
HAL Id: hal-01143189
https://hal.science/hal-01143189

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variability as a Service : Outsourcing Variability
Management in Multi-tenant SaaS Applications

Ali Ghaddar, Dalila Tamzalit, Ali Assaf, Abdalla Bitar

To cite this version:
Ali Ghaddar, Dalila Tamzalit, Ali Assaf, Abdalla Bitar. Variability as a Service : Outsourcing Vari-
ability Management in Multi-tenant SaaS Applications. CAISE : 24th International Conference on
Advanced Information Systems Engineering, Jun 2012, Gdansk, Poland. �hal-01143189�

https://hal.science/hal-01143189
https://hal.archives-ouvertes.fr

Variability as a Service : Outsourcing Variability
Management in Multi-tenant SaaS Applications

Ali Ghaddar1,2, Dalila Tamzalit2, Ali Assaf1, and Abdalla Bitar1

1 BITASOFT, Nantes, France
ali.ghaddar@bitasoft.com, ali.assaf@bitasoft.com,

abdalla.bitar@bitasoft.com
2 Université de Nantes, LINA, France

ali.ghaddar@etu.univ-nantes.fr, Dalila.Tamzalit@univ-nantes.fr

Abstract. In order to reduce the overall application expenses and time
to market, SaaS (Software as a Service) providers tend to outsource
several parts of their IT resources to other services providers. Such out-
sourcing helps SaaS providers in reducing costs and concentrating on
their core competences: software domain expertises, business-processes
modeling, implementation technologies and frameworks etc. However,
when a SaaS provider offers a single application instance for multiple
customers following the multi-tenant model, these customers (or ten-
ants) requirements may differ, generating an important variability man-
agement concern. We believe that variability management should also
be outsourced and considered as a service. The novelty of our work is
to introduce the new concept of Variability as a Service (VaaS) model.
It induces the appearance of VaaS providers. The objective is to relieve
the SaaS providers looking forward to adopt such attractive multi-tenant
solution, from developing a completely new and expensive variability so-
lution beforehand. We present in this paper the first stage of our work:
the VaaS meta-model and the VariaS component.

Keywords: SaaS, multi-tenant, variability.

1 Introduction

In recent years, the tendency towards outsourcing IT resources that are not the
key competencies of an enterprise has caused the appearance of new services
providers type. These new services providers develop and maintain, on their
infrastructures, such outsourceable IT resources while offering their access to
enterprises through the web. The business model of such resources offering aims
at providing a pay-as-you-go payment model for their use, where these resources
can be provisioned and un-provisioned on demand. Such new outsourcing prin-
ciple is gaining wide acceptance, especially in the small and medium enterprises
(SME) segment. The reason for this acceptance is purely economic. Indeed, the
majority of SME consider taking less risks by contracting the implementation of
parts of their IT resources to a more experienced provider and find this option

2

more cost effective. The term Cloud Computing summarises these outsourcing
efforts and provisioning of services on demand. This term has emerged as the
run-time platform to realise this vision [10, 14]. More concretely, Cloud Comput-
ing is viewed as a stack containing these new types of services to be provided.
That is to provide an Infrastructure as a Service (IaaS), also to provide a devel-
opment Platform as a Service (PaaS), to finally provide a Software as a Service
(SaaS). In the following, we will focus on this last service type.

SaaS can be defined as: ”Software deployed as a hosted service and accessed
over the Internet” [5]. In the model of this service, the provider offers a complete
application, ready to be used by prospective customers. These customers sub-
scribe to the application and use it via the web through a simple browser. Full
details on the adopted implementation technology and the application deploy-
ment server are transparent. This type of solution is offered by SaaS providers as
an alternative to the traditional software applications that require installation
on the client side, as well as significant investments in terms of materials and
physical resources. However, from a SaaS provider perspectives, the real benefits
of SaaS begins when it is possible to host multiple customers on the same appli-
cation instance, without the need of a dedicated application to be deployed and
separately maintained for each customer. This approach is called multi-tenant,
where tenant means a customer organisational structure, grouping certain num-
ber of users [3]. In fact, application tenants could be distributed across different
geographic zones and belong to different industry verticals, and thereby, their re-
quirements from the application may differ, increasing the need to support these
specific requirements in addition to common ones. This inevitably generates an
additional and important variability [16] management concern, which obviously
distract SaaS providers focus from their core competences.

