
HAL Id: hal-01143100
https://hal.science/hal-01143100

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupling variability management in multi-tenant SaaS
applications

Ali Ghaddar, Dalila Tamzalit, Ali Assaf

To cite this version:
Ali Ghaddar, Dalila Tamzalit, Ali Assaf. Decoupling variability management in multi-tenant SaaS
applications. 6th International Symposium on Service Oriented System Engineering (SOSE 2011),
Dec 2011, Irvine, CA, United States. �10.1109/SOSE.2011.6139117�. �hal-01143100�

https://hal.science/hal-01143100
https://hal.archives-ouvertes.fr

Decoupling variability management in multi-tenant SaaS applications

Ali Ghaddar
BITASOFT, University of Nantes

France
Email: ali.ghaddar@bitasoft.com

Dalila Tamzalit
University of Nantes, LINA

France
Email: Dalila.Tamzalit@univ-nantes.fr

Ali Assaf
BITASOFT

France
Email: ali.assaf@bitasoft.com

Abstract—Variability represents an important challenge in
multi-tenant SaaS applications. In fact, even if multi-tenancy
realizes SaaS providers dream of having a single maintained
software instance serving multiple customers (tenants) for
common functionality, variations in tenants needs and their
specific requirements at many places of the application bring
providers back to the real world. They face an additional
design concern: supporting application variability on a per-
tenant basis. In this paper, we focus on such variability concern
and try to reduce its complexity by decoupling its management
through different application layers. We rely on a two-steps
decoupling approach: the first step consists of representing
application variations as an explicit variability model while
the second step consists of choosing the must appropriate
application layer(s) to manage each variation. Our approach is
illustrated by relying on a case study from the food industry.

Keywords-SaaS, multi-tenant, variability.

I. INTRODUCTION

The stability of the web and the reliable internet access
has enabled the development of complex and robust software
applications entirely on the web, generally proposed as
services to potential customers. This approach enhanced
the appearance of the Software-as-a-Service (SaaS) model.
SaaS can be defined as: ”Software deployed as a hosted
service and accessed over the Internet” [7]. In fact, SaaS is
a new software delivery model that permits its customers
to leverage an on-demand software functionality through
an Internet access, without the burden of deploying and
managing the software themselves. Such new software de-
livery model has also an extension and evolution ability
to support a cloud computing approach, by outsourcing
to a third party providers an important part of, if not
all, the infrastructure and platform resources required to
run the SaaS application, following the Infrastructure-as-a-
Service (IaaS) and the Platform-as-a-service (PaaS) delivery
models [16]. SaaS and its associated principle of outsourcing
by the underlying delivery models contrast from the tradi-
tional application server provider (ASP) model, where all
costumers are hosted on the same provider data center, a
costly approach for software providers especially in terms
of infrastructure update and maintenance. However, from a
SaaS provider perspective, the real benefits of SaaS begins
when it is possible to host multiple customers on the same

application instance, without the need of a dedicated ap-
plication to be deployed and separately maintained for each
customer. This approach is called multi-tenant, where tenant
means a customer organizational structure, grouping certain
number of users [4]. Multi-tenancy is more cost effective
and easy to administrate, because the SaaS provider handles,
updates and runs only a single instance of the software,
eliminating the burden of handling multiple and different
software releases. However, multi-tenancy compromise the
software development and make it more complex, because
the additional important concern of software variability
needs to be correctly managed, thus each tenant feels like
he is using a dedicated application. In this paper, we focus
on such variability concern and try to reduce its added
complexity by decoupling its management through different
application layers. We will detail our approach and its
context in the following.

The remainder of the paper is structured as follows.
Section II presents the background of this research work as
well as the problem that we address. Section III introduces
our adopted variability management concept. Section IV
shows a case study from the food industry, as our motivating
example for decoupling variability management. Section
V discusses variability management decisions. Section VI
presents related works and Section VII concludes the paper.

