
HAL Id: hal-01143142
https://hal.science/hal-01143142

Submitted on 16 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topologie frugale pour l’agrégation de flux
Rachid Guerraoui, Erwan Le Merrer, Bao-Duy Tran

To cite this version:
Rachid Guerraoui, Erwan Le Merrer, Bao-Duy Tran. Topologie frugale pour l’agrégation de flux.
ALGOTEL 2015 - 17èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommu-
nications, Jun 2015, Beaune, France. �hal-01143142�

https://hal.science/hal-01143142
https://hal.archives-ouvertes.fr

Topologie frugale pour l’agrégation de flux

Rachid Guerraoui1, Erwan Le Merrer2 et Bao-Duy Tran3

1EPFL, Suisse 2Technicolor, France 3Google, Australie

L’agrégation de flux massifs de données est clé pour l’expansion de l’Internet des objets. En pratique, cette agregation
est effectuée le long d’un topologie. Cet article introduit le problème de la construction frugale de topologies, destiné
au design approprié de topologies pour l’agrégation de flux parvenant à un datacenter. Le traitement de ces flux doit sur-
venir sans perte de paquets, tout en minimisant l’utilisation de machines (ou VMs), appelées shards, pour l’agrégation
(frugalité). Ce problème apparait tout particulièrement lors du design d’un service à partir de machines fortement
contraintes par leur capacité en réception (quantité d’information admissible par unité de temps). Nous présentons tout
d’abord le cadre d’application de cette étude, puis les résultats obtenus en termes de quantité d’information véhiculée
par les flux de données en entrée des ressources d’agrégation. Nous basant sur ces résultats, nous proposons un problème
d’optimisation à résoudre pour construire une topologie de noeuds d’agrégation qui évite les pertes et assure la mini-
misation du coût d’opération. Nous proposons enfin un algorithme pour la résolution de ce problème et analysons ses
propriétés. Cette étude trouve une application directe par l’utilisation d’Amazon Kinesis, une plateforme permettant le
traitement de flux massifs de données à destination du nuage.

Real-time computation over flows of data is made possible by the progress of stream processing platforms
like Storm. Algorithms processing those streams require small space and update time [PGD12, HL14].
The support for stream aggregation operations is necessary for advanced analytics since it allows more
advanced applications like identification of heavy hitters or anomaly detection. For scenarios like device
monitoring, the exploding number of those devices cause technical challenges. Clearly, no single server
can sustain millions of concurrent connections for aggregating the data they produce. In systems where
computation precision is essential, computing units are organized as a topology so that the information
received in the cloud is processed and reduced layer by layer in a scalable fashion, until the desired result
is obtained [PGD12].

Current Situation : Trial-and-Error Design Today, Amazon Kinesis is the cloud-based solution to ag-
gregate streams in real-time. This service allows data buffering in the cloud, which is a required step before
actual processing, to avoid data loss. Kinesis imposes arbitrary limits on the amount of data devices can
push to a so-called shard. In practice, packets that cause rate exceedance at a given point in time are simply
dropped (i.e. lost). Billing is made on the number of shards used by an application. Unfortunately, using
such a service at a large scale is challenging. Indeed, there is no systematic way to design a topology for
handling all device streams, other than by trial and error [PGD12, HL14], where system administors in-
crementally reinforce parts of the topology where loss occurs. In fact, a working solution obtained through
trial and error is likely to over-provision the number of shards (one can for instance provision a tangibly
high number of shards, resulting in no data loss). Operational costs will be more than actually required by
the application, which is a clear problem when considering the general will to consolidate costs by using
the cloud. At the other extreme, if one designs a topology that is “too small” to ingest the streams, device
packets will be dropped.

This paper addresses the systematic design of a suitable topology of shards, so that streams can be aggre-
gated with no data loss and at a minimum operational cost. In the meantime, we also control the topology
diameter, for allowing to forecast end-to-end aggregation latency.

1 The Problem of Efficient Aggregation in the Cloud
This paper addresses computations over data streams emitted from monitored sources. This for instance

includes ISPs’ home-gateways, for troubleshooting or performance assessment. To cope with the amount of

Rachid Guerraoui, Erwan Le Merrer et Bao-Duy Tran

FIGURE 1: General topology form for stream aggregation. Instantiation in practice often has the form of a “pyramid”.

data arriving at the datacenter (where the monitoring is performed), there is a need for buffers (i.e. Kinesis
shards) to temporarily store data before processors can catch up. Examples of buffering systems include
Apache Kafka (platform to deploy), and Amazon Kinesis (available as an online service) that we focus on.