According to our experience, variability management in multi-tenant applica-
tions generally implies: (1) modeling such variability (explicitly documenting the
variable features and the possible alternatives), (2) binding the variability model
and storing each tenant customisations and choice of alternatives, (3) adapting
the appropriate application behavior at run-time for a tenant, according to its
stored customisations. This last key concern is tied to the application’s architec-
ture. Our work is conducted in a SOA context where the targeted multi-tenant
applications are designed and developed following the service oriented architec-
ture (SOA) model. So, such application adaptation usually concern its look and
business-processes (services composition an orchestration). As these variability
requirements may be distracting and disturbing issues for SaaS providers, we
are convinced that they will gain to outsource, if their is a possibility, such vari-
ability management concern to a specific service provider. For this purpose, we
introduce in this paper the concept of Variability as a Service (VaaS) model (in
the same spirit of IaaS and PaaS models in terms of outsourced resources). The
VaaS model implies the necessity of a new type of service providers: the VaaS
providers. A VaaS provider that follows the VaaS model we propose, will per-
mit to its customers (i.e. multi-tenant SaaS providers) to model and to resolve
their multi-tenant applications variability on his infrastructure. We will explain

3

our approach and its context in the following. The remainder of the paper is
structured as follows.

Section 2 presents the needs of modeling variability in terms of concepts for
modeling and managing; it mainly identifies the limitations that the variability
modeling techniques from software product line engineering encounters to realise
our objectives from variability outsourcing. Section 3 presents our suggested
architecture, process and meta-model for the variability outsourcing and the
VaaS model. Section 4 presents a case study from the food industry that we
have revisit in order to apply the new approach. In Section 5, discussions and
future works are detailed. Section 6 shows related works and Section 7 concludes
the paper.

2 Needs of Variability Modeling

When many variable features in a software system are identified, variability
modeling will become an important requirement to express these features. Gen-
erally, variability modeling consists on explicitly documenting, in the software
system, what does vary and how does it vary, allowing thus to improve traceabil-
ity of the software variability, as well as to improve variability communication
with the customers [13]. However, since software systems are composed from
different development artifacts, a variability concern may impact and cut across
these different artifacts (i.e. in SOA-based systems, the same variability in the
business-process may have effects on the GUI and may also requires the de-
velopment and deployment of additional services). Modeling variability in each
artifact separately and differently is a very bad idea because it makes us loose all
the sense of variability tracking, and it makes representing dependencies between
variability in these different artifacts very hard. In addition, the different way
of modeling variability in each development artifact will complicates the rea-
soning about variability in the entire system. Therefore, in order to avoid these
problems and to ensure strong expressiveness and management of variability, it
is necessary to guarantee its representation in a separated, central and uniform
model, while maintaining its relation with impacted artifacts.

2.1 Orthogonal Variability Models

Based on the need of tracing dependencies between variability in different de-
velopment artifacts and to maintain the uniformity in variability definition and
modeling, orthogonal variability models such as the OVM have been introduced
in the software product line engineering (SPLE) [1, 13] domain. These orthogo-
nal variability models represent variability in one central and separated model,
and then link each variability information to one or many development artifacts.
In [6], we have shown how OVM can be used to model variability in multi-tenant
SOA-based applications. One of our main goals was to show that concepts for
variability modeling from the SPLE can be used in a multi-tenant SaaS context.
These OVM modeling concepts are resumed in the following:

4

– Variation point (VP) and variant: A VP represents one or many locations in
the software where a variation will occur, indicating the existence of different
alternatives, each of them may result in a different software behavior. A
Variant represents an alternative of a VP.