II. BACKGROUND AND PROBLEM

Multi-tenancy makes the software development more
complex. In fact, the software must support variability in its
functional and non-functional behavior, in order to meet the
specific requirements of each tenant, without affecting the
other hosted tenants. Such development complexity could be
amplified by the fact that multi-tenancy is a new principle
in web applications development where many developers
don’t have enough skills or experiences to appropriately
handle its variability requirements. SaaS providers are thus
worry about the inherent costs of adopting a multi-tenant
solution, which entails a re-education process for developers
as well as investments in scientific researches in order to find
an efficient and easy variability management solutions. A
practical approach that we consider it may provide a good
starting point for SaaS providers in this direction, would
be exploiting the capabilities of the software architecture

supporting the SaaS application in order to face variability
issue. In this paper, the software architecture being used for
building our multi-tenant SaaS application is the service ori-
ented one (SOA) and especially its web-services integration
technology support, as a well suitable and flexible construc-
tion model for SaaS applications [17]. In fact, the benefits
from using SOA in a SaaS context still an open issue, but
usually, the two models are used interchangeably. SOA helps
realizing SaaS applications quickly, through services reuse,
and respectively for services reuse, decreasing the applica-
tions time to market and leveraging the economy of scale.
However, when a multi-tenant SaaS application is built by
a set of composed, orchestrated and interconnected services
following the SOA principles, the variability management
and implementation must be handled through the SOA’s
specifications and specificities. A SOA-based application
involves multiple layers (see figure 3, lower part) for aims of
separation of concerns and system flexibility, and hence, in
such multi-layered architecture, the variability concern may
impact and cut across the different layers. For this reason,
the researches from the SOA community on the topic of
variability has mainly focused on proposing different run-
time adaptation and variability management mechanisms for
each layer separately. The approaches proposed seems to be
very efficient and their domains applicability are wide and
divers. These approaches are divided under the three main
SOA layers:

• The business-process layer (services orchestration and
composition): The approaches proposed [15], [6], [8]
try mainly to extend the business-process execution
language (BPEL) [12] in order to support its run-time
adaptation, especially that BPEL is recognized as a
standard in the web services world.

• The service layer (functional layer represented as a set
of invoked services): The approaches proposed [10],
[22], [13] provide different adaptation mechanisms
and patterns, making these individual (atomic) services
more reusable in different run-time context.

• The interface layer (intermediate layer between
business-processes and services): The approaches pro-
posed [20], [14] try mainly to identify the conflict
problems and the services interfaces mismatch at their
input and output types, which is generally produced
after a dynamic services replacement at the business-
process layer.

Beyond SOA layers, and considering the different tenants
preferences on their data management and storage, the
data access layer may also get impacted by the variability
concern. For this reason, various works [21], [1] have been
provided to introduce tenant-specific data extensions as well
as isolating tenants data that are hosted on the same database
instance, while supporting different data access policies,
storage and indexation.

However, these variability approaches and techniques
are very different as well as the circumstances in which
they could be applied. Having many solutions to address
variability, each one tailored to a specific problem and
at a specific layer, makes the decision on which layer(s)
managing a particular variation a non-trivial and risky task.
In addition, variability is generally thought on a given
layer separately from the others, causing an unconscious
isolation of its management, because in certain situations,
some particular variations may requires two or more layers
adaptation simultaneously. This issue will be detailed in
the variability management decisions of our case study(See
section V).

Another issue complicates variability management: ac-
cording to our experience in multi-tenant development, SaaS
providers usually receive variations in tenants requirements
in an informal way and they are generally described fol-
lowing tenants experience and their domain terminology,
which are very different from SaaS developers understanding
and from their reference architecture’s concepts. Thus, a
significant effort must be done by developers to model and
to transform these informal variations to an executable and
maintainable code and, following our idea, it will take an
effort to choose the most appropriate architecture layer(s) to
implement and manage each variation.

To overcome these issues, we propose in this paper to
model the application variations by relying on existing
variability modeling techniques from the software product
line engineering [2], [18]. Then, we propose to early think
about variability in terms of the different layers of the
application and try to decouple its management across these
layers. We believe that such approach can reduce the long-
term maintenance implications and the required development
effort to integrate variability in the system.

III. A CONCEPT FOR MULTI-TENANT VARIABILITY
MANAGEMENT

A multi-tenant application has to be well designed and
developed in order to support the variations in the tenants
requirements. If not, tenants will loose the feeling of using
a dedicated application and can doubt of the security of the
separation between tenants and can thus decide to move on
to another provider. In this context, the SaaS providers are
certainly wondering how to offer such variability and to
what extent it should be offered, in order to maintain the
application ability to serve more and more tenants. One can
say that offering a fixed set of options from which the tenants
can select will always covers their different requirements,
while some others may argue that a multi-tenant application
must be highly flexible and totally configured via meta-data
in all its services and functions. In fact, each approach has its
own implications, while between these two approaches, their
is many levels of variability that can be traversed. A SaaS
provider who is looking to offer certain level of variability in