Kinesis accepts data records from producers (devices) and releases them to consumers upon request (ag-
gregation processors in our case). Those devices push information to the cloud on a Kinesis interface, im-
plemented with multiples shards where data is actually stored temporarily before processing. Every device
pushes data employing a ‘partition key’, used to direct data records to a specific shard (deterministically
assigned by hashing the partition key). Most importantly, Kinesis shards can be chained in a topology,
to realize more complex stream processing scenarios. In the sequel, a node refers to a shard-processor
couple ; it is the basic unit of buffering/computation, from which aggregation topologies are built.

Considered setup This paper specifically examines stream aggregation over non-overlapping windows [KWF06] :
we employ a model where data sources emit streams of key-value tuples (T,v) where T is a time period
ID and v is a payload value, compatible with an aggregate function. This allows queries like “return
SUM(v) in T” for operations over distributive and algebraic aggregates [KWF06]. Such functions per-
mit partial accumulation and parallelization of the aggregation process, to face massive aggregation needs.

Consider the general purpose topology presented on Figure 1 ; n0 data sources (i.e. monitored devices)
emit tuples to the cloud, namely to the first layer of aggregation nodes 1,1 to 1,n1. Those nodes aggregate
v values to decrease stream size, and in turn emit aggregate values to their successors in the topology,
nodes 2,1 to 2,n2 and so forth an so on. Eventually, a final aggregation node named the sink has enough
capacity to receive streams from previous layer L− 1, and then computes the final aggregation value. In
this work, we assume that nodes maintain the counter of the current value they are aggregating on. When
a tuple containing a new T is received at a node, that node emits the aggregate value to its successor in
the topology. We allow maximum two periods to overlap (i.e. two values of T), for handling clock drift on
nodes and network/processor congestion. In this setup, an ISP for instance can obtain every T = 5 minutes,
the aggregate of the network traffic produced by all its n0 monitored gateways, where those gateway emit
their current network packet count v every 30 seconds.

The thrifty topology construction problem Consider the general form topology presented on Figure 1,
consisting of n0 sources emitting tuples at a rate of λ0, and aggregation nodes organized in L layers and
a last aggregation sink, with an ingest rate θ (e.g. MB/s) constraint at each aggregation node. Derive a
systematic approach to determine a suitable topology such that ingest rate saturation is guaranteed to be
averted at all nodes while minimizing the topology size N for reduced cost and operation latency.

2 Thrifty Topolopy Construction
2.1 Topology construction as an optimization problem

In order to describe our problem in a more formal way, a mandatory result is the incoming data rate at each
node in the topology, as far as we are given a hard constraint on what each node can receive (constraint θ).
Following the setup presented in previous section, we precisely derived bounds for incoming and outcoming
rates occurring in a topology of the form of Figure 1, at each node. Please refer to report [Tra14] for detailed

Topologie frugale pour l’agrégation de flux

Algorithm 1: Conservative Sequential Assignments : CSA
Input: n0 ∈ N∗ (sources), λ0 ∈ R+ (emission rate at a source), θ ∈ R+ (input rate constraint at a node)
Output: L,n1,n2, . . . ,nL ∈ N∗ (i.e. a topology setup)

for `← 1 to +∞ do

n`←

⌈
n0λ0

θ2`−1

`−2

∏
k=1

(1+
1

nk(2nk+1−1)
)

⌉
;

if n` = 1 then
L← ` ; return L,n1,n2, . . . ,nL;

analysis ; we only report the main result, that is the bound on the incoming rate.

Theorem 1. Total incoming rate at any node (`,m) (` ∈ {1..L} ,m ∈ {1..n`}) is upper bounded by :

λ
(in)
`m (t)6 λ

(in)
`,max =

n0λ0

2`−1n`

`−2

∏
k=1

(1+
1

nk(2nk+1−1)
), (1)

with nk being the number of processor in layer k. Our goal is thus to avoid data loss in each topology
layer, by having a sufficient number of nodes aggregating tuples in each layer : let function ψ`(n1,n2, . . . ,n`)
encode the fact that capacity of layer ` is over the received flow of information at ` (i.e. no loss ; details in
report [Tra14]). We now can formulate the topology construction objective, that our algorithm will solve :

min
L,n1,n2,...,nL−1

(
β

L−1

∑
`=1

n`+ γL

)
subject to : L,n1,n2, . . . ,nL−1 ∈ N∗

subject to : ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

(2)

Note that for topology design, we only need to specify the number of nodes per-layer, as their role is
totally symmetrical ; this is due to the random routing of tuples resulting from the hash function used.
Parameters β and γ ∈ R∗+ are used to linearly combine the two objectives, namely the number of nodes in
the topology (left part) and the diameter of it (right part).