– Artifact dependency: this concept relates the defined variability in the vari-
ability model to different development artifacts, indicating which artifacts
are representing VPs and which ones are realising variants.

– Constraints dependency: constraints in OVM can be operated between vari-
ants, between VPs and between variants and VPs: an exclude constraint
specifies a mutual exclusion; e.g., if variant1 at VP1 excludes variant2 at
VP2, the variant2 can not be used at VP2 if variant1 is used at VP1. A
requires constraint specifies an implication; i.e. if a variant is used, another
variant has to be used as well.

– Internal and external variability: these two concepts separate between the
variability that is only visible to the developers (internal), and the variability
that is communicated to the customers (external).

However, according to our objectives from variability outsourcing, the OVM is
not well-suited. In fact, OVM encounters certain limits that prevent its adoption
as a variability modeling solution on a VaaS provider infrastructure. These limits
result from the differences between the SPLE domain and the multi-tenant SaaS
model. In SPLE, the software adaptation to customers requirements is realised
through a customisation task that is usually done by the same organisation that
has built the software. While in the multi-tenant SaaS model, since all tenants
are using the same software instance, it is more practical to give these tenants
the control to customise the software to their needs (interventions from the SaaS
provider still always required to guide the tenants through the customisation of
the application).

2.2 Enabling the Software Customisation by Tenants

The direct customisation of the software by tenants is one of our objectives
since it relieves, in many cases, the SaaS providers from doing this heavy cus-
tomisation tasks each time a new tenant subscribe to the application. However,
such customisation capabilities implies that SaaS providers restrict, for certain
tenants, the possibility to choose certain variants which, for example, cannot
be selected in the application test period (tenants usually pass through an ap-
plication test period to determine if the software can provide the service they
expect). In addition, some variants may be highly expensive and they must be
restricted for certain tenants (in use period) with limited budget. The possibility
to define, depending on the tenants contexts, the required restriction conditions
for variants and VPs is not the focus of OVM, as it assume that the software
customisation will be always done by the software creator. In addition, another
main reason to propose variability as a service is minimising the number of
interventions that SaaS providers have to make for managing variability, and
especially, providing concrete data values for variants. Therefore, our variability

5

modeling solution gives SaaS providers the possibility to define variants with
free values, thus tenants can provide the informations they like, such as their
own application logo, title, background color etc., without having to always use
those offered and predefined by the SaaS providers. Once again, this option is
not supported by the OVM. Finally, since the application will be customised
directly by individual tenants, it will be important to specify, in the variabil-
ity model, the order in which the variation points must be bound (Some VPs
may depend on each other, which is not always intuitive for tenants). In OVM,
such ordering could be done by exploiting the constraints dependencies between
VPs, but since constraints in OVM were not designed for this purpose, using
them to order the VPs binding will be a workaround. We suggest in the next
section, a new variability meta-model that covers the limitations of OVM and
others SPLE variability modeling techniques, by bringing additional variabil-
ity modeling concepts, allowing the SaaS providers to give their tenants certain
customisation controls and capabilities in a simple, secure and flexible manner.

3 Variability as a Service : Architecture, Process and
Meta-model

In this section we will explain in details the VaaS model and its core element:
the VariaS component. The VariaS component provides different interfaces for
SaaS providers to create and manage their applications variability models, as
well as to resolve variation places in the applications. The VariaS component
is deployed and maintained on a VaaS provider infrastructure. The high-level
architecture and different actors of VaaS are presented in figure 1.

3.1 Architecture and Variability Outsourcing Process

As depicted in figure 1, the VaaS architecture defines certain steps that must be
performed by SaaS providers as well as by tenants in the variability outsourcing
process. These steps are ordered in time and they are divided under Specification
and Execution steps. All mentioned steps ((step 1), (step 2)etc.) and elements
((a), (b), etc.) are shown in the figure.