his multi-tenant application, he must be aware of his level
of variability offer, in terms of its complexity impact on
the application development and its efficiency to capture
the maximum number of tenants. From our perspectives,
we find that the balance between the variability offering
and managing has to be well maintained, and we think
that in order to justify the use of a shared application by
different tenants, the commonality among their needs must
be high enough to be at the same level of importance as
variability. Thus, instead of adopting a highly flexible and
expensive design which focus on variability as a primary
design concern, we have adopted an intermediate design
solution that exploits the tenants commonalities and suitably
managing the application variability each time needed. At
the implementation level, this intermediate approach is real-
ized by letting the SaaS developers start implementing the
tenants commonalities, without making any implementation
decision at variation places. Meanwhile, another team of
developers which we have classified as a variability ex-
perts team, will be providing variants for these variation
places and implementing a run-time variability management
mechanism. Such management mechanism is responsible of
the dynamic bind of variants to their respective places of
variations in the application. The researches from the soft-
ware product engineering (SPLE) on the topic of variability
can be well applied in this situation, since SPLE defines
variation points to which different variants may be linked.
In fact, we strongly believe that the multi-tenant variability
modeling and managing could be handled through these two
SPLE concepts, but some technical improvements at the
implementation level must be done before, in order to meet
the run-time variability challenge of the multi-tenant model,
while SPLE have focused more on a compile-time variability
support [23]. Each variant in a multi-tenant application can
represent a tenant-specific need, while some other variants
may be common for many tenants. When a new tenant on-
board the system, he can select an existing variant, or may
demand the creation of a new one if no existing variant
matches his specificities. The information about the tenants
variants can be stored in external configuration files. At run-
time, the calling tenant is identified, and the concerned varia-
tion points from the call must be bound to the current tenant
related variants, in order to realize an adapted application
behavior on a per-tenant basis (see figure 1).

Technically, managing multi-tenant variability through
such intermediate approach would not be possible without
taking into account the variability concern at the early stages
of the application design, by explicitly identifying variation
points as well as their respective variants, while prepar-
ing their run-time binding and management mechanism.
In our multi-layered architecture, a variability management
mechanism has to be made available for each application
layer separately due to the differences between these layers
technologies and concepts. This will enable us to early

decouple the application variability management through the
different layers and thereby, each variation point can be
managed at its best suited application layer(s). These early
steps to make has to prepare the ground for variability and
fall under the concept of early variability that we propose,
to derive our way of thinking in multi-tenant applications
design and development.

V1

V7

V5

V3

V7

V4

Tenant 1 context. Tenant 2 context.

Application

Dev-time

Run-time

Tenants
Configs

VP : variation point
V : variant

Common behavior
V1 V2

V3

V4

V5

V6

V7

VP

VP

VP V8

Variability management
mechanism

Figure 1. Variation points and variants at both development and run-time

IV. CASE STUDY: A FOOD INDUSTRY APPLICATION

In this paper, we choose a food-industry application (FIA
for short) that we have developed, as our case study. FIA
is a SOA-based multi-tenant application. It allows its food
industry tenants looking for foods production and quality
improvement to predict the future expenses and benefits
from their potential recipes, before executing a real and
expensive fabrication process. FIA evaluates, by relying
on an internally developed simulation service, the recipes
fabrication time and cost, as well as their quality charac-
teristics such as nutritional value, taste and smell. FIA has
also an integrated shipping service for ingredients, from the
warehouse of the ingredients supplier (partner of FIA), to the
tenants manufactures. Figure 2 shows the FIA application
business-process.

Three main actors exist in the process: tenant user, service
provider and ingredients shipper. In the following we will
explain the role of each one.

1) Tenant user: After accessing the application, the user
can manage his existing recipes or decide to create
a new one. In this last case, user has to provide
the ingredients composing the new recipe as well as
their respective percentages in it (user can specify
his ingredients choice by using their universal codes
from ”CIQUAL or USDA” ingredients bases). The

Tenant user Service provider Ingredients Shipper

SubmitRecipeProcess

Simulate

Validate

ShipIngredientsOrder AckOrder

SaveRecipe

Figure 2. FIA Business process

user must also describe the recipe cooking process,
by sending a pre-negotiated XML structure, or he can
rely on a FIA integrated cooking process drawing tool.
When finishing, the user must click on simulate button
and wait for results.

2) Service provider: After receiving the ingredients and
the cooking process of the recipe, the ingredients
prices and quality informations are retrieved from
the database, they have been originally stored by
the ingredients supplier partner with a dedicated user
interface, and they are always under updates as prices
and quality informations change. Those ingredients
informations as well as the recipe cooking process
described by the user, allow the simulation service
to evaluate the final recipe cost, fabrication time and
quality. However, when the simulation ends, the ap-
plication sends back a simulation report to the user,
containing the recipe properties values, which the
tenant has interest to keep a good balancing between
them, for financial, economic and market needs. Once
user validate the simulation, the recipe details are
saved in the database and an ingredients shipping order
is sent.

