaction curve and ¢; < 0 for
an i—shock. The global strength of W (€, xo, to; UL, Ur) is then the vector € = (g1, €2,€3).

We also denote by o;” = \;(U;—1, %0, x0) and af = X\ (U, to, zp) the lower and upper speeds of the i— wave
(U;—1,U;) when it is a rarefaction and just by o; the speed of (U;_1,U;) if it is an i—shock or an i—contact
discontinuity.

We also treat the radiative part of (37) as a perturbation of the linear problem CRI(zg,to; I, IRr)
I (x,t,v,w) + cwd I(x, t,v,w) =0 for t > tg,

I (w,v) for z < zo,

I|t:0 =I"(z,w,v) = IR(w7V) for x > xg,

the explicit solution of which is ‘
Io(z,t,w,v) = 1" (z — cwt,w, v),

and one observes that it rewrites as Ic (&, w, v, 2o, to; I, IR).
In this trivial case there is only one (linearly degenerate) field and one can decide that the strength of the
unique simple wave is
Er = ET(IL,IR,W,I/;to,l‘Q) = IR — IL.
A straightforward extension of [19] shows now that the generalized Riemann problem GR(xq,to; Ur, I, Ur, IRr)
has also a solution piecewise smooth, locally similar to (W (&, 2o, to; UL, Ugr), Ic (&, w, v, o, to; I, IR)).

After [12], we define our approximate solution (W¢g, I) of the generalized Riemann problem GR(xo, to; Ur, I, Ur, IRr)
by the perturbative expansion

Wea(t, x5 x0,to; U, Ur) = We (€, 20, to; UL, Ur) + (t — to)g(Ic (¢, w, v, to, o; I, IR), We (t, o, to; U, Ur)), (40)
for t > tp and = € R, where the correction is small when ¢ — ¢y is small, and in the same way
Ig(t, z,w,v; xo, to; I, Ir) = Io(§ w, v, To, to; I, Ir)
+e(t —to)S (Ie(t,w, v, to, o; I, Ir), Wo (t, 20, t0; UL, Ur)) , (41)
We will use the notation W (¢, z) (resp Ig(t, z,w, v)) for Wa(t, x; 2o, to; UL, Ur) (resp. Ig(t, z,w,v;zo,to; I, IR).

Definition 1. In the sequel, we assume that (pPoo, Voos Seos Ino) s a steady state for the system (2), and that U
is a small neighborhood of (Poc, Voo, Seos Iso) in RE.

Given space and time steps At and Az satisfying the CFL condition

—— Inax

At
Az

<sup Ai<u>|> } <1, (12)

max
= ueU

we show first that actually (Wg, Ig) solves approximately GR.

Proposition 2. Suppose ¢ € X := C1 (R, x R,R3) and ¢ € Y := C}(R;. x R,R) are two compactly supported
functions in the strip (0,At). Then for any (to, 7o) € Ry x R, (Ur,Iz), (Ugr, Ir) € U? and for any At and Ax
satisfying the condition (42)
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1. the function Weg(t, x; xo,t0; UL, Ur) satisfies

to+At To+Ax
/ / (Wedib + F(We)0ud + g(Ic, W)} du di
to @

0—Ax
xo+AxT To+AT
- / Welto + At, )(to + At,) do — / Welto, )é(to, ) da

o—Ax 0—Aw

to+ At to+ At
—|—/ FWea(yzo + Ax))p(-, zo + Ax) dt—/ FWea(-yzo — Ax)) (-, xo — Az) dt
to to
+0(1) (At? (At + Az + |[Ug — Ul)) ¢l x- (43)

2. the function Ig(t,x,w,v;xo,to) satisfies

to+At xo+Ax
/ / {Igatlﬁ 4+ cwlgd ) + CS(Ig, Wg)d)} dx dt

xo+Ax To+Ax
= [ hatto + ot + Aty de = [ Koot ) de
o—Az 0—Az
to+AL to+AL
—|—/ cwlg(-, 20 + Az)Y(-, 20 + Az) dt — / cwlg(-, 20 — Ax)Y(-, 29 — Ax) dit
to tO
+O(1)(A)* (At + Az) [[v ]y (44)

Proof: As we essentially follow the proof of Hong and LeFloch (see Proposition 2.1 in [12]) we will sketch
the arguments only emphasizing the structure of radiation sources through I.

Assuming that (¢p,20) = (0,0) and defining the auxiliary function M(¢t,z) = Wgoip + f(Wg)0:0 +
9(Ig, W), we call I; the subset of indices ¢ such that Vi € I; the corresponding i—wave is either a shock or a
contact discontinuity, and I, the subset of indices ¢ such that Vi € I the corresponding i—wave is a rarefaction
wave (clearly I1 U I, = {1,2,3}). We have the following decomposition of [ [ M dz dt on the elementary cell

[0, At] x [-Az, Az]
At At i1t
/ Mtacdxdt Z/ / M(t,z) dx di

i€ly

At At
/ Mtx dxdt+/ Mtx)dxdt
—Azx oft

3

At
// M(t,x) do dt = ij

In a region {(z,t) : o/t <z < 0;,,t} where We = U; and Ic = I;j(w,v) are constant states, one has after
(40) and (41)

i€l

Wg(t,x) =U; + tg([c, Ui),

and
Io(t,z,w,v) = Ii(w,v) + ctS(1c, Uy),

then for i = 1,2
OWa + 0. f(Wg) —9(Ig, Wa) = g(c,Ui) — g(Ia, Wa).

