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Experience in System Design for Human-Robot Teaming in Urban Search & Rescue
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Introduction

Urban Search & Rescue is a domain where robots have the potential to make a difference [START_REF] Murphy | Search and rescue robotics[END_REF]. They can go where people cannot: To help assess a situation, determine an approach to deal with it, even before humans have gone in.

To make this possible, we do need more autonomy in the robot [START_REF] Birk | Rescue robotics -a crucial milestone on the road to autonomous systems[END_REF], in perceiving the environment, in navigating it. However, disaster areas are harsh places. We inevitably experience what Woods et al [START_REF] Woods | Envisioning human-robot coordination for future operations[END_REF] termed "(Robin) Murphy's Law: any deployment of robotic systems will fall short of the target level of autonomy, creating or exacerbating a shortfall in mechanisms for coordination with human problem holders." Adaptive autonomy is one way of trying to address this problem [START_REF] Parasuraman | Adaptive automation for human-robot teaming in future command and control systems[END_REF][START_REF] Miller | Designing for flexible interaction between humans and automation: interfaces for supervisory control[END_REF], making explicit the inherent interdependence between humans and robots [START_REF] Johnson | Beyond cooperative robotics: The central role of interdependence in coactive design[END_REF].

The paper reports research funded by the EU FP7 ICT program, Cognitive Systems & Robotics unit, under contract 247870, "NIFTi" (http://www.nifti.eu) 1 Still, this is all for naught if the humans in the team do not accept a robot's autonomous capabilities and intelligence. Recent experience with synchronous humanrobot interaction in Fukushima (S. Tadokoro, p.c.) and in our own end user studies underline this. A robot's abilities, behaviour, and possible achievements need to be transparent to a human operator: Whether the robot is doing something, what it is doing and why, whether it thinks it has achieved a goal (or not). If an operator is unclear about what to expect from the robot, he or she is unlikely to delegate control to the robot. Instead, no matter what the robot is able to do autonomously, the operator will revert to tele-operation. And that's not quite what anybody wants. We see this as an issue of (lacking) transparency in experience, behavior and intentions [START_REF] Clark | Using Language[END_REF]. Robot behavior needs to be transparent, to allow for a proper management of user expectations. A gap between these expectations, and what actually happens, can seriously affect the interaction [START_REF] Lohse | The role of expectations and situations in human-robot interaction[END_REF][START_REF] Komatsu | Adaptation gap hypothesis: How differences between users' expected and perceived agent functions affect their subjective impression[END_REF]. A lack of transparency reduces acceptability, which might explain why human-robot interaction (HRI) is a bottleneck in USAR [START_REF] Murphy | Human-robot interaction in rescue robotics[END_REF]. (For similar observations in the field for asynchronous forms of human-robot interaction see [START_REF] Stubbs | Autonomy and common ground in human-robot interaction: A field study[END_REF], and also the projections for synchronous interaction in [START_REF] Murphy | Human-robot interaction in rescue robotics[END_REF].)

The problem gets exacerbated in the context of USAR. Humans and robots perform under stress, in complex environments. Situations, interactions, plans change. And with that, expectations change. What we are looking at is not characterizing a gap between expectations before and after a human has interacted with a robot, as is typically done in studies on HRI [START_REF] Lohse | The role of expectations and situations in human-robot interaction[END_REF][START_REF] Komatsu | Adaptation gap hypothesis: How differences between users' expected and perceived agent functions affect their subjective impression[END_REF]. Instead, we need to address expectation management online. As situations change, affecting the dynamics of the team, the robot needs to adapt its behavior, and the way it presents that behavior to continue to provide adequate and effective transparency; cf. e.g. [START_REF] Oron-Gilad | Multi-modal information display under stress[END_REF].

