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Xavier Blanc, Bernard Ducomet

Global weak solutions to the 1D compressible

Euler equations with radiation

SUMMARY

We consider the Cauchy problem for the equations of one-dimensional motion of a compressible inviscid gas

coupled with radiation through a radiative transfer equation. Assuming suitable hypotheses on the transport

coefficients and the data, we prove that the problem admits a weak solution. More precisely, we show that

a sequence of approximate solutions constructed by a generalized Glimm’s scheme admits a subsequence

converging to an entropic solution of the problem.

Keywords: compressible, Euler, one-dimensional symmetry, radiative transfer. AMS subject classification:

35Q30, 76N10

1 Introduction

The purpose of radiation hydrodynamics is to include the effects of radiation into the hydrodynamical framework.
When the equilibrium holds between the matter and the radiation, a simple way to do that is to include local
radiative terms into the state functions and the transport coefficients. On the other hand, radiation is described
by photons, which are massless particles traveling at the speed c of light, characterized by their frequency ν ∈ R+,

their energy E = hν (where h is the Planck’s constant), their momentum ~p = ~ν
c
~Ω, where ~Ω ∈ S2 is a vector of

the 2-unit sphere. Statistical mechanics allows us to describe macroscopically an assembly of massless photons
of energy E and momentum ~p by using a distribution function: the radiative intensity I(x, t, ~Ω, ν). Using this
intensity, one can derive global quantities by integrating with respect to the angular and frequency variables:
the spectral radiative energy density ER(x, t) per unit volume is then ER(x, t) :=

1
c

∫ ∫
I(x, t, ~Ω, ν) dΩ dν, and

the spectral radiative flux ~FR(x, t) =
∫ ∫

~Ω I(x, t, ~Ω, ν) dΩ dν.
In the absence of radiation the hydrodynamical system is derived from the fundamental conservation laws

(mass, momentum and energy) by using the Boltzmann’s equation satisfied by the fm(x,~v, t) and Chapman-
Enskog’s expansion. One gets then formally the compressible Euler system for matter. When radiation is taken
into account at a macroscopic level, supplementary source terms appear, coupling matter variables to radiative
intensity I, which is supposed to satisfy a transport equation: the so called radiative transfer equation, an
integro-differential equation early discussed by Chandrasekhar in [4].

Supposing that the matter is at local thermodynamical equilibrium (LTE) and in the non-relativistic frame-
work (the velocity of matter is much less than the velocity of light: ~v2 ≪ c2), the coupled system satisfied by
the density ρ, the velocity ~u, the temperature ϑ and the radiative intensity I in R

3 reads [3] [26] [27]







∂tρ+ divx(ρ~v) = 0,

∂t(ρ~v) + divx(ρ~v ⊗ ~v) +∇xp = − ~SF ,

∂t(ρE) + divx((ρE + p)~v) = −SE ,

1

c
∂tI + ~Ω · ∇xI = S,

(1)

where E = 1
2 ~v2 + e is the total energy with e the internal energy, p the pressure, and ~SF and SE are the

radiative force and energy source terms, described below.
Let us describe the various coupling terms in the right-hand sides of (1) (see[25]).
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In the radiative source splitted into two parts S = Sa,e + Ss, the first contribution

Sa,e(x, t, ~Ω, ν) = −σaI
(

x, t, ~Ω, ν
)

+ σaB (x, t, ν) ,

is the absorption-emission contribution, and the second one

Ss(x, t, ~Ω, ν) = −σsI
(

x, t, ~Ω, ν
)

+
σs
π

∫

S2

I
(

x, t, ~Ω′, ν
)

d~Ω′,

is the scattering contribution.
The radiative energy is

SE(x, t) :=

∫

R+

∫

S2

S(x, t, ~Ω, ν) d~Ω dν,

The radiative flux is
~SF (x, t) :=

1

c

∫

R+

∫

S2

~Ω S(x, t, ~Ω, ν) d~Ω dν.

In the radiative transfer equation (the last equation of (1)) the functions σa and σs appearing in the radiative
source S describe in a phenomenological way the absorption-emission and scattering properties (frequency
and angular transitions) of the interaction photon-matter and the function B describes the thermodynamical
equilibrium distribution.

Let us note that the foundations of the previous system have been described by Pomraning [27] and Mihalas
and Weibel-Mihalas [26] in the full framework of special relativity (oversimplified in the previous considerations).
The coupled system (1) has been recently investigated by Lowrie, Morel, Hittinger [25], Buet, Després [3] with
a special attention to asymptotic regimes, and by Dubroca-Feugeas [7], Lin [20] and Lin-Coulombel-Goudon
[21] for numerical aspects. Concerning the existence of solutions, a proof of local-in-time existence and blow-up
of solutions has been proposed by Zhong and Jiang [33] (see also the recent papers by Jiang and Wang [15] [16]
for a 1D related “Euler -Boltzmann” model), moreover a simplified version of the system has been investigated
by Golse and Perthame [11].

As our goal is to prove global existence of solutions for the system (1), we restrict from now our study to
the mono-dimensional geometry. The system (1) rewrites







∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = −SF ,

∂t(ρE) + ∂x((ρE + p)v)) = −SE ,

1

c
∂tI + ω∂xI = S,

(2)

where E = 1
2 v

2 + e is the total energy with e(ρ, S) the internal energy and p(ρ, S) the pressure.
In order to simplify the study of the fluid part of the system we can use ρ, v and S as new variables (ϑ and S

being the temperature and the entropy of matter) and using the thermodynamical identity ϑdS = dE+pd
(

1
ρ

)

,

we rewrite (1) as







∂tρ+ ∂x(ρv) = 0,

∂tv + v∂xv +
1

ρ
∂xp = −

1

ρ
SF ,

∂tS + v∂xS =
1

ρϑ
(vSF − SE) ,

(3)

and the transfer equation is
1

c
∂tI + ω∂xI = S, (4)

for (x, t) ∈ R× R+, where the pressure is p = p(ρ, S).
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It will be convenient to use in the sequel the vector notation U :=





ρ
v
S



.

Then (3) rewrites
∂tU + fU∂xU = g,

with

fU (U) :=









v ρ 0

pρ

ρ
v pS

ρ

0 0 v









,

and

g(I, U) :=












0

−
1

ρ
SF

1

ρϑ
(vSF − SE)












. (5)

After an elementary computation, putting c2 = pρ, one gets the three eigenpairs for fU (U)

λ1(U) = v − c, r1(U) =





ρ
−c
0



 ,

λ2(U) = v, r2(U) =





pS
0

−c2



 ,

and

λ3(U) = v + c, r3(U) =





ρ
c
0



 .

The corresponding pairs of Riemann invariants are

Z
(1)
1 = S, Z

(2)
1 = v +

∫ ρ c(w, S)

w
dw,

Z
(1)
2 = v, Z

(2)
2 = p(ρ, S),

and

Z
(1)
3 = S, Z

(2)
3 = v −

∫ ρ c(w, S)

w
dw.

In (2) the radiative intensity I = I(x, t, ν, ω), depends also on two extra variables: the radiation frequency
ν ∈ R+ and the angular variable ω ∈ S1 := [−1, 1].

The absorption-emission and scattering terms rewrite

Sa,e(x, t, ν, ω) = σa(t, ν, ρ, ϑ) [B(ν, ϑ)− I(x, t, ν, ω)] , (6)

and
Ss(x, t, ν, ω) = σs(t, ν, ρ, ϑ)

[

Ĩ(x, t, ν)− I(x, t, ν, ω)
]

, (7)

where Ĩ(x, t, ν) := 1
2

∫ 1

−1
I(x, t, ν, ω) dω.
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The function B(ν, ϑ) depending on the temperature and the frequency, describes the equilibrium state

B(ν, ϑ) = 2hν3c−2
(

e
hν

kBϑ − 1
)−1

, (8)

where kB is the Boltzmann’s constant and h is the Planck’s constant, and corresponds to the Planck’s equilibrium
distribution of photons in a cavity at temperature ϑ (black body).

The coefficients σa and σs are positive but their evaluation is a difficult problem of quantum mechanics and
their general form is not known (an expression of σa used for stars of moderate mass is given by the Kramers

formula σa(ν, ϑ) =
C(ϑ)

ν3

(

1− e
− hν

kBϑ

)

, where C is a positive function).

In the following we will also assume that σa and σs are positive, and bounded from above: there exists
σa(t), σs(t) > 0 in L1(R+) ∩ C0(R+) (that is, integrable and continuous) such that

0 6 σa(t, ν, ρ, ϑ) 6 σa(t),

and
0 6 σs(t, ν, ρ, ϑ) 6 σs(t).

Remark 1. The above assumptions are very restrictive. In particular, they do not allow σa and σs to depend
only on ρ, ϑ and ν, as it is physically relevant. The meaning of this, which is made precise below in (21), (22),
(23), (24), is that the coupling between radiation and hydrodynamics should be weak in the limit t → ∞. This
limitation is not satisfactory, and is closely linked with the method we use here to prove our result.

We define the radiative energy

ER :=
1

c

∫ 1

−1

∫ ∞

0

I(x, t, ν, ω) dν dω, (9)

the radiative flux

FR :=

∫ 1

−1

∫ ∞

0

ωI(x, t, ν, ω) dν dω, (10)

and the radiative pressure

PR :=
1

c

∫ 1

−1

∫ ∞

0

ω2I(x, t, ν, ω) dν dω, (11)

Finally, the radiative energy source rewrites

SE :=

∫ 1

−1

∫ ∞

0

S(x, t, ν, ω) dν dω, (12)

and the radiative force

SF :=
1

c

∫ 1

−1

∫ ∞

0

ωS(x, t, ν, ω) dν dω. (13)

From the equation (4) and the definitions (9)-(13), one also derives, after integrating in frequency and angular
variables, the equations

{
∂tER + ∂xFR = SE ,
1

c2
∂tFR + ∂xPR = SF .