Multiplying by ¢ and integrating by parts we find

At a;rlt a';rlAt
/ / M(t,z) dz dt = / S(AL 2)Wa (At 7) da
0 oft of At

11



X=0j31 t

At

-AX AX X

£

i

Figure 1: Representation of a part of the Riemann solution. Note that due to CFL condition (42), lines z = o
never intersect the vertical boundary of the cell [-Az, Az] x [0, At].

At
+ {fWa(At, 0, At (AL, 07 AL) — f(Wa(At, o At)p(At, of At)} dt
0

At
-/ {oi 10t o )Wal(t,or t) — o ot o t)We(t, o t)} dt
At a;rlt
_/ /+ (9(Ic(t),U;) — g(Ig, Wa)) ¢(t, ) dx dt.
0 ot
Applying Lemma 1, we have

l9(Ic,Us) = g(la, We)| < ha([Usl, [Wel, ey, (—1,0x=+)s Hallzy —1,1xr+))
x|ty (Te, Us)| + et S (e, Uy, -1.11xm)

< thao (U], IWal, ey, (-10xr+)s ez, (-1,11x8+)
X (Il Iellny, (- 1xme) + cho(UiL ey -1ape)
< ¢

where C' depends only on U, hg, hi, he. Hence, since O’;‘— and o; are bounded, according to (42),

< C (At ||¢]|co,

At a;rlt
/ / (9(Ic,Ui) — g(Ia, Wa)) o(t, ) da dt
0 o;rt

where C' depends only on g and Y. Thus, we finally get

At U;rlt a';rlAt
/ / M(t,z) dz dt = / 6(AL 2) W (At 7) da
0 U;rt o

At

At
+ {fWe (At o A G(AL, 07, At) — fF(Wa(At, o At)p(At, o At)} dt
0

At
- {o 10t 07 )Wal(t o7 1t) — o] ¢(t, o )W (t,oft)} dt
0

10 ((A0)%) 9]l x- (45)

In the same stroke

At ot
Ja :/ M(t,z) dx dt
0 —Ax
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oy At 0
_ / S(AL 2 We(At,z) dr— [ 6(0,2)We(0,7) do
—Azx —Azx

At

+ | {f(Wa(t, oy )e(t, o1 t) — f(Wa(t, —Az)¢(t, —Az)} dt

At
—/ oy o(t, o7 )We(t,ort) dt

At
/ / 9(c,Ui) = g(la, W) ¢(t, x) da dt.

Using Lemma 1 here again, the last two terms are bounded by O ((At)?’ + (At)2 A:z:) o]l x, and we get
At po;
/ M(t,x) dx dt
0 Azx

o At 0
:/ d(At, x)We(At, x) doe — #(0,2)We(0,z) dz
—Azx —Ax

At

+ o {f(WG(ta 0'1_15)(,25(75, Ul_t) - f(WG(tv 7A1’)¢)(t, *Ax)} dt

At
_/ o7 6lt, T OWalt o7 t) dt+ 0 ((A0° + (a6) Az ) |16 x.
0
Finally
At Ax Az Ax
Js = / / Mt z) do dt / S(AL 2)We (AL, ) dr — / (0, 2)We (0, 2) do
0 ott G‘;At 0

At

+ ; {F(Wa(t, Ax)g(t, Ax) — fF(We(t,o5 t)o(t,o5t)} dt
At
_/ 3ot o5 t)Wa(t,o5t) dt
At
/ / 9c, Ui) — gIc, W) ¢(t, ) dw dt,

and, still with the help of Lemma 1, the last two terms are bounded by O ((At)3 + (At)? Az) o]l x, so

At Az Az
/ M (t,z) dx dt :/ P(AL, ) Wea(At, x) doe — ¢(0,2)We(0,2) dx
0'3 t G’;At 0

At
+/O {fWa(t, Az)o(t, Ax) — f(We(t, o5 t)p(t,o5t)} dt

At
_/0 of b(t, o t)We(t,oF )dt+0((At)3+(At)2Ax) 6]l x.

(47)

Next, we assume that W¢ (¢, ) consists in a i—rarefaction wave in the fan region {(z,t) : o;t <z < o;'t},

so that Wy rewrites ~
We(t,x) = We(Q) +tg(le(t), We(t)),

where ( = 7 and We is the i—rarefaction wave. Following [12] we have
OWa + 0, (F(Wa)) — g(le, Wa) = 1 (DF(We) = T ) e (5) + oI, We) — g(Ta, We).
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Hence, using the fact that (Df(VT/c(f)) - §) WL(E) =0,

IWe + 0, (f(Wa)) — 9(Ig, W) = (Df(We) — Df(We)) 0 We + g(le, We) — g(1a, Wa).

All terms in the right-hand side of the above equality are dealt with exactly as before, except for the first one,
for which we use the fact that || f||c2@ is bounded, and
(DfWea) = Df(We)) Wel < |flczanAtlglc, We)l [0 W
< CAHIWe|,

where C' depends only on f, g, and Y. Hence,

At

At
(DS (We) - DFWe)) 0.Wed| < O / TV (We)dt| ¢l x.
0

For a rarefaction wave, the total variation is non-increasing, so the above term is bounded by O(At?|Ugr —
UL))|l¢llx. Hence, we have

At pott o At
/ / M(t,z) dx dt :/ O(AL, 2 )We(At, x) dx
0 o, t

o’j’At
At
-/, {fWal(t,o; t)o(t, o7 t) — f(Wel(t, o t)o(t, o t)} dt

At
+/ {o7 d(t, 07 1 )We(t,o;t) —ofo(t,o t)Wal(t,of t)} di
0

+0 (At? (At + |Ur — ULl)) 9l x- (48)
Collecting all the previous estimates (45), (46), (47) and (48) proves (43).