In this paper, we try to further understand the problem. We do not offer a solution; but we discuss a way in which we believe we can come to understand the problem better, and design systems that can eventually address the problem in real-life. We present a user-centric design methodology ( §1.2) which draws in end users (first responders from several organizations across Europe) and their experience into the entire R&D process. Following this methodology, we discuss how we design our systems (human-centric, §1.3), and how we experiment with them and evaluate them (with end users, under real-life circumstances §1.4).

User-centric design methodology

We adopt a user-centric design methodology, in several respects. Firstly, we include users in all the phases of the development cycle: Requirements analysis, componentand system development, and experiments & evaluations. Users are from various rescue services (Fire Department of Dortmund/Germany, Vigili del Fuoco/Italy). Together, we formulate requirements for hard-and software functionality, and develop physically realistic use cases in which we can experiment with and evaluate our approaches. Figure 1.1 illustrates one such use case, namely a tunnel accident. Involving users throughout the yearly development cycle does more than just telling us what they need (requirements), and whether our systems do the job (evaluations). Their involvement provides us with a deeper insight into their needs, their procedures, and what happens out in the field. This is another aspect of the human user-centric design approach we follow. We build systems which can assist humans, doing so in ways that mimic human understanding, and operational procedure. The hypothesis being that this makes robot behavior more transparent to the user.

In the system design, the human perspective is pervasive throughout the representations the robot builds, and the way it determines its behavior. The conceptual understanding of the environment provides a human-like view on the environment, and the inference of spatially grounded affordances results in robot behavior that mimics standard procedure. When it comes to human-robot interaction and planning, humans are explicitly modeled as actors, and action and interaction are planned in ways that conform to human operational practice.

Socio-technical system design

We approach design from a socio-technical perspective. It concerns the entire system of robots, humans, and how they work together. We focus on the four questions listed below. 21. How to model situation awareness which (a) bridges the gap between a robot's quantitative, and a human's qualitative sense of space, (b) facilitates use by a geographically distributed team, and (c) provides the basis for individual or joint action (4)? See §1. 

Intelligence in situation awareness

A robot builds up a situation awareness which bridges the gap between its own quantitative forms of perception, and a human qualitative understanding of space. The robot builds up a qualitative structure of dynamic space, and can make inferences about possible actions situated in that space. Mapping therefore builds up several layers of abstraction. First we try to build an accurate metric representation of the environment based on the 3D rolling laser sensor mounted on our robot. Based on this metric representation, we then segment the navigable space into coherent areas linked in a navigation graph. Going 3D requires both to have an efficient 3D representation of the environment and to be able to estimate the 6 degrees-of-freedom pose of our robot. To avoid part of the distortions, the 3D point clouds are registered into the map only when the robot is static. Preliminary results show that in most cases the distortion when the robot is moving is not too large, but localization may jump from local optima and induce point cloud deformation due to the pose interpolation. The 6 DOF pose estimate is based on a robust 2D map when the robot lies in a mostly 2D part of the environment. We rely on fast and efficient 3D registration implementation (i.e., libpointmatcher) to handle 3D environments online [START_REF] Pomerleau | Tracking a depth camera: Parameter exploration for fast icp[END_REF]. For the topological segmentation, we take as input the map of the environment. Previously we performed topological extraction based on spectral clustering and mutual information [START_REF] Liu | Regional topological segmentation based on mutual information graphs[END_REF]. To better handle changes in the map, both due to exploration and due to actual changes, we use incremental topological segmentation. In parallel to constructing 3D spatial structure, we combine 3D point clouds and robot positioning to improve vision, and ground observations of objects in the scene. Image-based detection of rear parts of cars in a tunnel accident works relatively well [START_REF] Zimmermann | Improving cascade of classifiers by sliding window alignment in between[END_REF], see Figure 1.3. Estimating the 3D positions of cars proved more difficult, especially the orientation. To deal with 3D instability we associate 2D features with the 3D metric maps. We use these object observations to perform Functional Mapping, a form of spatial inference [START_REF] Keshavdas | Functional mapping: Spatial inferencing to aid human-robot rescue efforts in unstructured disaster environments[END_REF]. Given an object, and an action to be performed, functional mapping infers areas around the object, where the action can be performed relative to the object. This combines logical inference over associated ontologies for objects and their internal structure, and for actions; and geometric inference. In the tunnel accident, functional mapping infers that being in a particular position relative to a car window facilitates looking into that car. The projection of the areas into 3D space is based on real-time map data and the observed 3D pose of the object. Functional mapping thus combines top-down inferencing, from a priori knowledge of expected objects, and bottom-up inferencing from real-time observations.