(14)

We consider finally the Cauchy problem

{
∂tU(x, t) + ∂x(f(U(x, t))) = g(U(x, t), x, t),

1

c
∂tI(x, t, ν, ω) + ω∂xI(x, t, ν, ω) = S (U(x, t), I(x, t, ν, ω)) ,

(15)

with initial conditions

U |t=0 = U0(x) =

∣
∣
∣
∣
∣
∣

U∞ for x < −N,
U0(x) for |x| 6 N,
U∞ for x > N,

(16)
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and for any ν ∈ R+

I|t=0 = I0(x, ω, ν)

∣
∣
∣
∣
∣
∣

I∞(ω, ν) for x < −N,
I0(x, ω, ν) for |x| 6 N,
I∞(ω, ν) for x > N,

(17)

with N > 0, U0 and I0 are measurable functions, U∞ is a constant state, I∞ = B(ν, ϑ∞) where ϑ∞ is the
temperature associated with U∞.

Denoting by η := ρ−1 the specific volume, pressure p(ρ, S), internal energy e(ρ, S) and temperature ϑ(ρ, S)
are related by the thermodynamical relations

p = −∂ηe and ϑ = ∂Se. (18)

We assume that state functions e and p (resp. σa and σs) are C2 (resp C1) functions of their arguments and
we suppose that e satisfies the following stability conditions







e(η, S) > 0, ∂ηe(η, S) < 0, ∂Se(η, S) > 0,

∂2ηηe(η, S) > 0, ∂2ηSe(η, S) < 0, ∂3ηηηe(η, S) < 0,

lim
S→+∞

e(η, S) = +∞, lim
S→−∞

∂ηe(η, S) = 0.

(19)

These conditions imply that for any couple (η, p), there is a unique S := S(η, p) such that ∂ηe(η, S) = −p and
we note ε(η, p) := e(η, S(η, p)). After Smith [30], we assume that

lim
η→0

ε(η, p) = 0, ∂ηp|ε 6
p2

2ε
. (20)

Here, ∂ηp|ε denotes the partial derivative of p = p(η, ε) as a function of η = 1/ρ and ε = e.
Finally, we give the conditions we need on σa and σs: we assume that

∃ha ∈ C0
[
(0,∞)2

]
, sup

ν∈R+

σa(ν, ρ, ϑ) 6 ha(ρ, ϑ)σa(t), (21)

∃hs ∈ C0
[
(0,∞)2

]
, sup

ν∈R+

σs(ν, ρ, ϑ) 6 hs(ρ, ϑ)σs(t), (22)

∃h̃a ∈ C0
[
(0,∞)2

]
, sup

ν∈R+

(|∂ρσa(ν, ρ, ϑ)|+ |∂ϑσa(ν, ρ, ϑ)|) 6 h̃a(ρ, ϑ)σa(t), (23)

and
∃h̃s ∈ C0

[
(0,∞)2

]
, sup

ν∈R+

(|∂ρσs(ν, ρ, ϑ)|+ |∂ϑσs(ν, ρ, ϑ)|) 6 h̃s(ρ, ϑ)σs(t). (24)

Here, C0 means continuous, and σa and σs are supposed to be in L1(R+) ∩ C0(R+). A simple argument then
proves that

Lemma 1. Assume that (21) is satisfied, and that g is defined by (5). Then, there exists h0 ∈ C0 [(0,∞)× [0,∞)] ,
such that, for any I > 0 in L1

ω,ν ([−1, 1]× R
+) and any U ∈ R+ × R× R+,

∫ ∞

0

∫ 1

−1

|S(I, U)|dωdν 6 h0

(

|U |, ‖I‖L1
ω,ν([−1,1]×R+)

)

(σa(t) + σs(t)) . (25)

Moreover, there exists h1 ∈ C0 [(0,∞)× [0,∞)] , such that, for any I > 0 in L1 (R+ × [−1, 1]) and any U ∈
R+ × R× R+,

|g(I, U)| 6 h1

(

|U |, ‖I‖L1
ω,ν([−1,1]×R+)

)

(σa(t) + σs(t)) . (26)

Finally, if in addition (23) is satisfied, there exists h2 ∈ C0
[
(0,∞)2 × [0,∞)2

]
such that for any I1, I2 > 0 in

L1 (R+ × [−1, 1]) and any (U1, U2) ∈ (R+ × R× R+)
2
,

|g(I1, U1)− g(I2, U2)| 6 h2

(

|U1|, |U2|, ‖I1‖L1 , ‖I2‖L1
ω,ν([−1,1]×R+)

)

×
[

|U1 − U2|+ ‖I1 − I2‖L1
ω,ν([−1,1]×R+)

]

(σa(t) + σs(t)) . (27)
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Proof: Recall that, according to (7), S = σa (B − I) + σs

(

Ĩ − I
)

, hence, applying (21) and (22),

∫ ∞

0

∫ 1

−1

|S|(x, t, ν, ω)dωdν 6

∫ ∞

0

∫ 1

−1

σa(t)ha(ρ, ϑ)|B − I|dωdν +

∫ ∞

0

∫ 1

−1

σs(t)hs(ρ, ϑ)|Ĩ − I|dωdν.

Next, we use the fact that
∫∞

0
Bdν = aϑ4, for some pure constant a > 0, finding

∫ ∞

0

∫ 1

−1

|S|(x, t, ν, ω)dωdν 6 σa(t)ha(ρ, ϑ)
(

aϑ4 + ‖I‖L1
ω,ν([−1,1]×R+)

)

+ 2σs(t)hs(ρ, ϑ)‖I‖L1
ω,ν([−1,1]×R+).

This gives (25). Next, we have

|g| 6
1

ρ

∫ ∞

0

∫ 1

−1

|S|+ 2
|v|

ρϑ

∫ ∞

0

∫ 1

−1

|S|,

hence (26). As for (27), the same kind of proof applies. �

2 The approximating scheme

The idea is first to freeze the unknown U in the second equation of (15) which allows to find I as the solution of
a linear Boltzmann’s equation. Then plugging I into the quasilinear hyperbolic part (first equation (15)) we get
U by solving this system by using a discrete scheme mixing Glimm-Liu scheme for the conservative part and a
fractional step method for the source term, using ideas of T.-P. Liu [23], Hong-Lefloch [12] and Dafermos-Hsiao
[6].

2.1 An iterative method

In order to achieve this program, we first consider the family (U ℓ, Iℓ) ≡ (ρℓ, vℓ, Sℓ, Iℓ) defined inductively for
ℓ > 1 by







∂tU
ℓ(x, t) + ∂xf(U

ℓ(x, t)) = gℓ,

1

c
∂tI

ℓ(x, t, ν, ω) + ω∂xI
ℓ(x, t, ν, ω) = Sℓ,

(28)

for (x, t) ∈ R× R+, where

gℓ =












0

−
1

ρℓ
Sℓ
F

1

ρℓϑℓ
(
vℓSℓ

F − Sℓ
E

)












,

with

Sℓ
E :=

∫ 1

−1

∫ ∞

0

S(U ℓ−1, Iℓ) dν dω, Sℓ
F :=

1

c

∫ 1

−1

∫ ∞

0

ω S(U ℓ−1, Iℓ) dν dω,

for
S(V,W ) = σa(t, ν, V )[B(ν, V )−W ] + σs(t, ν, V ) [W̃ −W ],

and
Sℓ = S(U ℓ−1, Iℓ),

with initial conditions
U ℓ
∣
∣
t=0

= U0(x), (29)

and
Iℓ
∣
∣
t=0

= I0(x, ν, ω). (30)

We define the sequence {(U ℓ, Iℓ)}ℓ>1 as follows.
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1. Solving first the linear Boltzmann’s equation

1

c
∂tI

1(x, t, ν, ω) + ω∂xI
1(x, t, ν, ω) = S1,

with
I1
∣
∣
t=0

= I0(x, ν, ω),

and
S1 = S(U0, I

1),

gives I1(x, t, ν, ω) for x ∈ R and 0 < t 6 ∆t.

2. Then solving the hyperbolic system

∂tU
1(x, t) + ∂x(f(U

1(x, t))) = g1,

with
U1
∣
∣
t=0

= U0(x),

defines U1(x, t) for x ∈ R and 0 < t 6 ∆t.

3. Supposing now that for any ℓ > 1, we know (U ℓ−1, Iℓ−1) for x ∈ R and (ℓ − 2)∆t < t 6 (ℓ − 1)∆t, we
solve the linear Boltzmann’s equation

1

c
∂tI

ℓ(x, t, ν, ω) + ω∂xI
ℓ(x, t, ν, ω) = S(Ũ ℓ, Iℓ),

with source
Ũ ℓ(x, t) = U ℓ−1(x, (ℓ− 1)∆t),

and initial data
Iℓ
∣
∣
t=(ℓ−1)∆t

= Iℓ−1(x, (ℓ− 1)∆t, ν, ω),

which gives Iℓ(x, t, ν, ω) for x ∈ R and (ℓ− 1)∆t < t 6 ℓ∆t.

4. Plugging then Iℓ(x, t, ν, ω) in the right-hand side, we solve the hyperbolic system

∂tU
ℓ(x, t) + ∂x(f(U

ℓ(x, t))) = gℓ,

with
U ℓ
∣
∣
t=ℓ∆t

= U ℓ−1(x, ℓ∆t),

which defines U ℓ(x, t) for x ∈ R and (ℓ− 1)∆t < t 6 ℓ∆t.

2.2 The Riemann problem for the radiative transfer equation

We consider for (x, t, ω, ν) ∈ R× [0, T ]× [−1, 1]× R+ the problem






∂tI(x, t, ν, ω) + cω∂xI(x, t, ν, ω) = cS for t > t0,

I|t=0 ≡ Iin(x, ω, ν) =

∣
∣
∣
∣

IL(ω, ν) for x < x0,
IR(ω, ν) for x > x0,

,
(31)

where t0 > 0,

S = σa(ν, U) [B(ν, U)− I(x, t, ν, ω)] + σs(ν, U)
[

Ĩ(x, t, ν)− I(x, t, ν, ω)
]

,

Ĩ(x, t, ν) :=
1

2

∫ 1

−1

I(x, t, ν, ω) dω,

and

B(ν, U) = 2hν3c−2
(

e
hν

kBϑ − 1
)−1

,

and

U(x, t) =

∣
∣
∣
∣

UL for x < x0,
UR for x > x0,

.