Specification. First of all, the SaaS providers have to instantiate the variabil-
ity meta-model (a) offered by the VaaS provider (step 1). The variability model
resulting from such instantiation is stored in a variability models repository (b).
Prospective tenants of the SaaS application (having outsourced its variability
management) must bind its variability model (choosing the variants that meet
their needs), before they can start its use (step 2). Such variability binding has
to be made through the SaaS provider application and then redirected to the
VariaS component, since it is more easy and safe that tenants continue to com-
municate only with their SaaS providers. In addition, such binding (through an
integrated variability binding tool) has to be controlled thus tenants will not

6

SaaS provider

SaaS application

Varias component

Use
Use

Use
Use

Tenant A

Tenant B

Tenant B
Tenant A

Instanciate

Manage

 (a)
 Variability
meta-model

Model A1

Model A2

(b) Variability models
 repository

Instances of
Bind

VaaS provider

Manage

GUI

Business
 process

SaaS provider

Manage

(c) Tenants
customization
documents

Save Binding

1

2

3

4 Resolve variation
Request

5

5

6 Results

(d) Variability
 resolver

GUI
Business
 process

Access

Access

(e) Services
 Invoker

 (f) Data
transformers

Call

Apply

1- Variability Specification

2- Variability execution

V
a

ri
a

b
ili

ty
 B

in
d

in
g

T

o
o

l

(h)Tenants
contexts details

SaaS application

Fig. 1. High-level VaaS Architecture

be able to select non authorised variants and will not have access to certain
VPs depending on their contexts and details (h). However, after binding the
application variability model, tenants variants choices are saved as customisa-
tion documents (c) (step 3). Each customisation document concern one tenant,
it indicates their variants chosen at the variation points. Having done so, the
tenants can start using their SaaS application and expect from it to behave as
they have customised it. Therefore, the application behavior must be adapted
at run-time according to these customisations.

Execution. In order to adapt the multi-tenant application behavior according
to its defined variability model and the tenants customisations, the SaaS de-
velopers must request the VariaS component at each variation place they have

7

identified in the application. Each variation place must have a corresponding
variation point in the application variability model that is stored on the VaaS
provider side, thus the VariaS component can identify such variation (step 4).
These variability resolution requests are in specific forms and use specific proto-
cols defined by the VaaS provider. When a request is received, it will be handled
by a variability resolver (d). Such resolver accesses the stored variability models
as well as the tenants customisation documents in order to identify the variabil-
ity action that must be performed (step 5). This action will result in a specific
value which is either equivalent to the variant value (selected by the tenant) or
deduced from it in case that additional computations based on the variant value
must be performed. The variability resolution results will be returned to the
application that sent the resolve variation request(step 6). These results must
always have the same data format expected by the SaaS application at the cor-
responding variation place. The non respect of this format may break down the
application. In this case, the additional computations to perform on a variant
value would be, for example, to transform its data format to the one expected
by the application. The expected data format from the resolution results of each
variation point must be defined in the variability model.

3.2 Variability Meta-model

A variability meta-model is essential for the VaaS model, since it defines how
SaaS providers describe their applications variable parts, and how they indicate
restricted variants, those accessible to different customisations possibilities. In
addition, the variability meta-model has to provide a technical and code level
solution for SaaS providers, to help them resolving their application variations
while still independent from these applications implementation details. Thus,
the VaaS model, through such a meta-model, deals with applications based on
standard technologies, such as web-services, and use common applications code
artifacts such as texts, files and expressions. In section 2, we have discussed
the need of an orthogonal variability model, and shown the limitations that the
SPLE modeling techniques encounters for realising our variability outsourcing
vision. In the following, new variability modeling concepts related to the VaaS
model as well as reused concepts from OVM will be presented. Figure 2 shows
our variability meta-model.