Inferring functional areas serves several purposes. First of all, when fire-fighters explore a disaster site, they themselves move between functional areas to make their observations [START_REF] Khambhaita | Help me to help you: How to learn intentions, actions and plans[END_REF]. We observed the same behavior when fire-fighters tele-operated robots to explore an accident [START_REF] Keshavdas | Functional mapping: Spatial inferencing to aid human-robot rescue efforts in unstructured disaster environments[END_REF]. Making the robot follow similar behavior makes that behavior more transparent to an operator working with the robot. Secondly, we use the inference of functional areas to determine optimal vantage points for the robot to perform an observation. Finally, these functional areas serve in maintaining common situation awareness between the robot's metrical environment knowledge and the pilot's qualitative understanding of the environment. Thus, when a human instructs the robot to "go to the car", it goes into a functional area, rather than naively trying to go to (the center of) the car.

Finally, we use map information to perform terrain analysis for traversability, particularly negative obstacle and gap detection. Our approach has two main stages: (i) Application of image morphological and contour detection algorithms and (ii) application of Principal Component Analysis in the orientation domain of the gap contours [START_REF] Papadakis | Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation[END_REF] and extraction of the optimal traversability path. Reasoning with respect to the traversability of the detected gaps is done considering the dimensions and morphological adaptation capabilities of the robot. A representative example of gap detection and analysis is given in Fig. 1.4.

Adapting the robot's morphology concerns adjusting its articulated components to reduce instabilities that could tip it over [START_REF] Papadopoulos | A new measure of tipover stability margin for mobile manipulators[END_REF]. To optimally adapt its morphology with respect to the terrain we consider maximizing the surface contact of the tracks with the ground. (This aims to maximize the traction efficiency of the robot which in parallel results in minimized pressure on the tracks.) Using a set of various ter- rains classes we first learn the optimal configurations of the robot offline, using a simulation environment (Gazebo) [START_REF] Gianni | Awareness in mixed initiative planning[END_REF], to employ them later on in the real scenario.

Intelligence in interaction

HRI is regarded one of the major bottlenecks in rescue robotics [START_REF] Murphy | Human-robot interaction in rescue robotics[END_REF][START_REF] Murphy | Search and rescue robotics[END_REF]. Teleoperating a robot is highly demanding. More autonomy can be a way out of this. But as we already argued, more autonomy requires more transparency, to facilitate common ground and coordination. And that requires communication.

Unfortunately, most models of HRI have so far been relatively limited in their use of spoken dialogue, one of the most natural means for humans to interact. Also, these models typically do not ground communication in the social structure, to explain why actors (need to) interact, and what information is to be exchanged. We are working on an approach that takes the social structure and the collaborative ("intentional") context explicitly into account [START_REF] Kruijff | Continual processing of situated dialogue in humanrobot collaborative activities[END_REF][START_REF] Kruijff | Using doctrines for human-robot collaboration to guide ethical behavior[END_REF][START_REF] Kruijff | Situated communication for joint activity in human-robot teams[END_REF]. The approach is based in previous collaborative views on dialogue processing [START_REF] Allen | Analyzing intention in utterances[END_REF][START_REF] Grosz | Attention, intention and the structure of discourse[END_REF][START_REF] Allen | Discourse processing and common sense plans[END_REF]. Our approach improves on these by dealing explicitly with uncertain, incomplete information, as is typical for spoken dialogue, and particularly situated dialogue.