The following standard result holds (see [8] and [10]).
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Proposition 1. Suppose that Iin ∈ L∞(R× [−1, 1]× R+) and that

(x, t, ω, ν) → a(x, t, ω, ν) := σa(ν, ω, ρ(x, t), ϑ(x, t)) + σs(ν, ω, ρ(x, t), ϑ(x, t)) ∈ L∞(R× [0, T ]× [−1, 1]× R+),

where σa > 0 and σs > 0.
The problem (31) has a unique generalized solution I ∈ L∞(R× [0, T ]× [−1, 1]× R+).
Morever suppose that

(x, t, ω, ν) → Q(x, t, ω, ν) := σa(ν, ω, ρ(x, t), ϑ(x, t))B(ν, ϑ(x, t)) ∈ L∞(R× [0, T ]× [−1, 1]× R+).

The following bound holds

I(x, t, ω, ν) 6 ‖Iin‖L∞(R×[−1,1]×R+) + T‖Q‖L∞(R×[0,T ]×[−1,1]×R+). (32)

Proof: Although this classical result is well-known, it is not easy to find it in the literature. We therefore provide
a proof, borrowed from [10], which uses only elementary arguments. Applying the method of characteristics to
the transport equation (31) and using the notations

A(x, t, ν) := c (σa(ν, U(t, x)) + σs(ν, U(t, x))) ,

KI(x, t, ω, ν) :=
c

2
σs(ν, U(t, x))

∫ 1

−1

I(x, t, ω, ν) dω,

and
Q(x, t, ν) := cσa(ν, U(t, x))B(ν, U(t, x)),

for any (x, t, ω, ν) ∈ (R× [0, T ]× [−1, 1]×R+) and for I ∈ L∞(R× [0, T ]× [−1, 1]×R+), one checks the formula

I = F [Iin, Q] + T I, (33)

where

F [Iin, Q](x, t, ω, ν) = Iin(x− cωt, ω, ν)e−
∫

t

0
A(x+c(τ−t)ω,τ,ω,ν) dτ

+

∫ t

0

Q (x+ c(s− t)ω, s, ω, ν) e−
∫

t

s
A(x+c(τ−t)ω,τ,ω,ν) dτ ds,

and

T I(x, t, ω, ν) =

∫ t

0

KI (x+ c(s− t)ω, s, ω, ν) e−
∫

t

s
A(x+c(τ−t)ω,τ,ω,ν) dτ ds.

One also checks in the same stroke

I(x, t, ω, ν) = Iin(x− cωt, ω, ν) +

∫ t

0

(KI +Q−AI) (x+ c(s− t)ω, s, ω, ν) ds (34)

Considering (33) as a fixed point equation, one is led to show the convergence of the series in

I :=
∑

n>0

T nF [Iin, Q]. (35)

We denote by U = {U(x, t), x ∈ R, t ∈ R+} . One has first

‖F [Iin, Q]‖L∞(R×[−1,1]×U) 6 ‖Iin(·, ω, ν)‖L∞(R×[−1,1]×U) + T‖Q‖L∞(R×[−1,1]×U).

Moreover, we have, for any J ∈ L∞(R× [0, T ]× [−1, 1]× R
+),

|KJ(x, t, ω, ν)| 6

(

c sup
ν>0,U∈U

σs(ν, U)

)

︸ ︷︷ ︸

M(U)

sup
ω′∈[−1,1]

|J(x, t, ω′, ν)|.
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Hence, we have

|T nJ | (x, t, ω, ν) 6

∫ t

0

M(U) sup
ω′∈[−1,1]

∣
∣T n−1J(x+ c(s− t)ω′, s, ω′, ν)

∣
∣ ds

6 M(U)

∫ t

0

sup
(x′,ω′,ν′)∈R×[−1,1]×R+

∣
∣T n−1J(x′, s, ω′, ν′)

∣
∣ ds

6 M(U)n
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

sup
(x′,ω′,ν′)∈R×[−1,1]×R+

|J(x′, tn, ω
′, ν′)|dtn . . . dt1

6
M(U)ntn

n!
‖J‖L∞(R×[0,T ]×[−1,1]×R+).

Applying this inequality to J = F
[
Iin, Q

]
, and summing over n, we thus have:

∑

n>0

∥
∥T nF

[
Iin, Q

]∥
∥
L∞(R×[0,T ]×[−1,1]×R+)

6
∑

n>0

M(U)nTn

n!

∥
∥F
[
Iin, Q

]∥
∥
L∞(R×[0,T ]×[−1,1]×R+)

.

Hence, the sum (35) is normally convergent in L∞(R× [0, T ]× [−1, 1]× R+). Moreover, if Iin > 0 and Q > 0,
then F

[
Iin, Q

]
> 0. Since, in addition, J > 0 implies T (J) > 0, we infer that each term of the series (35) is

non-negative, so
(
Iin > 0, Q > 0

)
⇒ I > 0. (36)

Now, defining Z = ‖Iin‖L∞(R×[−1,1]×R+) + t‖Q‖L∞(R×[0,T ]×R+) − I, we clearly have

∂tZ + cω∂xZ −KZ +AZ = −Q+ ‖Q‖L∞(R×[0,T ]×R+)

−K
(
‖Iin‖L∞(R×[−1,1]×R+) + t‖Q‖L∞(R×[0,T ]×R+)

)

+A
(
‖Iin‖L∞(R×[−1,1]×R+) + t‖Q‖L∞(R×[0,T ]×R+)

)

> 0,

where we have used the fact that ‖Iin‖L∞(R×[−1,1]×R+) + t‖Q‖L∞(R×[0,T ]×R+) is independent of ω. Hence,
applying (36) to Z, we infer Z > 0, that is, (32). �

2.3 The generalized Riemann problem for radiative hydrodynamics

Given two states (UL, IL) (UR, IR) and a point (x0, t0), we consider now the generalized Riemann problem
GR(x0, t0;UL, IL, UR, IR)







∂tU + ∂xf(U) = g(I, U) for t > t0, x ∈ R,

∂tI + cω∂xI = cS(I, U) for t > t0, x ∈ R, (ω, ν) ∈ ×[−1, 1]× R+

(U(x, t0), I(x, t0)) =

∣
∣
∣
∣

(UL, IL) for x < x0,
(UR, IR) for x > x0.

(37)

After [12] we treat the hydrodynamical part of (37) as a perturbation of the classical Riemann problem
CRU(x0, t0;UL, UR)







∂tU + ∂xf(U) = 0 for t > t0, x ∈ R

U(x, 0) =

∣
∣
∣
∣

UL for x < x0,
UR for x > x0,

(38)

for (x, t) ∈ R× R+.
From general results (see Serre [29] and references therein) one knows that CRU(x0, t0;UL, UR) has a self-

similar solutionWC(ξ, x0, t0;UL, UR) with ξ =
x−x0

t−t0
provided that the quantity |UR−UL| is small enough, which

consists of at most 4 constant states Ui i 6 4 separated by shock waves, contact discontinuities or rarefaction
waves. We say that CR(x0, t0;UL, UR) is solved by the elementary waves (Ui−1, Ui) with i = 1, ..., 4 if each Ui

9



belongs to the i−wave curve Wi(Ui−1) issued from the state Ui−1 in phase space and (Ui−1, Ui) is called an
i−wave of CR(x0, t0;UL, UR).

If the i−characteristic field is genuinely nonlinear then Wi(Ui−1) consists in two parts: the i−rarefaction
curve and the i−shock issued from Ui−1. If the i−characteristic field is linearly degenerate then Wi(Ui−1)
consists in a C2 curve of i−contact discontinuities.

Denoting by εi ≡ εi(UL, UR; t0, x0) the strength of the i−wave (Ui−1, Ui) along the i−curve, one can assume
that, if the i−characteristic field is genuinely nonlinear then εi > 0 for an i−rarefaction curve and εi 6 0 for
an i−shock. The global strength of WC(ξ, x0, t0;UL, UR) is then the vector ε = (ε1, ε2, ε3).

We also denote by σ−

i = λi(Ui−1, t0, x0) and σ
+
i = λi(Ui, t0, x0) the lower and upper speeds of the i− wave

(Ui−1, Ui) when it is a rarefaction and just by σi the speed of (Ui−1, Ui) if it is an i−shock or an i−contact
discontinuity.

We also treat the radiative part of (37) as a perturbation of the linear problem CRI(x0, t0; IL, IR)







∂tI(x, t, ν, ω) + cω∂xI(x, t, ν, ω) = 0 for t > t0,

I|t=0 ≡ Iin(x, ω, ν) =

∣
∣
∣
∣

IL(ω, ν) for x < x0,
IR(ω, ν) for x > x0,

,
(39)

the explicit solution of which is
IC(x, t, ω, ν) = Iin(x− cωt, ω, ν),

and one observes that it rewrites as IC(ξ, ω, ν, x0, t0; IL, IR).
In this trivial case there is only one (linearly degenerate) field and one can decide that the strength of the

unique simple wave is
εr ≡ εr(IL, IR, ω, ν; t0, x0) = IR − IL.

A straightforward extension of [19] shows now that the generalized Riemann problem GR(x0, t0;UL, IL, UR, IR)
has also a solution piecewise smooth, locally similar to (WC(ξ, x0, t0;UL, UR), IC(ξ, ω, ν, x0, t0; IL, IR)).

After [12], we define our approximate solution (WG, IG) of the generalized Riemann problemGR(x0, t0;UL, IL, UR, IR)
by the perturbative expansion

WG(t, x;x0, t0;UL, UR) =WC(ξ, x0, t0;UL, UR)+ (t− t0)g(IC(t, ω, ν, t0, x0; IL, IR),WC(t, x0, t0;UL, UR)), (40)

for t > t0 and x ∈ R, where the correction is small when t− t0 is small, and in the same way

IG(t, x, ω, ν;x0, t0; IL, IR) = IC(ξ, ω, ν, x0, t0; IL, IR)

+c(t− t0)S (IC(t, ω, ν, t0, x0; IL, IR),WC(t, x0, t0;UL, UR)) , (41)

We will use the notationWG(t, x) (resp IG(t, x, ω, ν)) forWG(t, x;x0, t0;UL, UR) (resp. IG(t, x, ω, ν;x0, t0; IL, IR).

Definition 1. In the sequel, we assume that (ρ∞, v∞, S∞, I∞) is a steady state for the system (2), and that U
is a small neighborhood of (ρ∞, v∞, S∞, I∞) in R

4.