3) Ingredients shipper: he is a third-party actor, offering
a shipping service from the ingredients warehouse to
the tenant manufacture. When the tenant receives the
ingredients, he can execute a real recipe fabrication
process, being sure that the recipe will have its pre-
dicted properties values.

A. FIA variations

In order to early detect possible variations in the applica-
tion, we have presented FIA business process to some se-
lected potential tenants. Five variations have been detected:
1) some tenants are interested by the software but they have
their own ingredients suppliers. 2) Some other tenants asked
for another ingredients shipper because the existing one
is costly. Taking into account this shipping variation, we

decided to add different shippers to the system, each one
offers different shipping time and cost. However, having an
existing ingredients supplier for some tenants excludes the
need of the FIA shippers, because usually all ingredients
suppliers have their own shippers. 3) Another variation has
been detected in the way that the simulation service must
behave. In fact, for an accurate simulation, different factors
related to the tenants manufactures has to be considered,
impacting the recipe simulation results (fabrication time,
cost and quality). Factors like manufactures energy con-
sumption, waste of ingredients on production chain, number
of workers, speed of execution, machines quality effect on
ingredients, and many unknown other factors, that they will
begin to appear when new tenants on-board the system. 4)
We have also found a variation in the way that the recipes
details must be stored and retrieved from the database. As
FIA is a multi-tenant application, tenants recipes are stored
on the same database instance. SaaS provider must thus
ensure recipes isolation. However, some tenants may have
some specific security rules that prevent storing their recipes
details in a shared database. Thus, FIA offers these tenants
the possibility to store their recipes details in a dedicated
databases. 5) Finally, we have found that some tenants
belong to the same multi-national group, and they would
like to share their recipes details in order to leverage each
others information and expertises. However, when choosing
a separated database, sharing recipes details will no longer
be possible.

B. Modeling FIA variations

The main reason for supporting variability in FIA is to
enhance its availability and adaptation to different tenants
financial, business and security needs. However, having
many variations as well as dependencies between them, leads
to a complexity in variability specifications, motivating the
need of a variability model that helps us to trace application
variations and takes the right management decisions. In
Figure 3 upper part, we model FIA variations by relying
on the Orthogonal Variability Model (OVM) introduced
in [18]. OVM consists of the two main modeling concepts:
variation point (VP) and variant. Variants in OVM can be
either mandatory or optional. A mandatory variant must be
selected on a given variation point, while many optional
variants can be selected from a given group of variants,
their minimum and maximum number (min, max) specify
the range for the permissible numbers of variants to be
selected from the group. OVM also defines constraints
between variants, between VPs and between variants and
VPs: An exclude constraint specifies a mutual exclusion;
e.g., if variant1 at VP1 excludes variant2 at VP2, the variant2
can not be used at VP2 if variant1 is used at VP1. A requires
constraint specifies an implication; i.e. if a variant is used,
another variant has to be used as well.

Ingredients
 supplier

External FIA partner

Shipper

ShipperA ShipperB

"requires _v_vp"

"excludes_v_vp"

VP

VP

V V

V V

1..1

0..1

Database

Separated

 Recipes
 details

Sharing Isolation

VP

VP

V

V V

1..1

1..1

Shared

V

"requires _v_vp"
"excludes_v_v"

Simulation

 Enegie
consumption

VP

V

0..n

Ingredients
 waste

V Machines
quality
 effect

V

Internal services External services

Business-process
layer

Service
layer

Data access
layer

Workflow

(Simulation, Recipe) (SihpperA, ShipperB)

Query

Database

VP

varaition point

V

variant
excludes

requires

Managed at

[min..max]

alternative choice

1- FIA variability model.

2 - FIA application layers.

Interface
layer

Figure 3. Modeling variability and decoupling its management through
different application layers

V. DECOUPLING VARIABILITY MANAGEMENT

After modeling variability, the software architect and the
variability experts team must take the right decision about
where managing these variations in the different application
layers. In the remainder of this section, we describe how FIA
variations are resolved and we show how the complexity of
variability management can be reduced if these variations
are managed at their most appropriate layers.