Defining in the same spirit the auxiliary function N (¢, z) := IO + cwlgd ¥ + ¢S(Ig, We ), we have the
following decomposition of [ N dz dt on the elementary cell [0, At] x [-Aw, A:c]

At At
/ Ntx) dx dt = / M(t x) dxdt+/ M(t,x) dx dt,
—Ax

where o0 = cw.
As Ig(t,z,w,v) = Io(w,v) + ctS(Ie, We), we get

Ol + cwdy I — CS(Ig, Wg) = CS(Ic, Ui) — CS(Ig, Wg)
Multiplying by ¢ and integrating by parts we find
At
/ N(t,z) dz dt
Ax

oAt 0
= V(AL x)Ig(At, x) doe — ¥(0,2)I¢(0,2) dx
— Az —Ax

At
-|-/0 o{Ig(t,ot)(t,ot) — Iq(t, —Az)(t, —Azx)} dt

At
fc/o [A (S, Ui) — S(Ia, Wa)) b(t, z) dr dt.

Using the previous arguments the last two terms are bounded by O ((At)3 + (A |Ig — IL|) l¥]ly, and we get
At
/ N(t,z) dz dt
Az
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oAt 0
= (AL, x)Ig(At, x) doe — ¥(0,2)I¢(0,2) dx
—Azx —Azx

At
+/O o {Ig(t,ot)Y(t,ot) — Ig(t, —Azx)p(t,—Azx)} dt

At
- / o0l )Wa(t. 1) di + 0 (A1 + (A0 Ax) 0]y (49)
0
Finally
At Az Az Az
/ Ntz dedt= [ oAb )t a) de— | 9(0,2)I6(0,7) da
0 ot oAt 0
At
+ / o {Ia(t, Az, Ax) — To(t, ot)b(t, ot)} dt
0
At Az
[ (Ste. v - Sta Wa) wit,z) da
0 ot
and

At pAz
| [ te.v) = stie. We)) wit.o) do dt] = 0 (A0 + (84" 1= 11]) ]

50 At Az Ax Ax
/ N(t,z) dz dt = Y(At x) (At x) doe — ¥(0,2)I¢(0,x) dx
0 ot oAt 0
At
+/ o{Ig(t,Ax)Y(t, Ax) — Ig(t,ot)Y(t, ot)} dt
0
At X )
—/ oo(t, ) Walt,at) dt+0 (A0 + (A)? I — L]) 6]y (50)
0
Collecting estimates (49) and (50) proves (44) O

3 Interaction of waves

Following [9] (see also [24] for a complete presentation) we define the wave interaction potential involving two
solutions of the classical Riemann problem of respective strengths « := (a1, ag, as, ay) and 5 := (81, B2, Bs, B4),
by

D(a, B) =Y |ellBj| + > Qilauk, Br), (51)
i>7 k
where
Ql(ahﬂl) = |a74||ﬂl‘ - a;_ i+7

with 2% = sup(z,0), if the i—field is genuinely non linear, and
Qilai, Bi) =0,

if the i—field is linearly degenerate.
The following result due to Glimm [9] describes wave interaction estimates

Proposition 3 (Glimm). Let Uy, Uns,Ur be three constant states in U and let (c, B,7) the strengths of the
solutions of the Riemann problems CRU (xq,to; UL, U ), CRU (xo,t0; Unr,Ur) and CRU (xg,t0; UL, URg).
The following properties hold

1.
[y —a—pl=0(1)D(a, B). (52)
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. If Vi, Vi are two other constant states in U and & is the strength of the solution of the Riemann problem
CRU (zo,t0; VL, V)
D(v,6) = D(,0) + D(B,6) + O(1)|6]| D(cx, B). (53)

. The mapping (Ur,Ug,to,x0) — a: U x U x Ry x R — R3 is a C? function of its arguments. Moreover
for (U, Ug) and (U;,Ug) inU x U and (to,zo) and (t, xy) in Ry x R, one has

o —a|=01){|a| (UL = ULl + |Ug — Url) + ([Ug = UL — (Ur = UL)])}, (54)
where a = a(Ur, Ug; to, zo) and o = a(Up, Up; th, ().

. For (Uy,Ug), (Vi,Vr), (U/,Uy) and (V],V}) inU x U and for (t1,x1), (t2,z2), (], 2)), and (th,z5) in
R; x R, one has

D(o/,8") = D(a, B) + O()|al [(Vg = Vi) + (VR = Vi) + O()|B]|(Ug — Up) + (Ur — UL)|
+O(W)|al|Bl (|UL = UL| + |Ug = Ur| + VL = VL| + [V — V&l)
+0(1)|Up =U, = (Ur = UL)| - Vg =V, — (VR = V1), (55)

where o = o(Up,Ug;t1, 1), o = a(Uy, Up;th, 1), 8= 8(Vy, Vr;te,z2) and 5/ = B(V], Vi th, xb).
. LetUp,Up+ur,Ur, Ur+ugr and Ups be constant states inU and let (o, B,7) the strengths of the solutions
of the Riemann problems CRU (xg—Ax,to; U, Un ), CRU (xo+Ax, to; Unr, Ur) and CRU (g, to+At; U+
ur,Ur +ug). We have

vl = lal + (8] + O1)D(a, 8) + OQ) (laf + [B]) (lur| + |ur]) + OQ)(lur — url). (56)
. For the previous o, 8 and v, for (Vi,,Vr) inU x U and for (t1,21) in Ry x R, one has

D(v,0) = D(a,0) + D(8,0) + O(1)[8]| D(ev, 5) + O(1)[0] [ur — ur| + OM)|8](|ee| + |B]) (lur] + [url]) - (57)

The first four items of the previous result were proved by Glimm [9] for genuinely non linear fields and

extended by Tai Ping Liu [24] for linearly degenerate fields. The two last items were proved by Hong and
LeFloch [12] in a more general context (in [12], the right-hand side f depends on = and t).