Given space and time steps ∆t and ∆x satisfying the CFL condition

∆t

∆x
max

[

max
i=1,2,3

(

sup
u∈U

|λi(u)|

)

, c

]

6 1, (42)

we show first that actually (WG, IG) solves approximately GR.

Proposition 2. Suppose φ ∈ X := C1(R+ ×R,R3) and ψ ∈ Y := C1(R+ ×R,R) are two compactly supported
functions in the strip (0,∆t). Then for any (t0, x0) ∈ R+ × R, (UL, IL), (UR, IR) ∈ U2 and for any ∆t and ∆x
satisfying the condition (42)
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1. the function WG(t, x;x0, t0;UL, UR) satisfies

∫ t0+∆t

t0

∫ x0+∆x

x0−∆x

{WG∂tφ+ f(WG)∂xφ+ g(IG,WG)φ} dx dt

=

∫ x0+∆x

x0−∆x

WG(t0 +∆t, ·)φ(t0 +∆t, ·) dx−

∫ x0+∆x

x0−∆x

WG(t0, ·)φ(t0, ·) dx

+

∫ t0+∆t

t0

f(WG(·, x0 +∆x))φ(·, x0 +∆x) dt−

∫ t0+∆t

t0

f(WG(·, x0 −∆x))φ(·, x0 −∆x) dt

+O(1)
(
∆t2 (∆t+∆x+ |UR − UL|)

)
‖φ‖X . (43)

2. the function IG(t, x, ω, ν;x0, t0) satisfies

∫ t0+∆t

t0

∫ x0+∆x

x0−∆x

{IG∂tψ + cωIG∂xψ + cS(IG,WG)ψ} dx dt

=

∫ x0+∆x

x0−∆x

IG(t0 +∆t, ·)ψ(t0 +∆t, ·) dx−

∫ x0+∆x

x0−∆x

IG(t0, ·)ψ(t0, ·) dx

+

∫ t0+∆t

t0

cωIG(·, x0 +∆x)ψ(·, x0 +∆x) dt−

∫ t0+∆t

t0

cωIG(·, x0 −∆x)ψ(·, x0 −∆x) dt

+O(1)(∆t)2 (∆t+∆x) ‖ψ‖Y . (44)

Proof: As we essentially follow the proof of Hong and LeFloch (see Proposition 2.1 in [12]) we will sketch
the arguments only emphasizing the structure of radiation sources through I.

Assuming that (t0, x0) = (0, 0) and defining the auxiliary function M(t, x) := WG∂tφ + f(WG)∂xφ +
g(IG,WG)φ, we call I1 the subset of indices i such that ∀i ∈ I1 the corresponding i−wave is either a shock or a
contact discontinuity, and I2 the subset of indices i such that ∀i ∈ I2 the corresponding i−wave is a rarefaction
wave (clearly I1 ∪ I2 = {1, 2, 3}). We have the following decomposition of

∫ ∫
M dx dt on the elementary cell

[0,∆t]× [−∆x,∆x]
∫ ∆t

0

∫ ∆x

−∆x

M(t, x) dx dt =
∑

i∈I1

∫ ∆t

0

∫ σ
−

i+1
t

σ
+

i t

M(t, x) dx dt

+

∫ ∆t

0

∫ σ
−

1
t

−∆x

M(t, x) dx dt+

∫ ∆t

0

∫ ∆x

σ
+

3
t

M(t, x) dx dt

+
∑

i∈I2

∫ ∆t

0

∫ σ
+

i t

σ
−

i t

M(t, x) dx dt =:

4∑

k=1

Jk.

In a region {(x, t) : σ+
i t 6 x 6 σ−

i+1t} where WC ≡ Ui and IC = Ii(ω, ν) are constant states, one has after
(40) and (41)

WG(t, x) = Ui + tg(IC , Ui),

and
IG(t, x, ω, ν) = Ii(ω, ν) + ctS(IC , Ui),

then for i = 1, 2
∂tWG + ∂xf(WG)− g(IG,WG) = g(IC , Ui)− g(IG,WG).

Multiplying by φ and integrating by parts we find

∫ ∆t

0

∫ σ
−

i+1
t

σ
+

i t

M(t, x) dx dt =

∫ σ
−

i+1
∆t

σ
+

i ∆t

φ(∆t, x)WG(∆t, x) dx

11



∆ t

∆xx−∆

t

x

σ

σ

i
+

i+1
−x=       t

x=     t

Figure 1: Representation of a part of the Riemann solution. Note that due to CFL condition (42), lines x = σ±

i t
never intersect the vertical boundary of the cell [−∆x,∆x]× [0,∆t].

+

∫ ∆t

0

{
f(WG(∆t, σ

−

i+1∆t)φ(∆t, σ
−

i+1∆t)− f(WG(∆t, σ
+
i ∆t)φ(∆t, σ

+
i ∆t)

}
dt

−

∫ ∆t

0

{
σ−

i+1φ(t, σ
−

i+1t)WG(t, σ
−

i+1t)− σ+
i φ(t, σ

+
i t)WG(t, σ

+
i t)
}
dt

−

∫ ∆t

0

∫ σ
−

i+1
t

σ
+

i t

(g(IC(t), Ui)− g(IG,WG))φ(t, x) dx dt.

Applying Lemma 1, we have

|g(IC , Ui)− g(IG,WG)| 6 h2(|Ui|, |WG|, ‖IC‖L1
ω,ν([−1,1]×R+), ‖IG‖L1

ω,ν([−1,1]×R+))

×
[

t|g(IC , Ui)|+ ct‖S(IC , Ui)‖L1
ω,ν([−1,1]×R+)

]

6 th2(|Ui|, |WG|, ‖IC‖L1
ω,ν([−1,1]×R+), ‖IG‖L1

ω,ν([−1,1]×R+))

×
[

h1(|Ui|, ‖IC‖L1
ω,ν([−1,1]×R+)) + ch0(|Ui|, ‖IC‖L1

ω,ν([−1,1]×R+))
]

6 Ct,

where C depends only on U , h0, h1, h2. Hence, since σ
+
i and σ−

i are bounded, according to (42),

∣
∣
∣
∣
∣

∫ ∆t

0

∫ σ
−

i+1
t

σ
+

i t

(g(IC , Ui)− g(IG,WG))φ(t, x) dx dt

∣
∣
∣
∣
∣
6 C (∆t)

3
‖φ‖C0 ,

where C depends only on g and U . Thus, we finally get

∫ ∆t

0

∫ σ
−

i+1
t

σ
+

i t

M(t, x) dx dt =

∫ σ
−

i+1
∆t

σ
+

i ∆t

φ(∆t, x)WG(∆t, x) dx

+

∫ ∆t

0

{
f(WG(∆t, σ

−

i+1∆t)φ(∆t, σ
−

i+1∆t)− f(WG(∆t, σ
+
i ∆t)φ(∆t, σ

+
i ∆t)

}
dt

−

∫ ∆t

0

{
σ−

i+1φ(t, σ
−

i+1t)WG(t, σ
−

i+1t)− σ+
i φ(t, σ

+
i t)WG(t, σ

+
i t)
}
dt

+O
(
(∆t)3

)
‖φ‖X . (45)

In the same stroke

J2 =

∫ ∆t

0

∫ σ
−

1
t

−∆x

M(t, x) dx dt
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=

∫ σ
−

1
∆t

−∆x

φ(∆t, x)WG(∆t, x) dx−

∫ 0

−∆x

φ(0, x)WG(0, x) dx

+

∫ ∆t

0

{
f(WG(t, σ

−
1 t)φ(t, σ

−
1 t)− f(WG(t,−∆x)φ(t,−∆x)

}
dt

−

∫ ∆t

0

σ−
1 φ(t, σ

−
1 t)WG(t, σ

−
1 t) dt

−

∫ ∆t

0

∫ σ
−

1
t

−∆x

(g(IC , Ui)− g(IG,WG))φ(t, x) dx dt.

Using Lemma 1 here again, the last two terms are bounded by O
(

(∆t)
3
+ (∆t)

2
∆x
)

‖φ‖X , and we get

∫ ∆t

0

∫ σ
−

1
t

−∆x

M(t, x) dx dt

=

∫ σ
−

1
∆t

−∆x

φ(∆t, x)WG(∆t, x) dx−

∫ 0

−∆x

φ(0, x)WG(0, x) dx

+

∫ ∆t

0

{
f(WG(t, σ

−
1 t)φ(t, σ

−
1 t)− f(WG(t,−∆x)φ(t,−∆x)

}
dt

−

∫ ∆t

0

σ−
1 φ(t, σ

−
1 t)WG(t, σ

−
1 t) dt+O

(

(∆t)
3
+ (∆t)

2
∆x
)

‖φ‖X . (46)

Finally

J3 =

∫ ∆t

0

∫ ∆x

σ
+

3
t

M(t, x) dx dt =

∫ ∆x

σ
+

3
∆t

φ(∆t, x)WG(∆t, x) dx−

∫ ∆x

0

φ(0, x)WG(0, x) dx

+

∫ ∆t

0

{
f(WG(t,∆x)φ(t,∆x)− f(WG(t, σ

+
3 t)φ(t, σ

+
3 t)
}
dt

−

∫ ∆t

0

σ+
3 φ(t, σ

+
3 t)WG(t, σ

+
3 t) dt

−

∫ ∆t

0

∫ ∆x

σ
+

3
t

(g(IC , Ui)− g(IG,WG))φ(t, x) dx dt,

and, still with the help of Lemma 1, the last two terms are bounded by O
(

(∆t)
3
+ (∆t)

2
∆x
)

‖φ‖X , so

∫ ∆t

0

∫ ∆x

σ
+

3
t

M(t, x) dx dt =

∫ ∆x

σ
+

3
∆t

φ(∆t, x)WG(∆t, x) dx−

∫ ∆x

0

φ(0, x)WG(0, x) dx

+

∫ ∆t

0

{
f(WG(t,∆x)φ(t,∆x)− f(WG(t, σ

+
3 t)φ(t, σ

+
3 t)
}
dt

−

∫ ∆t

0

σ+
3 φ(t, σ

+
3 t)WG(t, σ

+
3 t) dt+O

(

(∆t)
3
+ (∆t)

2
∆x
)

‖φ‖X . (47)

Next, we assume that WC(t, x) consists in a i−rarefaction wave in the fan region
{
(x, t) : σ−

i t < x < σ+
i t
}
,

so that WG rewrites
WG(t, x) = W̃C(ζ) + tg(IC(t),WC(t)),

where ζ = x
t
and W̃C is the i−rarefaction wave. Following [12] we have

∂tWG + ∂x (f(WG))− g(IG,WG) =
1

t

(

Df(WG)−
x

t

)

W̃ ′
C

(x

t

)

+ g(IC ,WC)− g(IG,WG).
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Hence, using the fact that
(

Df(W̃C(ξ))− ξ
)

W̃ ′
C(ξ) = 0,

∂tWG + ∂x (f(WG))− g(IG,WG) = (Df(WG)−Df(WC)) ∂xWC + g(IC ,WC)− g(IG,WG).

