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Long-term 3D map maintenance in dynamic environments

François Pomerleau, Philipp Krüsi, Francis Colas, Paul Furgale and Roland Siegwart

Abstract— New applications of mobile robotics in dynamic
urban areas require more than the single-session geomet-
ric maps that have dominated simultaneous localization and
mapping (SLAM) research to date; maps must be updated
as the environment changes and include a semantic layer
(such as road network information) to aid motion planning in
dynamic environments. We present an algorithm for long-term
localization and mapping in real time using a three-dimensional
(3D) laser scanner. The system infers the static or dynamic
state of each 3D point in the environment based on repeated
observations. The velocity of each dynamic point is estimated
without requiring object models or explicit clustering of the
points. At any time, the system is able to produce a most-likely
representation of underlying static scene geometry. By storing
the time history of velocities, we can infer the dominant motion
patterns within the map. The result is an online mapping and
localization system specifically designed to enable long-term
autonomy within highly dynamic environments. We validate
the approach using data collected around the campus of ETH
Zurich over seven months and several kilometers of navigation.
To the best of our knowledge, this is the first work to unify
long-term map update with tracking of dynamic objects.

Index Terms— Long-term mapping, dynamic obstacles, ICP,
kd-tree, registration, scan matching, robot, SLAM.

I. INTRODUCTION AND RELATED WORK

The success of SLAM has been a major enabler of
robot autonomy. Until recently, the majority of research
focused on increasing the accuracy and robustness of single-
session SLAM. Now that robotic hardware and software are
becoming more widespread, applications such as navigation
in dense crowds [1], or autonomous driving in cities [2] are
demanding new algorithms that can maintain maps over time.
A SLAM system should not only be able to build a map
of the geometry of an environment, but it should also be
capable of updating this map over time and of encoding
useful semantic information for planning. For example, a
map that includes lane and average speed information may
be used to calculate the probable trajectories of cars tracked
by a robot, so planning a collision-free path may be focused
on likely trajectories and thus, can be computed faster. Prior
knowledge of motion patterns within a map may also be
used to detect anomalous behavior of other agents so that
extra attention may be paid to these agents. Furthermore,
it is important that dynamic objects are not included in
static environment maps as they may degrade localization
accuracy and cause motion planning to fail. Motivated by
these applications, we therefore seek to develop a mapping
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Fig. 1. ARTOR, a search and rescue robot specialized for outdoor
applications navigating in a highly dynamic urban environment. Typical
mobile elements include pedestrians, bikers, cars, trucks and trams.

and localization system that is able to build and maintain
these hybrid geometric/semantic maps.

This paper presents an algorithm that performs SLAM,
map updating, classification of map points as dynamic or
static, and estimation of the velocity of dynamic points, all
in real time and using only data from a 3D laser scanner. The
approach is bottom up; it does not rely on prior information,
such as object models. The only prior used is a weak
smoothness assumption on the velocity of dynamic scene
points. By saving the time history of point-wise velocity
estimates, we are able to infer the dominant motion patterns
in the map. The algorithm is validated using data collected
over seven months with the field robot shown in Fig. 1 in
the highly dynamic urban area around the main campus of
ETH Zurich.

The work presented here is related to two research areas:
map updating for lifelong navigation and segmentation of
dynamic obstacles during localization and mapping. As the
techniques used in laser processing and vision processing
have not yet converged on common solutions for either of
these problems, we will restrict our survey of prior work to
papers that use lidar data.

The work of Biber et al. [3] describes a long-term
map updating scheme that shares the same goals as our
framework. They describe a long-term two-dimensional (2D)
SLAM system based on scan matching and odometry. The
mapping system maintains a set of local maps (2D scans
at fixed positions) with multiple hypotheses for the range
values at different timescales. Specifically, they highlight
four requirements for any long-term mapping strategy: (1)
map adaptation should not depend on the wall-clock time,
(2) mapping should be resilient to outliers, (3) multiple