Remark 2. Let Iy, Ip, IR be three constant (radiative) states. The strengths of the solutions of the Riemann
problems CRI(xo,to; I, Ins), CRI(x0,t0; Ing, Ir) and CRI(xo,to; I, IR) satisfy (non interacting framework)

Vr = Qp + Br~ (58)

Then we have the following consequence of Proposition 3

Proposition 4. Let us denote by ur,ur the numbers

ur, = —At g(Ip,Ur) forx <0, (59)

ug := —At g(Igr,Ugr) for x> 0. (60)

The following properties hold («,8 and ~ are defined in Proposition 8, item 5, and G,, 75 are defined in
Lemma 1)

vl = lel + 18]+ O(1) D(ev, B)

+OM)(Jal +18]) (Falto) +75(t0)) At (\UL| + |Ur| + ||IL||L})’,,([71,1}><R+)”IR”LL,V([fl,l]xRJr))

+0(1) @alto) + 75(t0)) At (UL = Un| + 11 = Tallny ,-rxes ) (61)
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and

D(v,6) = D(a,0) + D(8,6) + O(1)[6|D(a, 5)
+O0M)d|(lel + 18]) (@alto) +75(t0)) At (IULI +|Url + 11z 2y ([—1,1]><R+)||IRHL}J1U([—1,1]><]R+))

w,v

+O0(1) (Ga(to) +T5(t0)) At (|UL —Ug|+ I - IRHLLV([_1,1]XR+)> . (62)

Proof: Applying (56), we get first
Iyl = laf+ 18]+ O0@) (el + [B))(lur| + |url) + O()|ur, — url. (63)
Now let us estimate the terms |ur| 4 |ug|. For this purpose, we apply (26) of Lemma 1. This gives
lur| < Atlg(I, Ur)| < Atha([UL)], L llzy, e+ x(-1.1)) (@a(to) + T5(t0)) - (64)

Simlarly,
lur| < Athi(|UR)|, IRl Ly, , &+ x[~1,17)) (@a(to) +T5(t0)) - (65)

Next, we bound the term |uy, —ug|. For this purpose, we apply (27) of Lemma 1, finding
lup, —ugr| = At |g(IL,Ur) — g(Ir,Ugr)| < ha (\UL|, \URl, Hcllry , (—1,1xR+), ||IR||L;,,,([71,1]xR+))
% (U = Unl + 11 = Inlluy,11pxme) | @alt) +75() . (66)

Inserting estimates (64), (65) and (66) into (63), we find (61). Estimate (62) is obtained in the same way. O

4 The generalized Glimm’s scheme

We approximate the problem (15)(16)(17) by using a two-step scheme relying on the Glimm’s method as follows.
Let U be a small neighborhood of (poo; Voo, Sec, Ino) in R* (see Definition 1). Given space and time steps At
and Az satisfying the mixed CFL condition

At
. <
— max {c, max, (21615 )\l(u)|>} <1, (67)

and a sequence a = (ag)¢>o of real numbers equidistributed in the interval (—1,1), let us define (see [9, 22]) the
discretization of the (¢, x) half-plane by the mesh points

Al = (tg,x,) = (LAt,nAzx) for L €N, n € Z, n+ £ odd. (68)

Connecting nearest-neighbor mesh points by segments defines a partition of the plane into diamond-like regions.

Figure 2: The mesh points defined by (68).

17



1+
A et

I-1
At

Figure 3: Given a point in a mesh curve, the next one should be one of its two nearest right neighbors

Definition 2. Consider a mesh (Afl)eeN ez @S defined by (68). We call mesh curve L an unbounded piecewise

linear curve lying on diamond boundaries of (Afl) which satisfies the following: for any point A, € L,

LeEN,neZ’
the next point is either Af;ll or Aflﬁ_ll (see figure 3).

Any mesh curve L divides the half-plane ¢ > 0 into two components L' and L, where L™ contains the axis
t = 0. We define an order on the mesh curves: L; > Lo if any point of L either is on Lo or is contained in L;r.
We say that Lq is an immediate successor of Lo if Ly > Lo and if each mesh point of L; except one is on L.
Let us approximate the initial data (16) by

Uaz(x,0) = Up(nAz), for x € [(n — 1)Az, (n + 1)Az], n odd, (69)

which allows us to construct for 0 < ¢ < At a solution W¢ of each classical Riemann problem with initial
data Ua, and, due to the CFL condition, to define the solution of the Cauchy problem (38) in the strip
{(z,t) € Rx]0, At[}.

Approximating as well the initial data (17) by

Ing(2,0,w,v) = Ip(nAz,w,v) for z € [(n—1)Az, (n+ 1)Az], n odd, (70)

allows us to construct for 0 < t < At a solution I of each classical Riemann problem with initial data I, and,
due to the CFL condition, to define the solution of the Cauchy problem (39) in the strip {(z,¢) € Rx]0, At[}.
Using then (40) and (41) we can construct for 0 < ¢ < At the approximate solutions Wg and Ig for
each generalized Riemann problem (37) with the previous initial data Ua, and Ia,, defining the solution
(Inz(x,t,w,v), Unz(x,t)) in the strip {(x,t) € Rx]0, At[}.
Supposing now (Iaz(x,t,w,v),Uaz(x,t)) well defined in the strip {(z,t) € R x [(£ — 1)At, LAt[}, we set

Unz(z,0AL) := Upz((n + ap) Az, LAL — 0), (71)

Ing (2, 0At w, V) := Ta.((n + ap) Az, LA — 0, w, V), (72)

for z € [(n —1)Az,(n+ 1)Az], n+/{odd, we[-1,1]. v € Ry.