All terms in the right-hand side of the above equality are dealt with exactly as before, except for the first one,
for which we use the fact that ‖f‖C2(U) is bounded, and

|(Df(WG)−Df(WC)) ∂xWC | 6 ‖f‖C2(U)∆t|g(IC ,WC)| |∂xWC |

6 C∆t|∂xWC |,

where C depends only on f , g, and U . Hence,
∣
∣
∣
∣
∣

∫ ∆t

0

∫ σ
−

i ∆t

σ
+

i ∆t

(Df(WG)−Df(WC)) ∂xWCφ

∣
∣
∣
∣
∣

6 C∆t

∫ ∆t

0

TV (WC)dt‖φ‖X .

For a rarefaction wave, the total variation is non-increasing, so the above term is bounded by O(∆t2|UR −
UL|)‖φ‖X . Hence, we have

∫ ∆t

0

∫ σ
+

i t

σ
−

i t

M(t, x) dx dt =

∫ σ
−

i ∆t

σ
+

i ∆t

φ(∆t, x)WG(∆t, x) dx

−

∫ ∆t

0

{
f(WG(t, σ

−

i t)φ(t, σ
−

i t)− f(WG(t, σ
+
i t)φ(t, σ

+
i t)
}
dt

+

∫ ∆t

0

{
σ−

i φ(t, σ
−

i+1t)WG(t, σ
−

i t)− σ+
i φ(t, σ

+
i t)WG(t, σ

+
i t)
}
dt

+O
(
∆t2 (∆t+ |UR − UL|)

)
‖φ‖X . (48)

Collecting all the previous estimates (45), (46), (47) and (48) proves (43).

Defining in the same spirit the auxiliary function N(t, x) := IG∂tψ + cωIG∂xψ + cS(IG,WG)ψ, we have the
following decomposition of

∫
N dx dt on the elementary cell [0,∆t]× [−∆x,∆x]

∫ ∆t

0

∫ ∆x

−∆x

N(t, x) dx dt =

∫ ∆t

0

∫ σt

−∆x

M(t, x) dx dt+

∫ ∆t

0

∫ ∆x

σt

M(t, x) dx dt,

where σ = cω.
As IG(t, x, ω, ν) = IC(ω, ν) + ctS(IC ,WC), we get

∂tIG + cω∂xIG − cS(IG,WG) = cS(IC , Ui)− cS(IG,WG).

Multiplying by ψ and integrating by parts we find

∫ ∆t

0

∫ σt

−∆x

N(t, x) dx dt

=

∫ σ∆t

−∆x

ψ(∆t, x)IG(∆t, x) dx−

∫ 0

−∆x

ψ(0, x)IG(0, x) dx

+

∫ ∆t

0

σ {IG(t, σt)ψ(t, σt)− IG(t,−∆x)ψ(t,−∆x)} dt

−c

∫ ∆t

0

∫ σt

−∆x

(S(IC , Ui)− S(IG,WG))ψ(t, x) dx dt.

Using the previous arguments the last two terms are bounded by O
(

(∆t)
3
+ (∆t)

2
|IR − IL|

)

‖ψ‖Y , and we get

∫ ∆t

0

∫ σt

−∆x

N(t, x) dx dt
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=

∫ σ∆t

−∆x

ψ(∆t, x)IG(∆t, x) dx−

∫ 0

−∆x

ψ(0, x)IG(0, x) dx

+

∫ ∆t

0

σ {IG(t, σt)ψ(t, σt)− IG(t,−∆x)ψ(t,−∆x)} dt

−

∫ ∆t

0

σφ(t, σt)WG(t, σt) dt+O
(

(∆t)
3
+ (∆t)

2
∆x
)

‖ψ‖Y . (49)

Finally
∫ ∆t

0

∫ ∆x

σt

N(t, x) dx dt =

∫ ∆x

σ∆t

ψ(∆t, x)IG(∆t, x) dx−

∫ ∆x

0

ψ(0, x)IG(0, x) dx

+

∫ ∆t

0

σ {IG(t,∆x)ψ(t,∆x)− IG(t, σt)ψ(t, σt)} dt

−

∫ ∆t

0

∫ ∆x

σt

(S(IC , Ui)− S(IG,WG))ψ(t, x) dx dt,

and ∣
∣
∣
∣
∣

∫ ∆t

0

∫ ∆x

σt

(S(IC , Ui)− S(IG,WG))ψ(t, x) dx dt

∣
∣
∣
∣
∣
= O

(

(∆t)
3
+ (∆t)

2
|IR − IL|

)

‖ψ‖X ,

so ∫ ∆t

0

∫ ∆x

σt

N(t, x) dx dt =

∫ ∆x

σ∆t

ψ(∆t, x)IG(∆t, x) dx−

∫ ∆x

0

ψ(0, x)IG(0, x) dx

+

∫ ∆t

0

σ {IG(t,∆x)ψ(t,∆x)− IG(t, σt)ψ(t, σt)} dt

−

∫ ∆t

0

σφ(t, σt)WG(t, σt) dt+O
(

(∆t)
3
+ (∆t)

2
|IR − IL|

)

‖ψ‖Y . (50)

Collecting estimates (49) and (50) proves (44) �

3 Interaction of waves

Following [9] (see also [24] for a complete presentation) we define the wave interaction potential involving two
solutions of the classical Riemann problem of respective strengths α := (α1, α2, α3, α4) and β := (β1, β2, β3, β4),
by

D(α, β) :=
∑

i>j

|αi||βj |+
∑

k

Qk(αk, βk), (51)

where
Qi(αi, βi) = |αi||βi| − α+

i β
+
i ,

with z+ = sup(z, 0), if the i−field is genuinely non linear, and

Qi(αi, βi) = 0,

if the i−field is linearly degenerate.
The following result due to Glimm [9] describes wave interaction estimates

Proposition 3 (Glimm). Let UL, UM , UR be three constant states in U and let (α, β, γ) the strengths of the
solutions of the Riemann problems CRU(x0, t0;UL, UM ), CRU(x0, t0;UM , UR) and CRU(x0, t0;UL, UR).

The following properties hold

1.
|γ − α− β| = O(1)D(α, β). (52)

15



2. If VL, VR are two other constant states in U and δ is the strength of the solution of the Riemann problem
CRU(x0, t0;VL, VM )

D(γ, δ) = D(α, δ) +D(β, δ) +O(1)|δ|D(α, β). (53)

3. The mapping (UL, UR, t0, x0) → α : U × U × R+ × R → R
3 is a C2 function of its arguments. Moreover

for (UL, UR) and (U ′
L, U

′
R) in U × U and (t0, x0) and (t′0, x

′
0) in R+ × R, one has

|α′ − α| = O(1) {|α| (|U ′
L − UL|+ |U ′

R − UR|) + (|U ′
R − U ′

L − (UR − UL)|)} , (54)

where α = α(UL, UR; t0, x0) and α
′ = α(U ′

L, U
′
R; t

′
0, x

′
0).

4. For (UL, UR), (VL, VR), (U
′
l , U

′
R) and (V ′

L, V
′
R) in U × U and for (t1, x1), (t2, x2), (t

′
1, x

′
1), and (t′2, x

′
2) in

R+ × R, one has

D(α′, β′) = D(α, β) +O(1)|α| |(V ′
R − V ′

L) + (VR − VL)|+O(1)|β| |(U ′
R − U ′

L) + (UR − UL)|

+O(1)|α||β| (|U ′
L − UL|+ |U ′

R − UR|+ |V ′
L − VL|+ |V ′

R − VR|)

+O(1) |U ′
R − U ′

L − (UR − UL)| · |V
′
R − V ′

L − (VR − VL)| , (55)

where α = α(UL, UR; t1, x1), α
′ = α(U ′

L, U
′
R; t

′
1, x

′
1), β = β(VL, VR; t2, x2) and β

′ = β(V ′
L, V

′
R; t

′
2, x

′
2).

5. Let UL, UL+uL, UR, UR+uR and UM be constant states in U and let (α, β, γ) the strengths of the solutions
of the Riemann problems CRU(x0−∆x, t0;UL, UM ), CRU(x0+∆x, t0;UM , UR) and CRU(x0, t0+∆t;UL+
uL, UR + uR). We have

|γ| = |α|+ |β|+O(1)D(α, β) +O(1) (|α|+ |β|) (|uL|+ |uR|) +O(1)(|uR − uL|). (56)

6. For the previous α, β and γ, for (VL, VR) in U × U and for (t1, x1) in R+ × R, one has

D(γ, δ) = D(α, δ) +D(β, δ) +O(1)|δ|D(α, β) +O(1)|δ| |uR − uL|+O(1)|δ|(|α|+ |β|) (|uL|+ |uR|) . (57)

The first four items of the previous result were proved by Glimm [9] for genuinely non linear fields and
extended by Tai Ping Liu [24] for linearly degenerate fields. The two last items were proved by Hong and
LeFloch [12] in a more general context (in [12], the right-hand side f depends on x and t).