hypotheses should be maintained until there is enough data
for inference, and (4) the map should only contain measured
values (not interpolated or smoothed quantities). Our method
fulfills the same requirements, but we extend the capability to
3D space, remove the dependence on viewpoint and, rather
than maintaining multiple hypotheses, we probabilistically
segment samples into static and dynamic. Our segmentation
strategy is similar to the dynamic mapping technique of
Burgard et al. [4] who use an expectation maximization
scheme to differentiate between dynamic and static cells
in a 2D grid map. They show that removing dynamic
points from the data during mapping increases localization
accuracy. However, they make no attempt to cluster or track
dynamic objects throughout a scene. Theoretically, it should
be possible to extend their method to process 3D laser data by
adopting an efficient 3D grid representation such as Octomap
[5]. However, the processing of data with long sensor beams
in large outdoor areas can become prohibitively slow due to
the requirement to ray-trace through the grid. In contrast,
our method works in real time on raw 3D laser data in
expansive environments. The trade-off is that we do not
explicitly model free space throughout the entire volume of
the mapped area—only in places where our laser has returned
a previous reading. While the explicit modeling of free space
may be required for mobile manipulation or flying robots
navigating in tight spaces, it is not strictly necessary for a
large class of mobile robots with local sensing that is accurate
enough to infer the drivable area directly around the robot.

There have been a number of other algorithms developed
specifically for updating map over several passes through an
environment. Aijazi et al. [6] use highly accurate localization
based on a differential global positioning system to resolve
points from a single pass into a fixed grid. Grids from
multiple passes can then be directly compared to infer the
static parts of the scene. The algorithm produces excellent
segmentation results, but the reliance on highly accurate
localization makes it unsuitable for the general case of a
moving robot. Ryde and Hillier [7] also use a grid-based
representation to detect changes in 3D laser maps. They
sidestep the need for accurate localization by matching the
latest point cloud with an existing voxel grid. A change is
detected after alignment by finding points that do not lie
within an occupied voxel.

Another class of work has ignored map update to focus on
the segmentation and tracking of dynamic objects from laser
data. Several studies have produced notable results using a
static 3D laser [8], [9], [10]. However, it is not immediately
clear how to extend them to a moving sensor. Wang et al.
describe an impressive system for 2D laser-based SLAM
with moving object tracking [11]. The system segments the
incoming laser scan, matches segments with the predicted
locations of tracked objects, and accumulates point-based
models of the dynamic objects and the static scene. Moosman
and Fraichard have developed a very similar system for 3D
laser data [12]. However, both approaches rely on the initial
range-image segmentation step, and neither one addresses
the difficult problem of splitting tracks that can appear when

Fig. 2. Block diagram of the processing pipeline. Boxes represent separate
processes running at different frequencies. Solid arrows represent point
clouds being communicated to each modules and dashed line, odometry.
The gray arrows show the output of each module.

the initial segmentation step clusters objects with similar
positions and speeds. In contrast, our approach is entirely
point-based with a weak smoothness prior on velocities. The
lack of reliance on segmentation allows us to seamlessly
handle clumps of agents that merge and diverge without
relying on specialized detection and handling of these cases.

To the best of our knowledge, this is the first work to
unify map update with tracking of dynamic obstacles, and
we believe it is a significant step toward the unified geometric
and semantic mapping needed for robot navigation in highly
dynamic environments.

II. SYSTEM OVERVIEW

A general overview of the proposed system is presented
in Fig. 2. Point clouds from the sensor are provided to the
Registration module, which corrects the odometry of the
robot and provides the point clouds in global coordinates.
The Global Map Maintenance module evaluates if past
information were dynamic or not, and concatenate the new
registered point cloud in order to keep the global map at a
constant density. The Velocity Estimation module takes the
newly registered point cloud and segments it based on the
information of the global map. What is currently considered
as dynamic at time t is than evaluated against the last
dynamic elements at time t� 1. The module outputs a point
cloud with all the points having a speed larger than zero.
The 3D registration module is based on the already published
libpointmatcher [16], therefore this article will focus
on the two other modules.

III. DYNAMIC ELEMENT IDENTIFICATION

We infer dynamic parts of the scene based on visibility
assumptions; if we observe a laser point behind a point that
was previously observed, that previous point might be dy-
namic. For such process, the standard approach is ray-tracing.
While widely used in 2D, scaling up to 3D is expensive
in memory as it requires a dense representation of both
the occupied and free space. To ensure online computation,
we propose to directly use the same representation as for
the localization: sparse point clouds. First, we transform a
local subset of the point cloud map Q into the reference
frame of the current point cloud P . Then, using spherical
coordinates, we associate the points q of the map to each
single reading point p in the same small conical aperture



of size ✓max. This can be done quickly using an efficient
kd-tree implementation, libnabo [13]. All the points of
the map that are further than the point of the current sensor
reading in each cone are left untouched. However, the points
of the map that are closer than the reading need to be updated
as they should have intercepted the ray. Based on our field
observations, this update should fulfill the following criteria:

1) the greater the angle between the beam producing p
and q, the less we change the knowledge on q,

2) the greater the angle between the beam producing
q and its surface normal n, the less we change the
knowledge on q,

3) if p and q are spatially close, q is more probably static;
otherwise more probably dynamic,

4) a point has more chances to become dynamic knowing
that it is static than the inverse,

5) most of the new points observed are static.
Most of those criteria are easy to motivate, except maybe
criterion 2), which require more explainations. Indeed, the
sensor produces readings of environmental elements that can
be located at up to 80 m from the sensor itself. At that
distance, many points from the ground can be in the cone
of a reading point due to the big incidence angle, but they
should not be considered as dynamic. This problem was also
observed by Wurm et al. [5] but not explicitly addressed in
their updated equations.

In order to give a formal expression to those criteria,
we observe that the problem is to update some knowledge
state based on uncertain information. Therefore, we use a
Bayesian approach to update the knowledge on each map
point q. We consider the following notations for the variables,
while the parameters are defined in Table I:

• p: point from a newly acquired reading expressed from
the center of the sensor,

• q: point of the global map expressed from the center of
the sensor and associated to p,

• Dyn: binary variable indicating whether q is now
dynamic or not,

• Odyn: binary variable indicating whether q was dy-
namic or not,

• U : binary variable indicating whether we need to update
the point or not,

• ✓: angle between p and q defined as acos

⇣
q·p

kqk·kpk

⌘
,

• �: incidence angle on q based on its surface normal n

defined as acos

���n · q
kqk

���,
• �: distance between q and p defined as kp� qk.
We can write:

P (Dyn|✓,�, �) /
X

U,Odyn

����
P (Odyn)P (U |✓,�)

⇥P (Dyn|Odyn)P (�|Dyn)

(1)

Where:
• P (Odyn): is either a prior (80% chance to be static) or

the result of a previous inference,

• P (U |✓,�) =

(
✓

✓
max

⇣
1� 2�

⇡

⌘
if kpk � kqk

0 otherwise

TABLE I
DEFINITION OF THE PARAMETERS AND THEIR VALUES USED FOR OUR

TARGETED SCENARIOS.

Values Descriptions

✓
max

1� Angle around which all points in Q are associated
to a point p.

↵ 0.99 Probability of staying static given that the point was
static.

� 0.90 Probability of staying dynamic given that the point
was dynamic.

✏
d

0.1 m Fixed noise on depth measurement of a point p.
✏
a

0.2 Ratio of noise based on depth measurement of a
point p.

�
max

0.9 Probability at which a point is considered perma-
nently dynamic.

is the probability to update based on separation and
incidence angles,

• P (Dyn|Odyn) =


↵ 1� �

1� ↵ �

�

is a decay matrix to allow points to change,

• P (�|Dyn) /

8
>><

>>:

max(0,min(1, ✏d + kpk✏a � �))
if Dyn is false

1� P (�|Dyn = false)
if Dyn is true

is the observation probability distribution.
With this model, we are able to compute whether a point

is dynamic or static based on multiple observations. In the
results section, we will demonstrate that this works well for
highly dynamic objects. However, it can have issues with
dynamic objects that are periodic (i.e., object that comes
back at the same location often). This applies particularly to
trams that are constrained to their tracks and to cars parked in
well-defined parking spaces. The definition of a static object
becomes therefore ambiguous, and higher-level models of
objects are needed. Here, we retain a bottom-up approach by
deciding that if an object is sufficiently dynamic—meaning
that it was seen and disappeared—then it cannot go back to
being static if P (Dyn = true) � �max.

IV. VELOCITY ESTIMATION

Building on top of the dynamic object classification, one
can estimate the velocity of moving objects. To be useful for
dynamic obstacle avoidance algorithm, like the one proposed
by Rufli et al. [14], velocity must be extracted at high rate.
Most approaches rely on the clustering of the points into
objects for which the velocity is then estimated looking,
for example, at the change in position of the center of
mass. In this section, we briefly introduce our fast and
generic approach as a complement to the dynamic element
classification.