Then we solve in the same stroke, first the corresponding classical Riemann problem with initial data
Unz(z, LAt), then the transport problem with initial data I, (z, £At, w, V), and finally the corresponding gener-
alized problems with initial data Ua.(z, £At) and I, (x, £At, w, v) which allows to get (Iaq(x,t,w,v), Uaz(z, 1))
well defined in the strip {(z,t) € Rx [¢At, ({+1)At]}. This process defines inductively (Iaz(z,t, w,v), Uag(z,1))
in the half-plane {(x,t) € R x R} }.

Using the simplified notations Uy, := Ua, (¢At, nAx) for £+n odd, and I; ,, := In, ((At, nAz, w,v) for £+n
odd, we have after (40) and (41) the value of the solution of the generalized Riemann (GR) problem

Ué,n = Vf,n + At g (Ié,n; W,n) ,

and
Ié,n = IZ,n +cAt S (IZ,'rﬂ ‘/Zn) y

where V7, is the value of the solution of the classical Riemann (CR) problem (38):

CRU (TLAQS, (E — 1)At; Ugfl)nfl, Ugfl,nﬂ) ,
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taken at the sample point (¢At, (n + as)Az) i.e.

Ax
Vé,n = WC (af E7nAm7 (‘g - 1)Ata Uffl,n717 U@l,n+1) 9

and Zy ,, is the value of the solution of the problem
CRI (nAm, (g - 1)At7 IZ*l,nfla Ilfl,nJrl) ’

taken at the same sample point (¢At, (n + a¢)Az) i.e.

A
Ly = Ic (ae Xj’ (¢ — 1)At7nA-T;I€—l,n—1;Ié—l,n-l-l) .
A al+1 N
it E

Figure 4: The diamond region Dy ,.

We define now [31] the diamond region Dy, as the convex hull of the points S := ((¢ — 1)At, (n+ a;—1)Az),
W = (lAt,(n — 1+ ap)Ax), E = (LAt,(n + 1+ ar)Az) and N = (({ + 1)At, (n + agy1)Ax), together with
the “GR” values Ug = Up_1.5, Uw := Upn—1, Ug := Up nt1, Uy := Ugy1,n and the “CR” values Vs = Vi1 p,
Vi :=Von_1, Ve := Vipyr and Viy := Vg1 .

An i-wave (U;—1(t),U;(t)) in the approximate Riemann problem Ua, is defined as

(Ui—1(1), Us(t)) = (Ui=1,Us) + (t = nAt) g (Zen, Vi) -

The strength of this i-wave is not clearly defined, so we set it equal to the strength of the wave (U;_1,U;), as
in [12]:
gi = i(Ui—1, Uy).

Let Jy be a mesh curve located in the strip {(¢,z); (At <t < (€ + 1)At}, and let TV (Uax(t, x); Je) (resp.
TV (Vaz(t,x); Jg)) the total variation of Ua, (resp. Vag) on Jp. If an i—wave (U;_1(t),Us(t)) of Uns(t,x)
originating in (¢At,nAx) intersects Jy, then the corresponding classical i—wave (U;—1,U;) of Va.(t,z) also
intersects Jy.

Following the ideas of Hong and LeFloch, we expect that the sum of the strength of the elementary waves in
Ua. which cross a mesh J can be considered as a measure equivalent to the total variation of Ua,: the radiative
source g will remain small at any time provided they actually are at ¢ = 0 and provided that the transport
coefficients are smooth enough.

After formula (40)

(Ui—1(8),Ui(t)) = (Ui—1,U;) + At g (Ion, (Ui-1,Ui))

Then
TV (Uax(t,2); Jo) = TV (Vax(t, 2); Jo)| < At D> TV (g (Tems Vi) s Je) - (73)
nez
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Let us assume that (U, I) € U are such that TV(U) and [|TV (I)|| 11 (g, x[1,1]) are small i.e.
TVAUY + 1TV AT H 1y x[—1,1]) S & (74)

for £ > 0 small enough, and that hypotheses of Proposition 4 are satisfied.

Let us estimate the term TV (g (Z¢,n, Vi,n) 5 J¢) in the right-hand side of (73). As in Proposition 4, we must
consider the two nonzero components of g.

We have then to estimate

TV{g2}:=TV / S(I,U;) dw dv
Ry x[—1,1]

and

TV{g3} =TV {/ wS(I,U;) dw dl/} .
Ry x[—1,1]

As the transport coefficients do not depend on w, one gets first

TV{gp} <TV / 0a(Ui,v)B(v,U;) dv  + TV / 0a(Us,v)I dw dv 3 ,
Ry Ry x[—1,1]

so using the identity fR+ B(v,U;) dv = aﬁz}yn where a is a pure positive constant, we have, using (21) and (22),

TVig} < a <4 sup (Jha(U)[97) + sup (Iﬁa(U)Iﬁ“)) CTV{U Yoo (t)
Ueu Ueu
+[|TV {I}”Ll(Rer[fl,l]) sup |hq(U)|a4(t) + HI||L1(R+X[71’1D sup |ha(U)|TV {U;} 74 ().
Ueu Ueu