Remark 2. Let IL, IM , IR be three constant (radiative) states. The strengths of the solutions of the Riemann
problems CRI(x0, t0; IL, IM ), CRI(x0, t0; IM , IR) and CRI(x0, t0; IL, IR) satisfy (non interacting framework)

γr = αr + βr. (58)

Then we have the following consequence of Proposition 3

Proposition 4. Let us denote by uL, uR the numbers

uL := −∆t g(IL, UL) for x < 0, (59)

and
uR := −∆t g(IR, UR) for x > 0. (60)

The following properties hold (α, β and γ are defined in Proposition 3, item 5, and σa, σs are defined in
Lemma 1)

|γ| = |α|+ |β|+O(1)D(α, β)

+O(1)(|α|+ |β|) (σa(t0) + σs(t0))∆t
(

|UL|+ |UR|+ ‖IL‖L1
ω,ν([−1,1]×R+)‖IR‖L1

ω,ν([−1,1]×R+)

)

+O(1) (σa(t0) + σs(t0))∆t
(

|UL − UR|+ ‖IL − IR‖L1
ω,ν([−1,1]×R+)

)

, (61)
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and

D(γ, δ) = D(α, δ) +D(β, δ) +O(1)|δ|D(α, β)

+O(1)|δ|(|α|+ |β|) (σa(t0) + σs(t0))∆t
(

|UL|+ |UR|+ ‖IL‖L1
ω,ν([−1,1]×R+)‖IR‖L1

ω,ν([−1,1]×R+)

)

+O(1) (σa(t0) + σs(t0))∆t
(

|UL − UR|+ ‖IL − IR‖L1
ω,ν([−1,1]×R+)

)

. (62)

Proof: Applying (56), we get first

|γ| = |α|+ |β|+O(1)(|α|+ |β|)(|uL|+ |uR|) +O(1)|uL − uR|. (63)

Now let us estimate the terms |uL|+ |uR|. For this purpose, we apply (26) of Lemma 1. This gives

|uL| 6 ∆t|g(IL, UL)| 6 ∆th1(|UL)|, ‖IL‖L1
ω,ν(R

+×[−1,1])) (σa(t0) + σs(t0)) . (64)

Simlarly,
|uR| 6 ∆th1(|UR)|, ‖IR‖L1

ω,ν(R
+×[−1,1])) (σa(t0) + σs(t0)) . (65)

Next, we bound the term |uL − uR|. For this purpose, we apply (27) of Lemma 1, finding

|uL − uR| = ∆t |g(IL, UL)− g(IR, UR)| 6 h2

(

|UL|, |UR|, ‖IL‖L1
ω,ν([−1,1]×R+), ‖IR‖L1

ω,ν([−1,1]×R+)

)

×
[

|UL − UR|+ ‖IL − IR‖L1
ω,ν([−1,1]×R+)

]

(σa(t) + σs(t)) . (66)

Inserting estimates (64), (65) and (66) into (63), we find (61). Estimate (62) is obtained in the same way. �

4 The generalized Glimm’s scheme

We approximate the problem (15)(16)(17) by using a two-step scheme relying on the Glimm’s method as follows.
Let U be a small neighborhood of (ρ∞, v∞, S∞, I∞) in R

4 (see Definition 1). Given space and time steps ∆t
and ∆x satisfying the mixed CFL condition

∆t

∆x
max

{

c, max
i=1,2,3

(

sup
u∈U

|λi(u)|

)}

6 1, (67)

and a sequence a ≡ (aℓ)ℓ>0 of real numbers equidistributed in the interval (−1, 1), let us define (see [9, 22]) the
discretization of the (t, x) half-plane by the mesh points

Aℓ
n = (tℓ, xn) ≡ (ℓ∆t, n∆x) for ℓ ∈ N, n ∈ Z, n+ ℓ odd. (68)

Connecting nearest-neighbor mesh points by segments defines a partition of the plane into diamond-like regions.

−3∆ x−4∆ x −2∆ x −∆ x ∆x 2∆x 3∆x 4∆x

∆ t

2∆t

3∆t

t4∆

x

t

Figure 2: The mesh points defined by (68).
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A

A

A

l

n

n+1

l−1

n+1

l+1

Figure 3: Given a point in a mesh curve, the next one should be one of its two nearest right neighbors

Definition 2. Consider a mesh
(
Aℓ

n

)

ℓ∈N,n∈Z
as defined by (68). We call mesh curve L an unbounded piecewise

linear curve lying on diamond boundaries of
(
Aℓ

n

)

ℓ∈N,n∈Z
, which satisfies the following: for any point Aℓ

n ∈ L,

the next point is either Aℓ−1
n+1 or Aℓ+1

n+1 (see figure 3).

Any mesh curve L divides the half-plane t > 0 into two components L+ and L, where L− contains the axis
t = 0. We define an order on the mesh curves: L1 > L2 if any point of L1 either is on L2 or is contained in L+

2 .
We say that L1 is an immediate successor of L2 if L1 > L2 and if each mesh point of L1 except one is on L2.

Let us approximate the initial data (16) by

U∆x(x, 0) = U0(n∆x), for x ∈ [(n− 1)∆x, (n+ 1)∆x], n odd, (69)

which allows us to construct for 0 < t 6 ∆t a solution WC of each classical Riemann problem with initial
data U∆x and, due to the CFL condition, to define the solution of the Cauchy problem (38) in the strip
{(x, t) ∈ R×]0,∆t[}.

Approximating as well the initial data (17) by

I∆x(x, 0, ω, ν) = I0(n∆x, ω, ν) for x ∈ [(n− 1)∆x, (n+ 1)∆x], n odd, (70)

allows us to construct for 0 < t 6 ∆t a solution IC of each classical Riemann problem with initial data I∆x and,
due to the CFL condition, to define the solution of the Cauchy problem (39) in the strip {(x, t) ∈ R×]0,∆t[}.

Using then (40) and (41) we can construct for 0 < t 6 ∆t the approximate solutions WG and IG for
each generalized Riemann problem (37) with the previous initial data U∆x and I∆x, defining the solution
(I∆x(x, t, ω, ν), U∆x(x, t)) in the strip {(x, t) ∈ R×]0,∆t[}.

Supposing now (I∆x(x, t, ω, ν), U∆x(x, t)) well defined in the strip {(x, t) ∈ R× [(ℓ− 1)∆t, ℓ∆t[}, we set

U∆x(x, ℓ∆t) := U∆x((n+ aℓ)∆x, ℓ∆t− 0), (71)

I∆x(x, ℓ∆t, ω, ν) := I∆x((n+ aℓ)∆x, ℓ∆t− 0, ω, ν), (72)

for x ∈ [(n− 1)∆x, (n+ 1)∆x], n+ ℓ odd, ω ∈ [−1, 1]. ν ∈ R+.
Then we solve in the same stroke, first the corresponding classical Riemann problem with initial data

U∆x(x, ℓ∆t), then the transport problem with initial data I∆x(x, ℓ∆t, ω, ν), and finally the corresponding gener-
alized problems with initial data U∆x(x, ℓ∆t) and I∆x(x, ℓ∆t, ω, ν) which allows to get (I∆x(x, t, ω, ν), U∆x(x, t))
well defined in the strip {(x, t) ∈ R×[ℓ∆t, (ℓ+1)∆t]}. This process defines inductively (I∆x(x, t, ω, ν), U∆x(x, t))
in the half-plane {(x, t) ∈ R× R+}.

Using the simplified notations Uℓ,n := U∆x(ℓ∆t, n∆x) for ℓ+n odd, and Iℓ,n := I∆x(ℓ∆t, n∆x, ω, ν) for ℓ+n
odd, we have after (40) and (41) the value of the solution of the generalized Riemann (GR) problem

Uℓ,n = Vℓ,n +∆t g (Iℓ,n;Vℓ,n) ,

and
Iℓ,n = Iℓ,n + c∆t S (Iℓ,n;Vℓ,n) ,

where Vℓ,n is the value of the solution of the classical Riemann (CR) problem (38):

CRU (n∆x, (ℓ− 1)∆t;Uℓ−1,n−1, Uℓ−1,n+1) ,
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taken at the sample point (ℓ∆t, (n+ aℓ)∆x) i.e.

Vℓ,n :=WC

(

aℓ
∆x

∆t
, n∆x, (ℓ− 1)∆t;Uℓ−1,n−1, Uℓ−1,n+1

)

,

and Iℓ,n is the value of the solution of the problem

CRI (n∆x, (ℓ− 1)∆t; Iℓ−1,n−1, Iℓ−1,n+1) ,

taken at the same sample point (ℓ∆t, (n+ aℓ)∆x) i.e.

Iℓ,n := IC

(

aℓ
∆x

∆t
, (ℓ− 1)∆t, n∆x; Iℓ−1,n−1, Iℓ−1,n+1

)

.

∆xn

N

E

S

W∆ tl

l+1

l

l−1

a

a

a

a
l

Figure 4: The diamond region Dℓ,n.

We define now [31] the diamond region Dℓ,n as the convex hull of the points S := ((ℓ− 1)∆t, (n+ aℓ−1)∆x),
W := (ℓ∆t, (n − 1 + aℓ)∆x), E := (ℓ∆t, (n + 1 + aℓ)∆x) and N := ((ℓ + 1)∆t, (n + aℓ+1)∆x), together with
the “GR” values US = Uℓ−1,n, UW := Uℓ,n−1, UE := Uℓ,n+1, UN := Uℓ+1,n and the “CR” values VS = Vℓ−1,n,
VW := Vℓ,n−1, VE := Vℓ,n+1 and VN := Vℓ+1,n.

An i-wave (Ui−1(t), Ui(t)) in the approximate Riemann problem U∆x is defined as

(Ui−1(t), Ui(t)) = (Ui−1, Ui) + (t− n∆t) g (Iℓ,n, Vℓ,n) .

The strength of this i-wave is not clearly defined, so we set it equal to the strength of the wave (Ui−1, Ui), as
in [12]:

εi = εi(Ui−1, Ui).

Let Jℓ be a mesh curve located in the strip {(t, x); ℓ∆t 6 t 6 (ℓ + 1)∆t}, and let TV (U∆x(t, x); Jℓ) (resp.
TV (V∆x(t, x); Jℓ)) the total variation of U∆x (resp. V∆x) on Jℓ. If an i−wave (Ui−1(t), Ui(t)) of U∆x(t, x)
originating in (ℓ∆t, n∆x) intersects Jℓ, then the corresponding classical i−wave (Ui−1, Ui) of V∆x(t, x) also
intersects Jℓ.

Following the ideas of Hong and LeFloch, we expect that the sum of the strength of the elementary waves in
U∆x which cross a mesh J can be considered as a measure equivalent to the total variation of U∆x: the radiative
source g will remain small at any time provided they actually are at t = 0 and provided that the transport
coefficients are smooth enough.