From a newly acquired point cloud Pt at time t, we
associate all of its points to the global map. A subset
of mobile points Mt is generated from Pt, fulfilling the
requirement of being a dynamic obstacle. This can be based
on the dynamic element identification (as described in the
previous section) of the global map and on the definition of
obstacles for a given platform. Those dynamic obstacles Mt



can then be compared to the last subset Mt�1 to extract
velocity vectors. We based our approach on point-cloud
registration using iterative closest point (ICP), where Mt is
the reading point cloud and Mt�1 is the reference. Having
different transformation parameters for each point is known
as non-rigid ICP [15]. We reuse the underlying principles but
extracted only translation components instead of the full 6
degrees of freedom (DOF) transformation. In essence, we
propose to do dual non-rigid ICP—both from reading to
reference and from reference to reading—and, given that we
have a timestamp per point, divid the alignment error with
the difference of acquisition time to estimate the velocity
vectors. We use neighboring constraints to harmonize the
velocities across close points.

As shown in Fig. 3, the measurements received are sparser
than typical full point clouds used with ICP. Moreover, a high
ratio of noise is possible, especially during exploration of
new areas where not enough information has been acquired
to accurately classify points. To cope with those challenges,
we vary the number of nearest neighbors inversely propor-
tional to the number of iterations. More precisely, for every
pread in Mt, we assign k nearest neighbors pref from the
reference point cloud Mt�1. Then, we compute the average
velocity vector produced by the k matched points and assign
it to pread. This augments the robustness of the association
phase against noisy matches when using a large k, while
keeping the accuracy of a single match at the last iteration.
To ensure locally coherent velocities, we apply a windowed-
mean filter in the Euclidean space for all pread. The iterative
process reuses velocity estimates of the latest iteration to
project points before association with the speed of new
points initialized to zero. In the current instantiation of the
algorithm, five iterations were sufficient for convergence.

Often, objects change rapidly in term of shape and density
between two scans, which lead to an asymmetry between
the velocity estimation from the reading to the reference,
and vice-versa. To cope with this situation, we compute both
directions of matching in parallel. Fig. 3 shows an example
of this process on a pedestrian at different viewing distances
with points projected in both directions. As it can be seen
from the projected points (in green and blue), our process is
able to correctly estimate the velocity of the points by re-
projecting them properly to the other point cloud taken at a
different time. It also shows the importance of the iterative
process; with point clouds 1 m apart, points from one point
cloud would all initially match a few points of the other, like
an extended foot or arm.

Having several iterations that average over matches and
neighbors fosters local consistency in the velocity esti-
mate while allowing deformations. Although multiple nearest
neighbor searches are used, only one kd-tree generation
is required for every new scan, which gives a very fast
computation. As opposed to cluster-based approaches, all
dynamic objects can be treated in parallel as each point
has its own velocity. Timing will be discussed in the results
section.

Fig. 3. Registration example of a pedestrian over different distances from
the robot. Points in black are the current readings and the points in red
are the references, taken roughly 0.5 s before. The points in green are the
projections of the readings to the reference, while the points in blue are the
projections of the reference to the readings.

V. EXPERIMENTAL RESULTS

Although we could evaluated our approach in a simulated
environment, we decided to go for real environments leading
to a richer set of events at the expense of a direct access to
precise ground truth information. We validated our approach
with two scenarios in controlled environments and two
large scale (i.e., kilometer range) experiments with daily
challenges caused by dynamic elements. The robot assigned
to the task was ARTOR (see Fig. 1), a platform based on
the LandShark system by Black-I Robotics (USA), with cus-
tom modifications realized by RUAG Land Systems (Thun,
Switzerland). The robot has a maximum speed of 3.5 m/s
but is typically driven at 1 m/s in crowded environments.
Equipped with a large sensor suite, the final platform is
suitable for applications ranging from Search & Rescue
to surveillance and reconnaissance. The main sensor used
for the experiments is the Velodyne HDL-32E. It produces
roughly 70’000 points per 360� scan at a rate of 11 Hz and
with a maximum range of 80 m. The map representation is
a set of sparse points with information about their surface
normals, timestamps, probability of being dynamic, etc. A
new point is only added to the map if the distance to its
nearest neighbor in the global map is larger than 0.3 m. This
keeps the point density of the global map constant, keeping
the computation time close to real time. All the following
results were obtained by running the input data at the same
rate at which they were recorded.