In the same stroke

TV{QB} =TV {/ (Ua(vé,my) + Us(vé,nal/))zé,n dw dV}
R.*_X[*l,l]

< (310 10 @ITV T}y + 50 O 21 TV () ) 0
Ueu Uveu

+ (p O IV AZen} g g 1y + 5P |ﬁs<U>I||L1<R+X[1,U>Tv<w,n>) a(t).
el veu

When (U;_1,U;) is a rarefaction wave, the same computation shows that a similar estimate holds. Hence,
summing over all the elementary waves crossing Jy, plugging into (73) and taking into account the CFL condition
(67), we get

TV (Uaz; Je) =TV (Vaxs Jo)|

< O(At) (Tv {Una; Je} + TV { HIIIL1<R+x[—1,1D}> '

After (74) the right-hand side is small and we conclude that the total variations of Ua, and Va, are equivalent
on any mesh curve Jg.

We define the strength €;,,(Dy,,) of waves coming into Dy, for £ + n even by
ein(Den) = le(Viv,Us; (€ — 1)At, (n — 1)Az)| + |e(Us, Vi; (€ — 1)At, (n + 1)Ax)], (75)
and as well the strength e (Dy ) of waves leaving Dy,
cout(Drn) = le(Uw, Vi LA, nAZ)| + |e(Viv, Ug; LA, nAz)| = |e(Uw, Ug; LA, nAz)). (76)

We define analogous quantities for the radiative waves coming into D, , for £ 4 n even
[ee) 1
erin(Den) = / / ler(Zw, Is; (€ — 1)At, (n — 1)Ax)| dw dv
o Jo
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oo 0
—l—/ / ler(Is, Zp; (0 — 1)At, (n+ 1)Az)| dw dv, (77)
0o J-1

and as well the strength e, 5y (Dy,,) of waves leaving Dy ,,

e’} 0
erout(Den) = / / ler(Iw, In; LAL, nAz)| dw dv
o J-1

[e%s} 1
+/ / ler(Zn, Ig; LA, nAZ)| dw dv. (78)
o Jo
We also define the potential P(Dy ,,) of interaction in the diamond Dy, for £+ n even, by
P(Dﬂ,n) =D (5 (VWa USa (ﬁ - 1)Ata (n - I)AZ‘) € (Us, VE7 (z - 1)At7 (TL + 1)A$)) ’

where D(-,-) is defined by (51).

Given a mesh curve J, one can split the waves crossing J into two groups: the “left-incoming” waves (or
type I waves) (Vi—1,Us—1,n), crossing the WS-type segments of J, and the “right-outgoing” waves (or type II
waves) (Ug—1,n, Vint1), crossing the SE-type segments of J. Then we define the linear functional

L) = Y. leVen-1,Ur 105 (€ = )AL, (n — 1)Ax)|

type I waves

+ Y |eWemim, Vimers (E = 1AL, (n + 1)Ax)|

type Il waves

[e’e) 1
s Y[ e @ (- DAL - DA do i
0 0

type I rad. waves

00 0
I / / en(osms Tom1: (£ — DAL (n+ 1)A)| dos dv. (79)
type II rad. waves 0 -1
Next, applying Glimm’s strategy [9] (see also [28]), we correct L£(J) by a quadratic term
Q) = > Dl f), (80)
(a)/B)

and we consider the final Glimm'’s functional
F(J):=L(J)+ KQ(J), (81)

where K > 0.

Note that due to the linear character of C RI, one does not need any quadratic correction for the radiative
part.

Our aim is now to prove that F(J) is uniformly bounded for any mesh curve J provided that the constant K
is large enough. As F(J) is equivalent to the total variation norm in BV (R), we will conclude that TV (Ua,) <
CTV (Upy) which implies the convergence of the scheme by using a compactness argument.

Proposition 5. Let J; be a mesh curve, Jo an immediate successor of Ji and Dy, n, the diamond region
determined by Jy and Jo. The Glimm’s functionals L(J12) and Q(J12) satisfy

L(J1) = L(J2) = OW){P(Deyno) + €in(Deo.ny) At (Ta((bo +1)AL) +0((lo +1)At))}, (82)

and

Q1) = Q(J2) = =P(Dey,ne) + O L(J1)P(Deg o)
+ OM)L(J1)gin(Deo.ny) At (Ta((bo +1)AL) +75((lo + 1)AL)),  (83)

where the constants C; are defined in Proposition 4.
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Proof: From the previous definitions (75), (76) and (79), we have
»C(JZ) - »C(Jl) = gout(Dlo,ng) - Ein(DZO,no) + E':7",out(-D£0,no) - Er,in(Dég,no)~

Using estimates (61) and (62) in Proposition 4, with xg = noAx, tg = (bp — V)AL, U, = Vw, Uy = Usg,
Ur=Vg, u = Uw — Vi, pugr = Ug — Vg, we find

EOUt(Dfo,m)) = Ein(Déoﬂlo) + O(1>P<D@0,no) + O(l)gin(Déoﬂlo)At (0-70«(([0 + 1)At) +FS((€0 + 1)At)) )

which gives (82).

As hydrodynamical and radiative elementary waves do not interact (83) directly follows from Proposition 4
O

In the spirit of [12] we have

Lemma 2. Let {y be a positive integer and suppose that Jy (resp. Jo) is a mesh curve such that all the mesh
points on Jv (resp. Jo) belong either to the line t = (£y — 1)At or to the line t = loAt (resp. the line t = LyAt
or to the line t = (€o + 1)At).