After formula (40)
(Ui−1(t), Ui(t)) = (Ui−1, Ui) + ∆t g (Iℓ,n, (Ui−1, Ui)) ,

Then
|TV (U∆x(t, x); Jℓ)− TV (V∆x(t, x); Jℓ)| 6 ∆t

∑

n∈Z

TV (g (Iℓ,n, Vℓ,n) ; Jℓ) . (73)
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Let us assume that (U, I) ∈ U are such that TV (U) and ‖TV (I)‖L1(R+×[−1,1]) are small i.e.

TV {U}+ ‖TV {I}‖L1(R+×[−1,1]) 6 ε, (74)

for ε > 0 small enough, and that hypotheses of Proposition 4 are satisfied.
Let us estimate the term TV (g (Iℓ,n, Vℓ,n) ; Jℓ) in the right-hand side of (73). As in Proposition 4, we must

consider the two nonzero components of g.
We have then to estimate

TV {g2} := TV

{
∫

R+×[−1,1]

S(I, Ui) dω dν

}

,

and

TV {g3} := TV

{
∫

R+×[−1,1]

ωS(I, Ui) dω dν

}

.

As the transport coefficients do not depend on ω, one gets first

TV {g2} 6 TV

{
∫

R+

σa(Ui, ν)B(ν, Ui) dν

}

+ TV

{
∫

R+×[−1,1]

σa(Ui, ν)I dω dν

}

,

so using the identity
∫

R+
B(ν, Ui) dν = aϑ4ℓ,n where a is a pure positive constant, we have, using (21) and (22),

TV {g2} 6 a

(

4 sup
U∈U

(
|ha(U)|ϑ3

)
+ sup

U∈U

(

|h̃a(U)|ϑ4
))

· TV {Ui}σa(t)

+ ‖TV {I}‖L1(R+×[−1,1]) sup
U∈U

|ha(U)|σa(t) + ‖I‖L1(R+×[−1,1]) sup
U∈U

|h̃a(U)|TV {Ui}σa(t).

In the same stroke

TV {g3} = TV

{
∫

R+×[−1,1]

(σa(Vℓ,n, ν) + σs(Vℓ,n, ν)) Iℓ,n dω dν

}

6

(

sup
U∈U

|ha(U)| ‖TV {Iℓ,n}‖L1(R+×[−1,1]) + sup
U∈U

|h̃a(U)|‖I‖L1(R+×[−1,1])TV (Vℓ,n)

)

σa(t)

+

(

sup
U∈U

|hs(U)| ‖TV {Iℓ,n}‖L1(R+×[−1,1]) + sup
U∈U

|h̃s(U)|‖I‖L1(R+×[−1,1])TV (Vℓ,n)

)

σs(t).

When (Ui−1, Ui) is a rarefaction wave, the same computation shows that a similar estimate holds. Hence,
summing over all the elementary waves crossing Jℓ, plugging into (73) and taking into account the CFL condition
(67), we get

|TV (U∆x; Jℓ)− TV (V∆x; Jℓ)|

6 O(∆t)
(

TV {U∆x; Jℓ}+ TV
{

‖I‖L1(R+×[−1,1])

})

.

After (74) the right-hand side is small and we conclude that the total variations of U∆x and V∆x are equivalent
on any mesh curve Jk.

We define the strength εin(Dℓ,n) of waves coming into Dℓ,n for ℓ+ n even by

εin(Dℓ,n) = |ε(VW , US ; (ℓ− 1)∆t, (n− 1)∆x)|+ |ε(US , VE ; (ℓ− 1)∆t, (n+ 1)∆x)|, (75)

and as well the strength εout(Dℓ,n) of waves leaving Dℓ,n

εout(Dℓ,n) = |ε(UW , VN ; ℓ∆t, n∆x)|+ |ε(VN , UE ; ℓ∆t, n∆x)| = |ε(UW , UE ; ℓ∆t, n∆x)|. (76)

We define analogous quantities for the radiative waves coming into Dℓ,n for ℓ+ n even

εr,in(Dℓ,n) =

∫ ∞

0

∫ 1

0

|εr(IW , IS ; (ℓ− 1)∆t, (n− 1)∆x)| dω dν
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+

∫ ∞

0

∫ 0

−1

|εr(IS , IE ; (ℓ− 1)∆t, (n+ 1)∆x)| dω dν, (77)

and as well the strength εr,out(Dℓ,n) of waves leaving Dℓ,n

εr,out(Dℓ,n) =

∫ ∞

0

∫ 0

−1

|εr(IW , IN ; ℓ∆t, n∆x)| dω dν

+

∫ ∞

0

∫ 1

0

|εr(IN , IE ; ℓ∆t, n∆x)| dω dν. (78)

We also define the potential P(Dℓ,n) of interaction in the diamond Dℓ,n for ℓ+ n even, by

P(Dℓ,n) := D (ε (VW , US , (ℓ− 1)∆t, (n− 1)∆x) , ε (US , VE , (ℓ− 1)∆t, (n+ 1)∆x)) ,

where D(·, ·) is defined by (51).
Given a mesh curve J , one can split the waves crossing J into two groups: the “left-incoming” waves (or

type I waves) (Vℓ,n−1, Uℓ−1,n), crossing the WS-type segments of J , and the “right-outgoing” waves (or type II
waves) (Uℓ−1,n, Vℓ,n+1), crossing the SE-type segments of J . Then we define the linear functional

L(J) :=
∑

type I waves

|ε (Vℓ,n−1, Uℓ−1,n; (ℓ− 1)∆t, (n− 1)∆x)|

+
∑

type II waves

|ε (Uℓ−1,n, Vℓ,n+1; (ℓ− 1)∆t, (n+ 1)∆x)|

+
∑

type I rad. waves

∫ ∞

0

∫ 1

0

|εr(Iℓ,n−1, Iℓ−1,n; (ℓ− 1)∆t, (n− 1)∆x)| dω dν

+
∑

type II rad. waves

∫ ∞

0

∫ 0

−1

|εr(Iℓ−1,n, Iℓ,n−1; (ℓ− 1)∆t, (n+ 1)∆x)| dω dν. (79)

Next, applying Glimm’s strategy [9] (see also [28]), we correct L(J) by a quadratic term

Q(J) :=
∑

(α,β)

D(α, β), (80)

and we consider the final Glimm’s functional

F(J) := L(J) +KQ(J), (81)

where K > 0.
Note that due to the linear character of CRI, one does not need any quadratic correction for the radiative

part.
Our aim is now to prove that F(J) is uniformly bounded for any mesh curve J provided that the constant K

is large enough. As F(J) is equivalent to the total variation norm in BV (R), we will conclude that TV (U∆x) 6
CTV (U0) which implies the convergence of the scheme by using a compactness argument.

Proposition 5. Let J1 be a mesh curve, J2 an immediate successor of J1 and Dℓ0,n0
the diamond region

determined by J1 and J2. The Glimm’s functionals L(J1,2) and Q(J1,2) satisfy

L(J1)− L(J2) = O(1) {P(Dℓ0,n0
) + εin(Dℓ0,n0

) ∆t (σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t))} , (82)

and

Q(J1)−Q(J2) = −P(Dℓ0,n0
) +O(1)L(J1)P(Dℓ0,n0

)

+O(1)L(J1)εin(Dℓ0,n0
) ∆t (σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t)) , (83)

where the constants Cj are defined in Proposition 4.
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Proof: From the previous definitions (75), (76) and (79), we have

L(J2)− L(J1) = εout(Dℓ0,n0
)− εin(Dℓ0,n0

) + εr,out(Dℓ0,n0
)− εr,in(Dℓ0,n0

).

Using estimates (61) and (62) in Proposition 4, with x0 = n0∆x, t0 = (ℓ0 − 1)∆t, UL = VW , UM = US ,
UR = VE , µL = UW − VW , µR = UE − VE , we find

εout(Dℓ0,n0
) = εin(Dℓ0,n0

) +O(1)P(Dℓ0,n0
) +O(1)εin(Dℓ0,n0

)∆t (σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t)) ,

which gives (82).
As hydrodynamical and radiative elementary waves do not interact (83) directly follows from Proposition 4

�

In the spirit of [12] we have

Lemma 2. Let ℓ0 be a positive integer and suppose that J1 (resp. J2) is a mesh curve such that all the mesh
points on J1 (resp. J2) belong either to the line t = (ℓ0 − 1)∆t or to the line t = ℓ0∆t (resp. the line t = ℓ0∆t
or to the line t = (ℓ0 + 1)∆t).

Suppose there exists a positive constant M > 0 sufficiently small such that

L(J1) 6M. (84)

Then provided that the constant K in (81) is large enough, the following estimate holds

F(J2) 6 F(J1) +O(1)∆t (σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t))
∑

n0∈Z

εin(Dℓ0,n0
), (85)

where O(1) depends on M,K.

Proof: Fixing n0 ∈ Z, we multiply (83) by K and add it to (82). We obtain

F(J2)−F(J1) = −K
∑

n0∈Z

P(Dℓ0,n0
) +O(1)[1 +KL(J1)]

∑

n0∈Z

P(Dℓ0,n0
)

+O(1)[1 +KL(J1)]
∑

n0∈Z

(εin(Dℓ0,n0
)∆t (σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t))) .

Since
∑

n0∈Z
P(Dℓ0,n0

) = Q(J1), this implies

F(J2)−F(J1) = −KQ(J1) +O(1)[1 +KL(J1)]Q(J1)

+O(1)∆t

(
∑

n0∈Z

εin(Dℓ0,n0
)

)

(σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t))

= Q(J1) [K(O(1)L(J1)− 1) +O(1)]

+O(1)∆t

(
∑

n0∈Z

εin(Dℓ0,n0
)

)

(σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t))

6 Q(J1) [K(O(1)M − 1) +O(1)]

+O(1)∆t

(
∑

n0∈Z

εin(Dℓ0,n0
)

)

(σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t)) .