The variability modeling approach we present, aims to provide certain level of
flexibility to SaaS providers, making them able to deal with complex variability
modeling situations in a simple manner. Complex modeling situations such as
constraining (by restricting or obligating) the choice of certain variants as well
as the binding of certain VPs depending on the tenants contexts are needed. Be-
ing able to do so, the Activation Condition concept is introduced. Such concept
allows SaaS providers to define conditions, which if they evaluate to true, their
related Constraints will be activated. In this way, and depending on the con-
ditions evaluation results, the same variant may be restricted for some tenants
and enabled for others. A condition semantic is expressed by a SaaS provider the
same as in If-Then-Else statements in programing languages. These conditions

8

Role

+ name : Name

 To bound by

Variation point

+ name : Name

Variant

+ name : Name
+ isDefault : boolean

1..*

1

To bound before

0..*

0..*

Development artifact

+ name : Name

Represented by

Realized by

0..*

0..*

0..*

0..*

Constraint

Value

+ status : Status

is Variant of

+ status : Status

OVM concepts

VaaS concepts
Type

<<Enum>>

+ type : Type

Activation Condition

Activated by

1..*

1..*

Status
<<Enum>>

+ name : Name

+ condition : Condition

Restricts obligates

Constrains

Constrains

0..*

0..*

0..*

Predefined Free

0..*

0..*

1

+ ResolutionResults : Format

Fig. 2. Variability Meta-model of VaaS

evaluate on informations such as tenant identity, status, already chosen variants
and other informations may be useful to limit or extend the software usability
for tenants depending on the SaaS provider commercial offer.

The variation point, variant and development artifact concepts are reused
from OVM. As mentioned above, variability informations (variants and VPs)
are represented in an abstract and artifacts-independent manner, while their re-
lations with the impacted development artifacts is maintained through so called
Artifact Dependency. However, for each variant (realised by one or many arti-
facts) its important to indicate its corresponding value in each artifact, thus
such value can be treated by our service and returned to the SaaS application
when needed. The same variant can have different values in different artifacts,
each value must have a type, thus our variability service can determine the vari-
ability action to perform on resolution requests, as well as the appropriate GUI
in which the SaaS provider can provide these values. For example, if a SaaS
provider creates a value instance for a particular variant with the Web-Service
type, automatically, a relevant GUI will be opened to provide the web-service

9

description, end point address, operation to invoke, input and output massages
types etc. The same, if a value instance is created with a File type, the GUI
opened would be a simple file input. These is beneficial for SaaS providers, as
free values can be added by tenants through dedicated and simple GUI’s. Fi-
nally, the Role concept has been added and associated to a variation point in
order to differentiate between VPs to bound by the tenants and others to bound
by the SaaS providers. In addition, such role concept is beneficial in case one
or many application resellers exist. In fact, the SaaS provider may find more
efficient that application resellers make decisions on certain VPs that are re-
lated to a given segment specificities which some prospective tenants are parts
of. Generally, such resellers are more experienced in these segments standards
and rules. In the following, we present a case study that shows an instantiation
example of these variability concepts.

4 Case Study: a Food Industry Application

In this section, we will revisit a food-industry application (FIA for short) that
we have developed as presented in [6]. FIA is a SOA-based multi-tenant ap-
plication. It allows its food industry tenants looking for foods production and
quality improvement to predict the future expenses and benefits from their po-
tential recipes, before executing a real and expensive manufacturing process. FIA
evaluates, by relying on an internally developed simulation service, the recipes
manufacturing time and cost, as well as their quality characteristics such as nu-
tritional value, taste and smell. FIA has also an integrated shipping service for
foods, from the warehouse of the foods supplier to the tenants manufactures.
Figure 3 left side shows the FIA business process.