We have integrated (limited) spoken dialogue into our multi-modal GUI for human-robot interaction. A user can use dialogue to instruct the robot to move to particular waypoints or landmarks (possibly selected in the GUI), or drive in specific directions [START_REF] Larochelle | Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team[END_REF], similar to [START_REF] Fong | Multi-robot remote driving with collaborative control[END_REF]. Based on insights in human-human interaction in human-robot teams for USAR (NJEx 2011, §1.4), and the recent experience in the end user evaluations at SFO ( §1.4), we see there is particularly a need for the robot to produce contextually appropriate feedback to maintain transparency. (The range of utterances which a robot needs to understand is relatively limited in this domain.) Using our recent experimental data, we are investigating the relation between when what is to be communicated by the robot to someone (communication patterns)and task context, and the user's estimated stress and workload. This should provide an insight in not just what to say, but also how to say it best such that it is easy to understand by the user under the given circumstances. 

Intelligence in team cooperation

Human-robot teams are typically geographically dispersed. For team cooperation this requires the entire system to integrate different views on the environment, (e.g. UAV, UGV, in-field operators), and to facilitate different perspectives and needs [START_REF] Salmon | Distributed Situation Awareness: Theory, Measurement, and Application to Teamwork[END_REF]. Below we briefly describe the planning approach we use for a robot to share and coordinate control with other team members, to support coordinated execution. The dynamics of the UGV and UAV can be modeled separately by defining two different temporal declarative models in the Temporal Flexible Situation Calculus (TFSC) [START_REF] Finzi | Representing flexible temporal behaviors in the situation calculus[END_REF]. The UAV can act in strict cooperation with the UGV, so the TFSC model needs to know the states of both system components, via a common model.

The hybrid framework combines temporal constraint reasoning and reasoning about actions. The flexible behaviours of the UAV and UGV are specified in a compact representation by temporal constraint networks T U AV and T U GV , with the possibility to include a network T HO corresponding to an in-field human operator-rescuer. These causal and temporal relations, and their constraints, are learned by continuous interaction with humans, via demonstration and by collected observations of successful processes in controled contexts [START_REF] Pirri | The well-designed logical robot: Learning and experience from observations to the situation calculus[END_REF][START_REF] Khambhaita | Help me to help you: How to learn intentions, actions and plans[END_REF]. The networks are mapped into a structure managing time, resources and actions (model-based control). The model accounts for timelines with time flexibly assigned to each component, to satisfy priorities for both resources and tasks, and which rely on online acquisition of sensor data [START_REF] Gianni | A unified framework for planning and execution-monitoring of mobile robots[END_REF]. The whole set is managed by an execution monitor which continuously checks the environment models {M HO , M U AV , M U GV } and the inner states {S HO , S U AV , S U GV }. The execution loop ensures that the network is kept up to date and consistent. The inner states S U AV and S U GV represent the internal loop which checks on all of the machine components, namely both of the UAV and UGV. The human-robot team shares the information about the environment and the mission, combining together their models of the current percepts. To integrate the different abilities of the UAV, the UGV, and the users, a set of properties P 1 , ..., P n is defined on top of the inner states of the team units bridging the different dynamic models (Figure 1.6).