A. Dynamic Element Segmentation

The goal of this experiment is to evaluate the capability
of the system to identify dynamic elements. We selected the
visitor parking lot of a hospital, which means that cars do
not typically stay overnight. The section of the parking lot
we surveyed has 50 dedicated parking places. Moreover, the
middle of the parking lot is also a busy bike path during the
day. Thus, this environment presents two kinds of dynamic
obstacles: cars that come and go in between experimental
runs, and bikes and pedestrians that move during the runs.

The robot was driven around to survey the area at different
times during three consecutive days. The first survey was
considered as the exploration phase, while the following
missions are built upon the prior map. Points are kept in the
map independently of their categorization and only split at
the end for evaluation with the threshold P (Dyn = true) <
0.5. The environment and the path the robot did is depicted in



Fig. 4. Aerial view of the parking lot used for the segmentation experiment.
In red, the survey path realized by the robot. Source: Bundesamt für
Landestopografie swisstopo (Art. 30 GeoIV): 5704 000 000.

Fig. 5. Result of the segmentation after 9 surveys over the course of 3 days.
Top: Reconstruction with P (Dyn = true) < 0.5. Bottom: Reconstruction
with P (Dyn = true) > 0.5. The flow of pedestrians and bikes can be
seen using a path (1) and splitting to avoid another row of parked cars (2).

Fig. 4. During the experiment, 61 pedestrians, 27 bikes and
10 cars were in motion through the surveyed area, without
considering the multiple punctual changes in parked cars that
appeared of disappeared through the days.

In addition to those surveys, we produced a ground truth
map of the environment with a density that was three times
higher than our regular maps. We recorded this map at night
in order to have neither cars parked nor bikes or pedestrians.
This map constitutes our ground truth for static elements and
is not part of the evaluation set. In the following experiment,
a point in the survey map is considered static if there is a
point in the ground truth map within a radius of 0.15 m;
otherwise, it is considered dynamic.

Fig. 5 shows the resulting segmentation between static
and dynamic points. In the static map (top panel), the trees
and the ground are clearly visible, whereas in the dynamic
map (bottom panel) the cars are well highlighted as well as
many points in the middle belonging to bikes or pedestrians.
Moreover, the comparison of both maps in position (1) shows
a path in the static map and trails from pedestrians and
bikes in the dynamic map. The same comparison in position
(2) shows the flow of pedestrians and bikes splitting around
parked cars.

Using our ground truth map, we can evaluate the error
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rate of our classification. Fig. 6 presents both the global
classification error, as well as the error for each class. If we
distinguish static points from dynamic points, we can see
two different evolutions. On the one hand, the error on the
dynamic points decreases over time. This is expected because
we need to observe that the point is missing to provide a
classification. On the other hand, we see a steady increase in
the rate of static points. Those points are mainly points that
were close to the ground and were classified as dynamic;
often, they are the lower part of cars. Finally, we observe
an overall decrease of the error, from 20% to around 5%.
This shows that there are more points that are dynamic than
static.

Fig. 7 illustrates the evolution of the number of static and
dynamic points in the map. This graph confirms that the
number of static points is smaller than of dynamic points
and that the difference increases with time. As expected,
the number of new points added into the map at each visit
decreases with each run as the environment gets to be better
known. Moreover, the static information gets added into the
map faster than dynamic elements and at the end of the
first day, most static points are there. The plateaus in the
dynamic points at the end of both day 1 and day 3 show
the decrease in activity in the evening for this parking lot.
Finally, with each successive run, dynamic points are added
into an almost uniform 2 m-thick layer above the ground.
These points represent all the pedestrians and bikes that have
crossed the area during all the runs. The main issue about
those dynamic points, greatly outnumbering static points, is
that they can prevent ICP localization to properly align the



Fig. 8. Experimental setup for the velocity estimation. Top: Aerial view
of the street used for the tests. Source: Bundesamt für Landestopografie
swisstopo (Art. 30 GeoIV): 5704 000 000. Bottom: 3D reconstruction of
the street with the zone reserved for our controlled dynamic elements in
red and the position of the robot in green.

current sensor reading with the map, causing a slow drift in
the localization of the robot. With our approach, we can use
P (Dyn) as a weight in the ICP algorithm in order to not trust
dynamic points for the computation of the transformation
between the point clouds. This way, we were able to solve
the issue of localization drifting due to the dynamic points,
by providing both a more precise and cleaner map of the
environment. This is consistent to what Burgard et al. [4]
have already demonstrated in their 2D experiments.