Choosing M > 0 sufficiently small and K > 0 sufficiently large, the first term of the right-hand side is negative,
so (85) is proved. �

Theorem 1. Let (U∞, I∞) ∈ U be a constant state, such that I∞(ν, ω) = B(ν, ϑ∞), the temperature ϑ∞
corresponding to U∞. Assume that the initial data (U0, I0) ∈ U are such that

‖U0 − U∞‖L∞(R), ‖I0 − I∞‖L∞

x (R,L1
ω,ν([−1,1]×R+)),

TV (U0), TV
(
‖I0‖L∞([−1,1]×R+)

)
are sufficiently small. (86)
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Assume also that the following norms
∫ ∞

0

σa(t)dt,

∫ ∞

0

σs(t)dt, (87)

are sufficiently small. Then, the approximate solution (U∆x, I∆x) are bounded uniformly in L∞(R+ × R) and
in BV (R+ × R):

‖U∆x − U∞‖L∞([0,T ]×R) + ‖I∆x − I∞‖L∞([0,T ]×R),L1([−1,1]×R+)

6 O(1)
(

‖U0 − U∞‖L∞(R) + ‖I0 − I∞‖L∞

x (R,L1
ω,ν([−1,1]×R+)) + C

)

, (88)

TV (U∆x) + ‖TV (I∆x)‖L1
ω,ν([−1,1]×R+) 6 O(1)

(

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+) + C

)

, (89)

where

C =

∫ ∞

0

(σa(t) + σs(t)) dt, (90)

and M is described in (84). Furthermore, (U∆x, I∆x) is Lipschitz continuous in time, that is, for any t1, t2 ∈
[0, T ],

∫

R

|U∆x(t1, x)− U∆x(t2, x)|dx+

∥
∥
∥
∥

∫

R

|I∆x(t1, x)− I∆x(t2, x)| dx

∥
∥
∥
∥
L1

ω,ν([−1,1]×R+)

6 O(1) (|t1 − t2|+∆t)
(

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+) + C

)

. (91)

Proof: We first prove that condition (84) holds under the assumptions (86) and (87) by induction on ℓ0. For
this purpose, we denote by Jℓ0 a mesh curve which satifies the hypotheses of Lemma 2, that is, any point of Jℓ0
belongs either to the line t = (ℓ0 − 1)∆t or to the line t = ℓ0∆t. For ℓ0 = 0, we clearly have

F(J0) 6 O(1)

(

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+) +K

[

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

]2
)

, (92)

where the term O(1) depends only on the coefficients of the system. Hence, if TV (U0)+‖TV (I0)‖L1
ω,ν([−1,1]×R+)

is sufficiently small, then F(J0) 6M hence L(J0) 6M, where M is defined in Lemma 2.
Next, we assume that

∀ℓ 6 ℓ0 − 1, L(Jℓ) 6M. (93)

Applying Lemma 2, we infer

F(Jℓ0) 6 F(Jℓ0−1) +O(1)∆t
∑

n0∈Z

(σa((ℓ0 + 1)∆t) + σs((ℓ0 + 1)∆t)) εin(Dℓ0−1,n0
).

Repeating this argument for each ℓ and summing from ℓ = 0 to ℓ = ℓ0 − 1, we find

F(Jℓ0) 6 F(J0) +O(1)∆t
∑

n0∈Z

ℓ0−1∑

ℓ=0

(σa((ℓ+ 1)∆t) + σs((ℓ+ 1)∆t)) εin(Dℓ,n0
).

Then, we point out that
∑

n0∈Z

εin(Dℓ,n0
) = L(Jℓ),

hence

F(Jℓ0) 6 F(J0) +O(1)∆t

ℓ0−1∑

ℓ=0

(L(Jℓ) (σa((ℓ+ 1)∆t) + σs((ℓ+ 1)∆t))) .

Recalling (92) and (93), this implies

F(Jℓ0) 6 O(1)
(

1 +KTV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

)

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

+O(1)M∆t

ℓ0−1∑

ℓ=0

(σa((ℓ+ 1)∆t) + σs((ℓ+ 1)∆t)) .
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Applying (90), this gives

F(Jℓ0) 6 O(1)
[(

1 +KTV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

)

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+) + CM

]

.

Hence,

L(Jℓ0) 6 O(1)
[(

1 +KTV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

)

TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+) + CM

]

,

where the term O(1) is independent of C,M,K and TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+). Hence, we can choose

TV (U0)+‖TV (I0)‖L1
ω,ν([−1,1]×R+) small enough to haveO(1)

(

1 +KTV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

)

TV (U0)+

‖TV (I0)‖L1
ω,ν([−1,1]×R+) 6M/2, and O(1)CM 6M/2. Thus,

L(Jℓ0) 6M.

This ends the induction proof.

We thus know that the sequence L(Jℓ0) is bounded independently of ℓ0 and of ∆t. Hence, since the functional
L(Jℓ0) is equivalent to the total variation of U∆x, we deduce that the total variation of U∆x(t, x) is bounded
independently of t and ∆x. this proves (89). The proof of (88) and (91) is dealt with exactly as in [9]. �

We are now in position to prove our main result:

Theorem 2. Under the hypotheses of Theorem 1, if the sequence (aℓ)ℓ>0 is equidistributed, the sequence
(U∆x, I∆x) defined by (69)-(70)-(71)-(72) converges in L1

loc, up to extraction of a subsequence, to a function
(U, I) = (U(x, t), I(x, t)) which is a solution of (2), such that U is an entropy solution of the first three equa-
tions of (2).

Proof: Let (U∆x, I∆x) be the solution defined by the generalized Glimm scheme (69)-(70)-(71)-(72). Applying
Theorem 1 and Helly’s theorem, there exists a subsequence of (U∆x, I∆x) converging to (U, I) ∈ L1

loc, which is
in BV .

Let θ be a test function in D(R+ × R), and define

R(U∆x, I∆x, θ) =

∫

R+

∫

R

[U∆x∂tθ + f(U∆x)∂xθ + g(U∆x, I∆x)θ] dxdt+

∫

R

U∆x(0, x)θ(0, x)dx.

The fact that (U, I) is a weak solution of (2) is exactly equivalent to R(U, I, θ) = 0 for any smooth θ. The
dominated convergence theorem implies that

lim
∆x→0

|R(U∆x, I∆x, θ)−R(U, I, θ)| = 0.

Hence, we are left with proving that
lim

∆x→0
R(U∆x, I∆x, θ) = 0. (94)

We split the integral defining R(U∆x, I∆x, θ) into a sum of integrals over the sets Qℓ0,n0
= [ℓ0∆t, (ℓ0 + 1)∆t]×

[(n0 − 1)∆x, (n0 + 1)∆x], for ℓ0 ∈ N and n0 + ℓ0 ∈ 2Z:

R(U∆x, I∆x, θ) =

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (ℓ0+1)∆t

ℓ0∆t

∫ (n0+1)∆x

(n0−1)∆x

U∆x∂tθ + f(U∆x)∂xθ + g(U∆x, I∆x)θ.
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Applying Proposition 2, we thus have

R(U∆x, I∆x, θ) = O(1)

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

O(1)
(
∆t2 +∆x2

)
(∆x+∆t+ |Uℓ0,n0+1 − Uℓ0,n0−1|) ‖θ‖C1(Qℓ0,n0

)

+

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

(
∫ (n0+1)∆x

(n0−1)∆x

U∆x ((ℓ0 + 1)∆t−, x) θ ((ℓ0 + 1)∆t, x) dx

−

∫ (n0+1)∆x

(n0−1)∆x

U∆x (ℓ0∆t+, x) θ (ℓ0∆t+, x) dx

)

+

∫

R

U∆x(0, x)θ(0, x)dx

+
∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

(
∫ (ℓ0+1)∆t

ℓ0∆t

f (t, (n0 + 1)∆x, U∆x(t, (n0 + 1)∆x−)) dt

−

∫ (ℓ0+1)∆t

ℓ0∆t

f (t, (n0 − 1)∆x, U∆x(t, (n0 − 1)∆x+)) dt

)

.

We denote by R1 the first line of the right-hand side, by R2 the second and third lines, and by R3 the fourth
and fifth lines: R(U∆x, I∆x, θ) = R1 +R2 +R3. We deal with each term separately: for R1, we apply (89), and
find that

|R1| 6 C∆x+ C

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

(
∆x2 +∆t2

) (

1 + TV (U0) + ‖TV (I0)‖L1
ω,ν([−1,1]×R+)

)

‖θ‖C1(Qℓ0,n0
),

hence
|R1| 6 C∆x. (95)

Turning to R2, we have

R2 = −

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (n0+1)∆x

(n0−1)∆x

[U∆x] (ℓ0∆t, x)θ(ℓ0∆t, x)dx,

where [·] denotes the jump of a function: [U∆x] (ℓ0∆t, x) = U∆x(ℓ0∆t+, x)−U∆x(ℓ0∆t−, x). We apply a result
by Liu [22], which implies that, since the sequence (an)n∈Z is equidistributed,

lim
∆x→0

(
∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (n0+1)∆x

(n0−1)∆x

[U∆x] (ℓ0∆t, x)θ(ℓ0∆t, x)dx

)

= 0.

Hence,
lim

∆x→0
R2 = 0. (96)

Turning to R3, we have, according to the definition of U∆x and since g is smooth,

|R3| 6 C

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (ℓ0+1)∆t

ℓ0∆t

|U∆x(t, (n0 + 1)∆t+)− U∆x(t, (n0 − 1)∆t−)| ‖θ‖C1(Qℓ0,n0
)dt

6 C
∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (ℓ0+1)∆t

ℓ0∆t

t |g(ℓ0∆t, (n0 + 2)∆x, Uℓ0,n0+1)− g(ℓ0∆t, n0∆x, Uℓ0,n0+1)| dt‖θ‖C1(Qℓ0,n0
)

6 C

∞∑

ℓ0=0

∑

n0+ℓ0∈2Z

∫ (ℓ0+1)∆t

ℓ0∆t

t∆xdt‖θ‖C1(Qℓ0,n0
).

Hence,
|R3| 6 C∆x. (97)

We then collect (95), (96), (97), and find that (94) holds. That is to say, U is a weak solution of (2). As far as
the radiative part is concerned, the preceding proof applies in a simpler way, since we do not use any Riemann
problem for this part.
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It remains to prove that (U, I) is an entropy solution, that is, for any entropy pair (S, F ) and any non-negative
test function θ, we have

∫

R+

∫

R

S(U)∂tθ + F (U)∂xθ + P (U)θ +

∫

R

S(U0)θ(0, x)dx > 0,

with
P = ∂USg(t, x, U) + ∂xF (t, x, U).

The proof of this fact follows exactly the same line as that of (94), applying Proposition 2. �
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