Field experiments & evaluations

During 2011, we performed several experiments with end users operating our systems under realistic circumstances. Almost needless to say, we observed problems along the way that are familiar to anyone operating in the field, see e.g. [START_REF] Carlson | How UGVs physically fail in the field[END_REF]. Below we focus on the lessons learned with respect to human-robot collaboration. The first pilot experiments with users took place at the training center of the Fire Department of Dortmund (FDDO) in January 2011. Users were all professional first responders, and had no prior experience with robots. Each user operated a UGV in a "tunnel accident"-like environment (several crashed cars, a motor bike, debris, set up in a large garage). We ran experiments with two different types of fully teleoperated UGVs: The TNO "Generaal" robot [START_REF] Jansen | Telepresence control of unmanned systems[END_REF], and an ActivMedia P3-AT. The UGVs differed primarily in how the interaction with the robot was supported. The Generaal has a specially designed telepresence control, consisting of a headtracking head-mounted display, whereas the P3-AT was operated via the NIFTi Operator Control Unit (OCU) [START_REF] Larochelle | Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team[END_REF]. The P3-AT was the focus of the pilot experiment, as it used the NIFTi interface and sensory analyses. The users were mostly unfamiliar with robots and and spent 30-60 minutes training and performing simple tests such as slalom navigation and object detection. Many technical problems arose: signal loss, insufficient battery power, insufficient bandwidth for video-based feedback, and damages due to obstacles and cold temperatures [START_REF] Carlson | How UGVs physically fail in the field[END_REF]. Out of the three users using the P3-AT to perform the 15-minute exploration task, two had to be cut short after 10 and 13 minutes respectively. This experiment provided insights similar to what is found in for example [START_REF] Burke | Moonlight in Miami: An ethnographic study of human-robot interaction in USAR[END_REF]. We could observe that users spent about half their time navigating, and about one third of the remaining time trying to find pathways [START_REF] Larochelle | Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team[END_REF]. By observing the paths taken by the users in the scenario, we found out that they were similar to those followed by fire fighters in similar scenarios [START_REF] Khambhaita | Help me to help you: How to learn intentions, actions and plans[END_REF]. A surprising observation was that the users were satisfied with the robot's video feed. The highly-compressed poorlylit images were typically shown in a low 400x800 resolution. The users indicated that the quality was sufficient, even if the update frequency was too low (< 8Hz) for safe tele-operation. The experiments did reveal that tele-operation increased the cognitive load of the user [START_REF] Larochelle | Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team[END_REF]. This was one reason to develop more autonomous robot behavior ( §1.3). We were worried that with so much time spent on navigation tasks rather than on observation, the user's situation awareness would be poor. However, sketch maps drawn on white boards during the scenario showed that the users located most objects within one meter of their actual location, and that the relative positioning of the objects with one another was often entirely correct.

It was thus difficult to explain why tele-operation was so difficult if the users were well aware of their surroundings. We have since improved the visualization in the OCU, to make the robot's maps more intuitive to users. For example, we have added a to-scale 3D model of the robot in the metrical map, and provide more and better views of the maps. We also provide means for controlling robot movement through other than manual operation, e.g. by spoken commands.

July 2011: NIFTi Joint exercises (NJEx) at FDDO

The pilot study focused on single-robot single-operator missions. Given safety ratio and workload considerations (e.g. [START_REF] Murphy | The safe human-robot ratio[END_REF]), we wanted to move to human-robot team setups, and study those in more detail. We organized a more complex joint exercise event at FDDO (NJEx 2011), involving project partners and end users (FDDO, VVFF). During this event, teams of several humans, a NIFTi-specific outdoor UGV (shown in Figure 1.1(b)), and a UAV explored several complex environments. This included a multi-story residential building "on fire." Missions of 45 minutes were performed by a team consisting of a mission commander, a UGV operator, and a UGV/UAV mission specialist (all in a remote control post), and a UAV operator and two safety directors for the UGV and the UAV (all in-field, line-of-sight). Team members included both first responders, with minimal experience with robots, and scientists, who use the robots on a daily basis.