The back-end business logic of the application is implemented using a Busi-
ness Process Execution Language (BPEL) [9] based solution, and the front-end
for the tenants is a Web application which gathers data and hands it over to the
BPEL engine for processing the recipes simulation requests. When a tenant user
accesses the application, he can manage his existing recipes or decide to create a
new one. In this last case, the user has to provide the foods composing the new
recipe as well as their respective percentages in it. The user must also describe
the recipe cooking process, by sending a pre-negotiated XML structure, or he can
rely on a FIA integrated cooking process drawing tool. When finishing, the user
must click on simulate button and wait for results. When the application receives
the recipe details, the BPEL process invoke the foods supplier service, asking for
foods prices and quality informations. These informations, as well as the recipe
cooking process allows the simulation service to calculate exactly the final recipe
cost and quality. However, when the simulation ends the process sends back a
simulation report to the user containing the recipe simulation results. In case
user validate the results, the process saves the recipe details in the database and
invoke the shipping service thus the foods (composing the recipe) will be shipped
from the warehouse of the foods supplier to the tenant manufacture.

10

Varias component

VaaS provider

Manage

Rapid
Shipping
Service

Economic
Shipping
Service

High quality
foods supplier
service

Medium quality
foods supplier
service

Invoke (@ VaaS/ResolveVariation, {"
 App-FIA,TenantA,FoodsSupplierVP"})

Invoke (@ VaaS/ResolveVariation, {"
 App-FIA,TenantA,FoodsShipperVP"})

VP

VP

Model A1

Model A2

(b) Variability models
 repository

(c) Tenants
customization
documents

5

5

(d) Variability
 resolverAccess

Access

(e) Services
 Invoker

 (f) Data
transformers

Call

Apply

Fig. 3. FIA Business-process and its Interaction with the Varias Component

4.1 Modeling FIA Variations Following the VaaS Approach

In order to detect possible variations in the application we have presented its
business process to some selected prospective tenants. Three variations have been
detected: 1) some tenants are interested by the software but they have asked for
another foods supplier with higher foods quality. 2) Some other tenants asked
for another foods shipper because the existing one is costly. Taking into account
this shipping variation, we have decided to add an economic shipping service to
the application but with a higher shipping time. The costly shipping service is
very rapid, but it does not supports international shipments. On the other side,
we have found that high quality foods suppliers have their own shipping services
and that will excludes the need of the shippers proposed by our application. 3)
Finally, some tenants want their own company-specific logos and specific titles for
the application. Beside these tenant-oriented variations, a segment variation is
added to indicate the different simulation models that the application supports.
Currently, we are supporting the French and the American models which are the
most used worldwide. However, these FIA variations was modeled in first time
by relying on the OVM model, and the application customisation was always
done by a member of our development team. In figure 4, the FIA variations are
modeled following the VaaS approach.

4.2 Resolving FIA Variations

In this section we only focus on the business-process variability, as it requires
additional computations to perform by the Varias component in order to resolve

11

 Value
Predefined

Web-service

@ End point
Operation
Input message
Output message
WSDL location (URL)

X

 Represented by
 (Artifact dependency)

The role that must bind
 the VP

Constrains

To bound before

VP

VP

V V

V V

VP

V V

 Foods
 Shipper

Economic Rapid

 Foods
 supplier

High quality Medium quality

 App
 Logo

Default Specific

 Constraint
Restricts

If (V:Highquality SelectedAt
 VP:FoodsSupplier)
Then True
Else False

Activation Condition

 Constraint
Restricts

If (Tenant IsOverSeas)
Then True
Else False

Activation Condition

Tenant

 Constraint
Restricts

If (Tenant IsInTestPeriod)
Then True
Else False

Activation Condition
VP

V V

 Simulation
 model

Reseller

French American

Predefined

 FIle

File location (URL)

 Value
 Free

 FIle

Database

Serevice Interface
layer

Business-process
layer

Internal services External services
Service component
layer

Data resource
layer

Presentation
layer

2- SOA artifacts

1- Variability model Value

Simulation Recipe
Foods
Supplier

Foods
Shipper

 Value
Predefined

Web-service

@ End point
Operation
Input message
Output message
WSDL location (URL)