Suppose there exists a positive constant M > 0 sufficiently small such that

L(J1) < M. (84)
Then provided that the constant K in (81) is large enough, the following estimate holds

F(J2) < F(J1) + O()At (7a((fo + 1)A) + 75((lo + 1)A1) > €in(Deying); (85)

no€EZ
where O(1) depends on M, K.

Proof: Fixing ng € Z, we multiply (83) by K and add it to (82). We obtain
F(J2) = F(h) = —K Y P(Deyny) + O+ EL()] D P(Drg.ng)
no€Z no€Z
+O(W)[1+ KL D (Ein(Degng ) At (Fal(lo + 1)AL) +75((Lo + 1)AL))) .
no€”Z

Since >, ez P(Deyny) = Q(J1), this implies

F(Jy) = F(J1) = —KQ(Ji)+OM)[1+KL(J)]Q(J)

+O(1)At ( > am(Deo,no)> (@a((lo + 1)At) +75((lo + 1)At))

no€”Z

= Q(J1) [K(O()L(J1) — 1) + O(1)]

+O(1)At (Z €in(Dzo,no)) (@a((bo + 1)At) +75((lo + 1)At))

no€EZ

Q) [K(O()M —1) + O(1)]

+O(1)At (Z Em(Deo,no)> (@a((lo + 1)AL) +75((bo + 1)Al)) .

no€”Z

N

Choosing M > 0 sufficiently small and K > 0 sufficiently large, the first term of the right-hand side is negative,
so (85) is proved. O

Theorem 1. Let (Us,Ix) € U be a constant state, such that I(v,w) = B(v,0«), the temperature ¥
corresponding to Us. Assume that the initial data (U, Ip) € U are such that

U0 = Usoll oo mys 1o — ToollLoo(m,Ly, (1= 1.11x R4 ))

TV (Uy), TV (||IoHLoo([,MlxR+)) are sufficiently small. (86)
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Assume also that the following norms

Twmd, [ wa, (s7)
| |

are sufficiently small. Then, the approzimate solution (Ung,In;) are bounded uniformly in L= (RT x R) and
in BV(R* x R):

[Uaz = UsollLo=(j0,71xR) + [ {az — Looll Loo (0,71 xR), L1 (|- 1,1] xR +)

<O(1) (||U0 = Usolle®) + o = Ioollnge®,11,, (- 1,1 xR ) + C) , (88)

TV (Usa) + 1TV Uao)lzs o1y < OO) (TV00) + TV )y o1y +C) 0 (89)
where -
c= [ @t +oute) an (90)
0
and M is described in (84). Furthermore, (Uaz,Iay) is Lipschitz continuous in time, that is, for any t1,t2 €

[07 T]7

/UAm(tl,x)—UAi(tz,xﬂdx—i—H/ Az (t1,2) — Ing(te, 2)| dx
R R

Ly, (~1,1]xRy)
<O(1) (1t — tal + A1) (TV(Wo) + ITV (o)l s 111xmy) +C) - (O1)

Proof: We first prove that condition (84) holds under the assumptions (86) and (87) by induction on £y. For
this purpose, we denote by Jy, a mesh curve which satifies the hypotheses of Lemma 2, that is, any point of Jy,
belongs either to the line t = (¢ — 1)At or to the line ¢t = ¢yAt. For {5 = 0, we clearly have

2
F(Jo) <O(1) <TV(U0) +ITV (o)l , (—1,1xr+) + K [TV(Uo) + HTV(IO)||LL57V([7171]XR+)} ) ; (92)

where the term O(1) depends only on the coefficients of the system. Hence, if TV (Uo) +[|TV (Io)l|lLy  ((-1,1]xR*)
is sufficiently small, then F(Jy) < M hence L(Jy) < M, where M is defined in Lemma 2.

Next, we assume that
Ve< by —1, L(J) <M. (93)

Applying Lemma 2, we infer
F(Jey) < F(Jeg=1) + O()AL Y (3 ((bo + 1)AL) +75((bo + 1)AL) €in(Dey—1.m, ).
no€Z
Repeating this argument for each ¢ and summing from ¢ = 0 to £ = g — 1, we find
fo*l

F(Jey) < F(Jo) + OMAL Y - >~ (Fal(£ + 1)At) + 75 ((£ + 1)At)) €in (D).

no€Z £=0

Then, we point out that

Z 5in(D€,n0) = ‘C(Jf)a

noE”ZL

hence
Zo —1

FlJe,) < F(Jo) + O(MAL Y (L(Jy) (Fal((£ + DAL +T5((C + 1)AL))) .
=0
Recalling (92) and (93), this implies

F(Jey) < O(1) (1 + KTV (Uo) + HTV(IO)||L5,7,,([71,1]><R+)> TV (Uo) + 1TV (Lo)llzy, , (1-1,1xR+)
lo—1
+OMAL Y (Fa((£+ 1)At) +75((L + 1)AL)) .
=0
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Applying (90), this gives

F(Ji) OW)[ (14 KTV (Uo) + TV (T)lzy 1158 ) TV Uo) + 1TV (o) 2y 1,110 + CM].
Hence,

L(Jg,) < O(1) [(1 + KTV (Up) + ”TV(IO)HL}J‘U([—Ll]xR*)) TV (Uo) + 1TV (o)l s, , ((—1.1)xR+) + CM},

where the term O(1) is independent of C, M, K and TV (Uo) + [TV (Io)|Ly,  (j-1,1)xr+)- Hence, we can choose

TV (Uo)+ITV (Lo)ll Ly, , (j-1,1)xRr+) small enough to have O(1) (1 + KTV (Uy) + ”TV(IO)||L&J‘U([—1,1]><R+)) TV (Up)+
HTV(IO)”L}J L([=1,1]xR+) < .2\4/27 and O(].)CM < M/2 Thus7

L(Je,) < M.