For NJEx 2011 we focused on human-human interaction within the human-robot team -the robots were fully tele-operated. Interesting observations were that communication primarily concerned the communication of situation awareness ("we see a victim under the shelves in the room at the end of corridor, right"), and goals ("we are going to look under the staircase, at the end of the corridor, left"). Nearly all of the information exchanged was explicitly situated in the environment. The mission commander mostly communicated situation awareness, to maintain common ground within the team, whereas the UGV operator would indicate the next actions of the UGV. Planning exploration tasks was typically done within the control post and the coordination with the in-field team was done through the mission commander. The UAV operator's task was to fly to a particular point, with an explicitly communicated purpose -typically, what kinds of observations the control post would like to make. Video feeds from the UAV were inspected by the UAV mission specialist in the command post, with the mission commander providing feedback to the UAV operator. The two safety directors had the best awareness of the situations around the robots, as they were in line-of-sight.

Analysis so far has yielded that the mission commander and the UGV operator generate the most radio traffic, with one or the other taking on a leading role. In the most effective teams, this was always the mission commander. Furthermore, variations in stress levels could be detected, particularly for team members with high radio traffic, i.e., the mission commander, UGV operator, and the UGV safety commander. We observed that in low stress situations, loosely defined roles and communication protocols can have a slight negative impact on the team performance. However, in more complex situations (e.g., time pressure, high cognitive load, stress), the lack of protocol can break the team cohesion altogether. Face-to-face and radio communication get overloaded, team members get orders from multiple people, situation awareness becomes more local and poorly shared.

It is thus imperative that human team members follow strict rules from the onset of the mission until the end. Adding an autonomous robot to this team thus means that it needs to "fit in." It must be socially accepted by the team. The next experiments studied the introduction of such a robot in a complex USAR mission.

December 2011: End user evaluations at SFO

This field trial is the third and most recent. The scenario was again a tunnel car accident but this time was located inside a real tunnel, as shown in Figure 1.1. The area spanned 25 meters into the tunnel by a width of 10 meters, filled with debris, pallets, barrels, crashed vehicles, and smoke. Users were professional Vigili del Fuoco firefighters, with no prior experience in operating robots (UGVs). Each user had 40 minutes to assess the situation with one UGV and one UAV. The human team members were the mission commander and the UGV pilot (in the command post), and the UAV pilot (in-field). The UGV pilots were fire fighters who had minimal experience with robots and received 45 minutes of training, followed by simple tests like in January 2011.

The team members in the control post had access to a variety of information sources, in a multi-screen multi-modal user interface set-up. The views included robot-specific interfaces, for example one NIFTi OCU per robot (UGV, UAV), and qualitative views for team-level situation awareness (TREX, [START_REF] Van Diggelen | Mutual empowerment in mobile soldier support[END_REF]). Communication between the command post and the in-field UAV operator was via hand-held radio, through the mission commander. The UGV operator communicated with the in-field UGV using the OCU, by touch through spoken dialogue. The UGV was capable of autonomous navigation, and could also use spoken dialogue to provide observations and basic feedback on actions (action-possibility, action-onset).

For these evaluations, we had defined clear roles for the human participants, we had a robust outdoors robot with enough power, space, and bandwidth for the scenario, we had much improved visualization, we had a task planner and a path planner, we had several different levels of autonomy to reduce the amount of teleoperation, and we ensured that the robot could support a basic dialogue with the operator. From our experience in January 2011, we expected that reducing the need to tele-operate the robot to only the situations when autonomous navigation does not work well would free up some time for the user to observe the environment or perform other tasks. However, reality was different.

Figure 1.8 shows the typical path followed by a user during the 40-minute scenario. The first section in orange shows that the user was using spoken commands to control the robot. The green section shows where the robot was tele-operated. Figure 1.8 illustrates that autonomous behavior of the robot was used less than expected. One explanation might be a lack of transparency of the robot's behavior, and the resulting impact on the user's trust in the robot's capacities. It was often unclear to the user whether a robot had achieved a goal, or why it was failing to do so.