VP
Variation point

V
Variant

Tenant

Tenant

Fig. 4. Modeling FIA Variability Following the VaaS Meta-model

them. In fact, as previously mentioned, we consider multi-tenant applications as
SOA-based. In SOA, the application business-process is realised by composing
and orchestrating available web-services achieving the desired functionality. For

12

each service in the process there may be different alternatives which implement
the service with different implementation logics or quality attributes. In this
case, the variability occurs on selecting the most appropriate service depending
on the tenants requirements. If a SaaS provider defines these different services
alternatives as variants at a particular variation point, the VariaS component
will be responsible of invoking the appropriate service (being able to invoke the
appropriate service variant requires providing the informations needed for its
invocation, such as end point address, input and output massages, operations
etc.) and compensating the data mismatch at the input and output messages of
different services, if exists. The services invoker (e) and the data transformers (f)
elements in the VariaS component (see figure 1) are designed for this purpose.
As depicted in figure 3, the two variation points at different services invocations
are resolved by sending requests to the Varias component. These requests are in
a fixed form which abstract for SaaS providers the concrete services addresses. In
addition, such abstraction is also beneficial for SaaS providers since they always
interact with variable services in the same manner and expect the same output
massages format.

5 Discussion and Future Work

In this paper, we presented the first stages of our work: VaaS or outsourcing
Variability as a Service with its associated architecture and meta-model. We also
presented the VaaS model in its specification and execution steps (see section
3.1) consider SOA applications. We see them as a set of several artifacts, possibly
variable. It is important to outline two main hypothesis we voluntarily considered
as implicit in this paper:

– Specification: a first implicit hypothesis of our work is that variability models
of an application and its business design are defined at quite the same time.
So the application and its variability models are both defined from scratch
and the variability concern is considered at the first stages of the design of
the application. This is what we called early variability in [6].

– Execution: a second implicit hypothesis of our work in its current stage is
that the executed application has a stable design and a stable variability.
This hypothesis implies that only variants need to be detected, uploaded,
executed and potentially evolved. More precisely, in the execution step, we
consider only source-code variable artifacts, those executed at run-time. The
FIA application is an illustration example through its executable artifacts
(i.e. Business-process, web-services, GUI etc.). We also consider that (ii) the
application design and its variability models, essentially the View Points, are
stable.

At this stage, we aim to stabilise the VaaS concept and VariaS component
before exploring the following important future issues:

– Validation: we successfully developed multi-tenant applications by includ-
ing and managing variability through VP and variants. This development

13

has been successfully tested and achieved. The next validation step is to
implement the VaaS architecture and its VariaS component.

– Non-code artifacts: rather than supporting only code , we aim to generalise
the approach to other artifacts like requirements, design and test.

– VaaS and existing applications: the objective is to enable the VaaS architec-
ture able to support variability as well for new applications as for existing
ones. We thus have to look how one can re-engineer an existing application
in order to inject variability in terms of specification and management.

– Evolution: applications are in essence evolutive. Managing evolution in a
VaaS approach is our ultimate objective. It can be seen through three main
concerns: (i) variability evolution, (ii) co-evolution of the application and its
variability models and (iii) the co-evolution of the variability meta-model
and its variability models.

6 Related Work

6.1 SOA Variability Management

Several authors studied the variability concern in the context of SOA systems.
In [4] authors identify four types of variability which may occur on SOA. In [15]
authors present a framework and related tool suite for modeling and managing
the variability of Web service-based systems. They have extended the COV-
AMOF framework for the variability management of software product fami-
lies. In [8] authors describe an approach to handle variability in Web services,
while [11] focus on variability in business-process by proposing a VxBPEL lan-
guage. However, all these approaches focus on variability management in SOA
systems as a part of the software providers responsibilities which is different from
our VaaS and variability management outsourcing approach.