B. Velocity Estimation

In this experiment, we aim at assessing the capability of
the system to estimate different velocities while minimizing
the noise induced by the dynamic element segmentation
and the localization. The experiment was conducted in a
controlled environment consisting of a remote street without
traffic. This allowed us to add only one moving obstacle at a
time. First, we drove the robot along the street in absence of
any dynamic elements, yielding a 170 m wide 3D map of the
static part of the environment. Fig. 8 shows an aerial view
of the test area, the 3D reconstruction of the street, and the
zone where we moved objects. We parked the robot at the
indicated position (in green), and then let different dynamic
objects pass by in linear motion. We tested two kinds of
dynamic objects: a pedestrian and a minibus. The pedestrian
was asked to cross the scene once by Walking and once by
Jogging. The driver of the minibus was asked to drive at
three different speeds: the lowest speed the vehicle could
go (approximately 2 m/s, Slow), at 5.5 m/s (Medium) and at
11 m/s (Fast).

Fig. 9 shows the resulting velocity estimation of our
system. The median values of the pedestrian’s estimated
speed were 1.7 m/s and 4.1 m/s for Walking and Jogging,
respectively. In the experiments with the minibus, the speed

Fig. 9. Top view of the 3D dynamic trails. The 2 first lines represent the
trails of a pedestrian, and the 3 last lines represent the ones of a minibus.
The color indicates the estimated velocity in m/s.

of the vehicle could be roughly controlled using the car’s
speedometer. The velocities listed above represent the max-

imum values reached in each of the three runs. However,
the acceleration phase was included in the test track, and
is therefore in the estimation. This explains why the es-
timated median values—1.9 m/s (Slow), 4.6 m/s (Medium),
and 8.1 m/s (Fast)—are considerably lower than the targeted
speeds. One can also observe that velocities can be estimated
at up to 22 m from the sensor.

C. Applications

Finally, we conducted two experiments in a dynamic urban
environment. The aim was to demonstrate the performance
of our system in real world scenarios, and to give an idea
of the range of possible applications. In the first experiment,
we drove the robot three times along a 1.3 km long route
in the city of Zurich, spread over seven months (March 12,
May 23 and September 9, 2013). The first pass was used
as the exploration phase, with all subsequent passes building
upon the prior map. Fig. 10 shows the results of the survey;
the bottom graph mapped the count of dynamic elements
that were removed to produce the static map. This graph can
be used to identify zones of interest. Two construction sites,
that partially occupied the streets, are marked with (1) in red.
Marked with (2), is a very large tree (i.e., 1 m diameter trunk)
that has been chopped between March and May. Finally, the
zone marked with (3) is a busy intersection with cars, trucks,
bike paths, trams and many pedestrians (see Fig. 1). The
experiment shows that our system can be employed to extract
zones that are potentially dangerous to navigate (i.e., places
that contain plenty of dynamic objects) or that exhibit large
seasonal changes.

The second experiment was conducted in front of the main
building of ETH Zurich. It took place during the information

day, which meant that many young students gathered in
the streets, with sometimes as many as 15 persons in the
vicinity of the robot. The main street consists of two large
sidewalks, two lines for cars, and two lines for trams. The
robot surveyed the area twice within 20 minutes, each time



Fig. 10. Long range survey over a 1.3 km long path. The environment was
monitored over a period of seven months. Top: Aerial view of surveyed
area. Source: Bundesamt für Landestopografie swisstopo (Art. 30 GeoIV):
5704 000 000. Middle: 3D reconstruction after dynamic elements removal.
Bottom: Occurrence of dynamic elements. The graph highlights the position
of (1) construction sites, (2) a large tree and (3) a busy street intersection.
Color represent to number of dynamic points over a cell size of 10 m.

driving on the sidewalks on both sides of the street. Fig. 11
presents the results of the experiment. The two lower graphs
show the extracted dynamic objects over the course of the
survey, with their estimated speed and direction of motion.
In the speed graph (left), blue corresponds to the range of
typical walking speeds of pedestrians. The sidewalks and
the pedestrian crossings (the latter marked with red arrows)
can be clearly identified by looking at the blue objects.
Furthermore, there are two lines of faster objects (yellow to
red), which designate the car lanes. Note that the velocities
are lower in the vicinity of the pedestrian crossings, which
comes from the fact that drivers stop to let people cross
the street. In the orientation graph (right), the two main
directions of the cars are clearly visible. On the sidewalks
the situation is naturally more chaotic, as pedestrians do not
walk on distinct lanes. Trams were less detected because
their speed can only be detected if the robot sees the front
or the rear of the wagons. Otherwise, they look like large
walls appearing and disappearing from the laser perspective.