All users started with operating the robot in a high degree of autonomy. However, they all took back control as soon as the path became more difficult to navigate, and many more objects to observe became visible (after about 5 meters into the tunnel). This change in sharing control could be grounded in technical reasons (low speed or failures of the autonomous navigation) or on social reasons (lack of trust and understanding about autonomous navigation). While autonomy per se remains crucial to achieving success in robot-assisted USAR, what becomes clear is that we need to find understandable ways to present this autonomy to the users. The robot's state, behavior, and capabilities must be transparent to the human operator. It must be clear what the robot knows, what it is currently doing and why, and what it plans to do. And, perhaps even more importantly from the viewpoint of expectation management, it is crucial that the robot communicates why it cannot perform certain actions, or succeed performing them, rather than just failing. If a user is unclear about what to expect from the robot, that user is unlikely to delegate control to the robot. Instead, the operator keeps control, no matter how capable the robot is. In summary, transparency is needed for understanding and trust, and trust is needed for autonomy. Future field experiments will focus on understanding how to achieve transparency, especially in situations of high stress and cognitive load. For example, statements that carry spatial information should convey this spatial part in a multi-modal fashion. Additionally, we need to spend more time on user training, allowing them to adjust their expectations and develop trust in the system. 

Conclusions

Developing, experimenting, and evaluating USAR robots together with professional users who have much at stake in this domain has turned out to be extremely revealing. In some sense, reality bites. What we believed to be the main issue at stake (autonomy) might well be overshadowed by the problems we are facing in making robot intelligence acceptable. Human-robot interaction as "the bottleneck" points into the direction we need to look. We face a socio-technical issue: the entire complex of a robot that can truly behave as a team member in a human-robot team (cf. also [START_REF] Klein | Ten challenges for making automation a team player in joint human-agent activity[END_REF]). And before we can even talk of common ground, of collaboration, one of the most fundamental lessons we have learnt recently is that this all stands and falls with that robot's autonomous behavior being transparent. Now that we are slowly beginning to achieve an acceptable level of robot autonomy, it is time to focus our efforts on making this autonomy accepted. In the last field trial, we used a Wizard-of-Oz (WoZ) rather than an automatic speech recognizer (simply to avoid unnecessary complications in the experiment). We plan on pushing this type of setup further, to see how we can control the perception and usage of autonomous behavior. We would like to identify how technical limitations and failures affect the user's perception, compared to how transparency affects the perception of limitations, failures, as well as (situated) capabilities.
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 11 Fig. 1.1 NIFTi tunnel accident use case: (a) Setting (b) UAV and UGV in action; (c) control center.
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 12 Fig. 1.2 3D mapping: (a) 3D point cloud in tunnel, (b) 3D map (indoor environment), (c) Topological segmentation of tunnel, with navigation graph (in grey)

  Figure 1.2(c) illustrates the result of this new method in the tunnel environment.

  Figure 1.3(b,c) shows an example of assigning image colors to the 3D point clouds. The 2D object detector creates a probabilistic map over the image, and attributes this to points in a 3D point cloud. The 3D information provides an absolute scale, which allows for discarding many false positives.
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 13 Fig. 1.3 Car detection using visual features and 2D mapping (a), 3D laser point clouds (b) and fusion with visual data from omnicam (c)
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 14 Fig. 1.4 Gap detection and analysis; (a) Top view of the 3D point cloud and (b) detected gaps together with traversability direction.
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 15 Fig. 1.5 Team-based, multi-modal GUI with multiple perspectives (a) and multiple info-views (b)
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 16 Fig. 1.6 Properties P 1 , ..., Pn are defined on inner states S of each team unit, to give a uniform representation of the multi-agent system. M denotes a perceptual model of a unit, T temporal model of unit activities.
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 17 Fig. 1.7 Field experiments at the FDDO training center (a; Jan. 2011), control post at joint exercises at FDDO (b; Jul. 2011), user evaluations at SFO (c; Dec. 2011)
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 18 Fig. 1.8 Path taken in semi-autonomous mode (orange segments) vs. tele-operation (green)

Relations between questions are indicated in brackets, e.g. (4) means a relation to question 4.