6.2 SaaS and Multi-tenancy

In [7] authors provide a catalog for customisation techniques that can guide
developers when dealing with multi-tenancy, they have identified two types of
customisation: Model View Controller (MVC) customisation and system cus-
tomisation. In [2] the authors propose some architectural choices to make when
building multi-tenant applications, while in [3] authors discuss their experiences
with re-engineering an existing industrial single-tenant application into a multi-
tenant one. In [12], authors propose a variability modeling technique for SOA-
based multi-tenant applications, they differentiate between internal variability
only visible to the developers, and external variability that is communicated to
the tenants of the application. Once again, they do not propose the variability
as a service which we have treated in this paper.

14

7 Conclusion

In this work, we have shown the importance and the complexity of supporting
variability in SOA-based multi-tenant applications. We have also motivated the
need of outsourcing the variability management to a VaaS provider. Architecture
and meta-model supporting our approach have been also provided. In addition,
we have revisited a multi-tenant application case study and transforming its ex-
isting OVM variability model into VaaS model. Our approach aims to decrease
the variability management complexity, and to relieve the SaaS providers looking
forward to adopt a multi-tenant solution, from developing an expensive variabil-
ity solution beforehand.

References

[1] J. Bayer, S. Gerard, O. Haugen, J. Mansell, B. Moller-Pedersen, J. Oldevik,
P. Tessier, J.P. Thibault, and T. Widen. Consolidated product line variability
modeling. 2006.

[2] C.P. Bezemer and A. Zaidman. Multi-tenant saas applications: maintenance
dream or nightmare? In Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), pages 88–92. ACM, 2010.

[3] C.P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart. En-
abling multi-tenancy: An industrial experience report. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–8. IEEE, 2010.

[4] S.H. Chang and S.D. Kim. A variability modeling method for adaptable services
in service-oriented computing. In Software Product Line Conference, 2007. SPLC
2007. 11th International, pages 261–268. Ieee, 2007.

[5] F. Chong and G. Carraro. Architecture strategies for catching the long tail. MSDN
Library, Microsoft Corporation, pages 9–10, 2006.

[6] A. Ghaddar, D. Tamzalit, and A. Assaf. Decoupling variability management in
multi-tenant saas applications. In Service Oriented System Engineering (SOSE),
2011 IEEE 6th International Symposium on, pages 273–279. IEEE, 2011.

[7] S. Jansen, G.J. Houben, and S. Brinkkemper. Customization realization in multi-
tenant web applications: case studies from the library sector. Web Engineering,
pages 445–459, 2010.

[8] J. Jiang, A. Ruokonen, and T. Systa. Pattern-based variability management in
web service development. In Web Services, 2005. ECOWS 2005. Third IEEE
European Conference on, pages 12–pp. IEEE, 2005.

[9] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, et al. Web services business process execution
language version 2.0. OASIS Standard, 11, 2007.

[10] J. Kabbedijk and S. Jansen. Variability in multi-tenant environments: architec-
tural design patterns from industry. Advances in Conceptual Modeling. Recent
Developments and New Directions, pages 151–160, 2011.

[11] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou. Vxbpel: Supporting variability
for web services in bpel. Information and Software Technology, 51(2):258–269,
2009.

15

[12] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to sup-
port customization and deployment of multi-tenant-aware software as a service
applications. In Proceedings of the 2009 ICSE Workshop on Principles of Engi-
neering Service Oriented Systems, pages 18–25. IEEE Computer Society, 2009.

[13] K. Pohl, G. Bockle, and F. Van Der Linden. Software product line engineering:
foundations, principles, and techniques. Springer-Verlag New York Inc, 2005.

[14] B. Sengupta and A. Roychoudhury. Engineering multi-tenant software-as-a-
service systems. In Proceeding of the 3rd international workshop on Principles
of engineering service-oriented systems, pages 15–21. ACM, 2011.

[15] C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello. Modeling and manag-
ing the variability of web service-based systems. Journal of Systems and Software,
83(3):502–516, 2010.

[16] M. Svahnberg, J. Van Gurp, and J. Bosch. A taxonomy of variability realization
techniques. Software: Practice and Experience, 35(8):705–754, 2005.