This ends the induction proof.

We thus know that the sequence £(.Jy,) is bounded independently of £y and of At. Hence, since the functional
L(Jg,) is equivalent to the total variation of Ua,, we deduce that the total variation of Ua.(t, ) is bounded
independently of ¢ and Az. this proves (89). The proof of (88) and (91) is dealt with exactly as in [9]. O

We are now in position to prove our main result:

Theorem 2. Under the hypotheses of Theorem 1, if the sequence (ag)e>o is equidistributed, the sequence
(Unws Inz) defined by (69)-(70)-(71)-(72) converges in Ll ., up to extraction of a subsequence, to a function
(U, I) = (U(x,t), I(xz,t)) which is a solution of (2), such that U is an entropy solution of the first three equa-
tions of (2).

Proof: Let (Uag, Iaz) be the solution defined by the generalized Glimm scheme (69)-(70)-(71)-(72). Applying
Theorem 1 and Helly’s theorem, there exists a subsequence of (Uaz, Iaz) converging to (U, I) € Li, ., which is
in BV.

Let 6 be a test function in D(RT x R), and define

R(Unn, Ins,0) = / / Unadil+ F(Una)0s0 + g(Una, Inn)0] dadt + / U (0, 2)0(0, ) dz.
R+ JR R

The fact that (U,I) is a weak solution of (2) is exactly equivalent to R(U,I,0) = 0 for any smooth 6. The
dominated convergence theorem implies that

lim |R(Uag,Iaz,0) — R(U,1,0)| = 0.
Az—0

Hence, we are left with proving that

lim R([JAm IAwa 9) =0. (94)
Az—0

We split the integral defining R(Uay, Ins, 0) into a sum of integrals over the sets Qe, n, = [loAt, (¢o + 1)At] x
[(no — 1)Az, (ng + 1)Ax], for £y € N and ng + ¢y € 27Z:

s (
R(UAmaIArao) = Z Z \/Z

Lo=0no+Loe2z ’ toAt

Lo+1)At  p(no+l)Az
/ UAmate + f(UAz)az9 + g(UAxa IAz)g
(

no—1)Az

24



Applying Proposition 2, we thus have

R(Unz,Ina:0) = O1) > Y 0Q1) (A + Ax?) (Az + At + |Usgingr1 — Urgmo—11) 10llc1(Qug o)
Lo=0no+LoE2Z

- (no+1)Az
+ Z Z </( Unz (6o + 1)At—,x) 0 (({p + 1)At, x) dx

Lo=0no+~£oE€E2Z no—1)Az

(no+1)Az
_/ Unz (boAt+,2) 0 (bgAt+, ) dx) —|—/ Uaz(0,2)0(0, z)dx
( R

no—1)Ax

= (Lo+1)At
+ Z Z (/@ f(t, (ng+ DAz, Uns(t, (ng + 1)Az—)) dt

£o=0 no+£o€2Z oAt

(f()Jrl)At
—/ ft, (ng — DAz, Ung(t, (no — 1)Az+)) dt> )
Lo At

We denote by R; the first line of the right-hand side, by Rs the second and third lines, and by R3 the fourth
and fifth lines: R(Uag, Inz,60) = R1 + Ro + R3. We deal with each term separately: for Ry, we apply (89), and
find that

Ril<CA+CY. Y (Aa?+A%) (1+TV(U) +ITV(ls (-1ere) 16llcr @ vy
Lo=0no+LoE2Z

hence

|R1| < CAz. (95)
Turning to Rs, we have

(no+1)Azx

Z Z / [Unz] (o At, z)0(LoAt, x)dx,

Lo=0 no+loe2z ’ (no—1)Az

where [-] denotes the jump of a function: [Ua,| (boAt, 2) = Uar(boAt+, ) — Ua,(boAt—, z). We apply a result
by Liu [22], which implies that, since the sequence (a,)nez is equidistributed,

([

£o=0 no+Loe2z " (no—1A

’I’Lo+1
UAz (EoAt,a:)H(KOAt,z)d:r> = 0.

Hence,
lim Ry =0. (96)

Az—0

Turning to R3, we have, according to the definition of Ua, and since g is smooth,

(Lo+1)At
R3] < CZ > / U (t, (no + 1)At+) — Una(t, (no — DAE=)| 0]l cr(q, gt
zo 0 no+Loe2z ¥ Lot
(Lo+1)At
< CZ Z / tlg(LoAt, (no + 2) Az, Ugy mg11) — 9(Lo At no Az, Ugy ny 1) dE10]lc1(Quy o)
eo 0 no+Loe2z ” LoAt

(Lo+1)At

< CZ > / tAzdt|0]cr(quy g)-

Lo=0no+boc27 7 LoAt

Hence,
|R3| < CAx. (97)

We then collect (95), (96), (97), and find that (94) holds. That is to say, U is a weak solution of (2). As far as
the radiative part is concerned, the preceding proof applies in a simpler way, since we do not use any Riemann
problem for this part.
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It remains to prove that (U, I) is an entropy solution, that is, for any entropy pair (5, F') and any non-negative
test function 6, we have

/ /S(U)8t9+F(U)8I9+P(U)9+/S(UO)H(O,x)dx20,
Rt JR R

with

P =0ySy(t,z,U)+ 0, F(t,z,U).
The proof of this fact follows exactly the same line as that of (94), applying Proposition 2. |
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