Topology determination now boils down to finding a plausible assignment for L,n1,n2, . . . ,nL−1 : the pro-
blem (2) is an optimization problem with L integer variables (L,n1,n2, . . . ,nL−1), L linear range constraints
(all variables being positive), L non-linear inequality constraints, and a linear objective function.

2.2 Proposed Algorithm : Conservative Sequential Assignments (CSA)
To satisfy function ψ, appearing as a constraint in (2), the number of nodes n` in each layer ` must satisfy :

n` >
n0λ0

θ2`−1

`−2

∏
k=1

(1+
1

nk(2nk+1−1)
). (3)

The criterion for n` at layer ` then only depends on the number of nodes at layers preceding `. This
makes sequential assignments of n` with incremental ` possible, layer after layer, starting at front layer 1.

The minimization of objective
L−1

∑
`=1

n` can then be achieved by conservatively selecting the smallest possible

value for every n`. This corresponds to picking n` as the ceiling of the result of formula (3) for a given `.
The process terminates as soon as n` = 1 at some ` (i.e. the sink). This corresponds to the Conservative
Sequential Assignment Algorithm, (denoted as CSA), and proposed in Algorithm 1 as a solution for the
thrifty topology construction problem.

Rachid Guerraoui, Erwan Le Merrer et Bao-Duy Tran

Analysis of CSA We first express that Algorithm 1 converges, and thus outputs a topology solving the
problem of thrifty topology construction. We finally give an approximation ratio for it.

Theorem 2. CSA converges with lim
`→+∞

n` = 1.

Sketch. We show that n` decreases monotonically until reaching stop condition at n` = 1.
We next show that CSA terminates in a logarithmic number of steps with regards to input parameters.

As a consequence, the resulting topology also has a logarithmic diameter.

Lemma 1. CSA outputs a topology whose diameter is logarithmic in the problem input values n0, λ0 and

θ. In particular, CSA terminates in at most Lmax =

⌈
logb

ηθ

n0λ0

⌉
iterations, with η = 49

72 and b = 7
12 .

Sketch. Condition n` = 1 is attained at the latest when `> log(7
12)

ηθ

n0λ0
= L̃max. Thus terminates in at most

Lmax =
⌈
L̃max

⌉
iterations.

This bound on the diameter is crucial for service implementation, in order to estimate for instance the
end-to-end operation latency (between a message sent from a device and the aggregation result at the sink).

Let N =
L

∑
`=1

n` be the total number of processors in the topology. We now bound N resulting from CSA .

Corollary 1. CSA outputs a topology composed of N processors : N 6
Lmax

∑
`=1

⌈
n0λ0

ηθ
b`
⌉

.

N thus indicates operational costs, as in Kinesis user is billed on the number of shards (nodes) employed.
We finally give the approximation ratio of CSA :

Theorem 3. An approximation ratio of CSA is 2.06×OP T , plus logb
θ

n0λ0
+1.

Sketch. Clearly, no algorithm can use fewer nodes than d(n0λ0)/θe6OP T . We compare N obtained from
CSA to OP T . Note that this lower bound is not a solution to the problem.

3 Conclusion
We implemented and experimented CSA and the following real scenario : n0 = 500 devices continuously

send 50KB packets at a rate of λ0 = 0.5 packets per second to Kinesis (θ = 20 items/sec) where aggregation
is performed on some counters. CSA returned a topology of the form

[
13 7 4 2 1

]
, that lead to no

measured data loss. For instance, a trial-and-error example with a
[
13 7 1

]
(i.e. just few nodes less)

topology causes 2% of packet drops at the sink node (most critical packets, as they were the aggregate of
many previous tuples). This validates our model.

To conclude, we exposed that systematic approaches to design topologies for data aggregation in the
cloud are key for scalability and operational costs. Despite the fact we elaborated on the general form of an
aggregation topology, the CSA algorithm is of course tied to the presented setup. We nevertheless expect
this initial step to trigger research works for generalization, and integration into cloud processing platforms.

Références
[HL14] Qun Huang and Patrick PC Lee. LD-Sketch : A distributed sketching design for accurate and

scalable anomaly detection in network data streams. In INFOCOM, 2014.
[KWF06] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. On-the-fly sharing for streamed ag-

gregation. In SIGMOD, 2006.
[PGD12] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketch-based querying

of distributed sliding-window data streams. In VLDB, 2012.
[Tra14] Bao-Duy Tran. Systematic approach to multi-layer parallelisation of time-based stream

aggregation under ingest constraints in the cloud. In Master Thesis. EPFL, 2014.
http ://www.erwanlemerrer.fr.eu.org/tran-thesis.pdf.