The result of this experiment is a first, yet significant,
step towards automatic road graph extraction: our system
can correctly identify regions of low speed (sidewalks and
pedestrian crossings) and road lanes, including the direction
of traffic. Enough data to identify crowd and traffic behaviors
were collected only by surveying the environment twice
and in continuous motion. The velocity extraction is robust
enough to estimate a significant number of measurements,
even when exploring the environment for the first time.

D. Computation Time

All computations were realized on a single laptop with
a four-core Intel Core i7 and 4 GB of RAM. As explained
earlier with Fig. 2, all modules run at different speeds. The

registration module runs between 6 and 11 Hz by down-
sampling the input points and using the wheel odometry
as prior alignment. The map maintenance, including the
concatenation of the new information and identification of
dynamic elements, runs in average at 2 Hz, even with maps as
large as 600’000 for the 1.3 km long survey. The computation
time for the velocity estimation depends on the number
of dynamic elements in the scan. In average, it is 0.03 s
(⇡30 Hz) in the single dynamic object experiment. The laser
sensor produces scans at 11 Hz, which means that we can
follow the sensor rate, with some margin. However, a typical
pedestrian would only move by 15 cm between two scans.
This poses a problem for the speed estimation, as the velocity
vectors become noisy at very small distances. On the other
hand, if the object is too fast, the assumption of the closest
point will fail. As a compromise, we slowed down the data
rate to 8 Hz, which we found to be a good compromise to
handle velocities from 1.5 to 10 m/s.

VI. CONCLUSION AND FUTURE WORK

Our paper presents an online approach for computing both
the probability of a 3D point to be dynamic or static and
the velocities of dynamic points. Based on 3D point clouds
as a sparse representation, we use a Bayesian model for
assessing whether a point is dynamic and static, which leads
to a cleaner map and a better localization. We also use dual
non-rigid ICP to simultaneously compute the velocity of all
dynamic points. This approach is cluster- and model-free,
with only a weak smoothness assumption, and is able to
successfully evaluate the velocity of dynamic objects.

We have shown that identifying dynamic objects produces
an accurate map of the static scene geometry. This is es-
pecially important for difficult path-planning tasks in highly
cluttered 3D environments. In both cases, it is detrimental
for dynamic objects to be wrongly classified as obstacles, as
it could invalidate the only feasible path to a goal.

We have also shown that the integration of the velocity
information in the map reveals the main characteristics of
traffic or pedestrian flow. This could be used to extract
higher-level semantic information, which is necessary for
more advanced path-planning techniques in dynamic envi-
ronments. For example, a lot of advanced collision avoidance
techniques require the ability to predict the trajectory of
all other dynamic objects. This is usually not feasible,
unless those dynamic objects are other robots tracked by
an external localization system [17], restraining the use of
such techniques. Our approach provides velocity estimates
for dynamic obstacles as well as the aggregated knowledge
of past observations, which may be used to predict future
behavior, like the possibility that cars slow down at the
pedestrian crossing. In future work, we would like to use
the time history of dynamic objects to build probabilistic
models of motions within the map, as the 2D camera model
in [18], and then use these models to perform safe real-time
motion planning and navigation in crowded urban settings.
We will also evaluate a larger range of parameters to define
their impact on the robustness of the system and give more



Fig. 11. Extraction of velocity information at a global scale. Top left: Aerial view of the street in front of ETH Zurich. Source: Bundesamt für
Landestopografie swisstopo (Art. 30 GeoIV): 5704 000 000. Top right: 3D reconstruction after dynamic element removal. Bottom left: Average speed of
the moving objects. Bottom right: Average orientation of the moving objects. The red arrows highlight the pedestrian crossings.

insides on how others could tune them given their specific
applications. We believe that with our approach, we have
brought advanced path-planning techniques closer to field
robotics.
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