A. Suppliers and Shippers Variations

These two variation points are very close in terms of their
context and their management decisions, and they will be
explained together. We will start by the supplier variation.
According to this last variation specification, some tenants
need that FIA interact with their own ingredients suppliers
instead of local one (FIA partner). Such interaction has a

main goal to retrieve the ingredients informations (price
and quality) that compose the recipe, thus, they could be
used in the evaluation of the recipe properties. In the FIA
business process, the behavior responsible of retrieving the
ingredients informations was thought to be a part of the
simulation service design. Managing this variation inside
the simulation service will obligates the importation of all
external suppliers data in our database, while using some
conditional code or static inheritance in the service design, in
order to switch between different suppliers according to the
calling tenant requirements. With the arrival of new tenants,
this conditional code must be modified and new data must
be imported in order to add new external suppliers into the
system, which is very costly to manage and to maintain,
while tenants choices of suppliers can no more be modified
at run-time. Thus, we have decided to benefit from the
SOA capabilities and especially its web-services integration
technology, by implementing web-services on top of the
different information systems of external suppliers, as a pre-
condition for those suppliers to be accepted and added to our
system. This will eliminates the need of data importation.
In addition, according to such new web-based nature of all
external suppliers services, we can switch between these
services at the BPEL, by dynamically changing the service
reference (partner link), which is easy to maintain and
enables the run-time modifications. However, since there is
no existence of a supplier service in our business process
design, we early manipulate the simulation service, by sep-
arating the behavior responsible of retrieving ingredients in-
formations and modularize it in a separated supplier service,
partner of FIA, thus switching between partner and external
suppliers services variants could be possible. We can also
proceed in the same way for the shipper variation point, by
switching between the two shipping services according to
tenants requirements or ignoring their call for tenants having
external suppliers. This type of adaptation is widely accepted
and commonly used [15] in the web-services composition
and orchestration.

B. Simulation Variation

In order to ensure an accurate simulation for each tenant,
several variants should be provided to consider the different
machines and manufacture properties of the tenants, such
as their manufactures energy consumption, the ingredients
waste on their production chains, their machines qual-
ity effect on ingredients, etc. Each variant introduces its
modification to the simulation results. A rapid solution to
manage this variation would be creating a simulation service
per-tenant, and adapting the services composition at the
business-process layer, by selecting the appropriate version
of the simulation service that corresponds to the calling
tenant. This type of adaptation has a long-terms maintenance
implications on the system, because it will became very
complex to maintain the growing number of services as new

tenants on-board the system, in contrast to the suppliers
services, where a particular supplier may be common for
many tenants. After analysing the context of this simulation
variation, we have found that its variants can be treated as
separated concerns from the simulation common behavior.
Managing this variation will be improved if we factorize the
common behavior of this service into one core service, while
implementing one adaptation variant of this core service per-
tenant. In our case, the common behavior of the service is
cooking the recipe following the described process, which
is independent from the above variants. Managing such
variation could be done using a dynamic aspect-oriented
programming (AOP) [19] mechanism, by implementing each
variant as an independent aspect. Those aspects will be
dynamically weaved into the core service, according to the
calling tenant requirements (aspects will not be weaved if
the variants that they represent are not selected by the calling
tenant), before returning the service results. Each aspect has
to retrieve from the database, one of the values of the tenant
manufacture and machines properties, which they are stored
as a tenant-specific data extensions, since they differs from
one tenant to another. Each value will be calculated within
its dedicated aspect in order to evaluate and to apply its
impact on the simulation results, following some predefined
rules and equations.

C. Recipes Details Variation

This variation consists on allowing tenants to share their
recipes details with other tenants in the same group, or
keeping their recipes details isolated. Managing this vari-
ation by adapting the services composition at the business-
process layer requires having two recipes services variants,
one ensuring isolation and second allowing sharing. This
way of management will be complex to maintain, since the
same variation nature could be met in the future within
other services. In fact, the data sharing concern is probably
democratized for different application services. For example,
in the knowledge-base service that we plan to develop,
tenants would ask to share their research articles. After well
analysing the context of this variation , we have found that
its management must not affect on the internal design of the
recipe service, neither all future services that may interact
with the database to make some create, read, update or
delete (CRUD) operations. The developers have to develop
and use such kind of services without thinking in multi-
tenancy. Thus, we have decided to manage this variation
at the data access layer, by letting developers write the
CRUD operations queries for the service in a single-tenant
way, while adjusting those queries for data isolation or
sharing. Adjusting queries is done by relying on some
predefined query extensions, which are developed once for
all concerned services. This will be transparent to developers
and therefore easy to maintain. However, enabling this type
of variability management requires adding two new columns

to each concerned table in the shared database: TenantID
and GroupID. To retrieve and store records in the shared
tables, a query adjuster mechanism is used to apply query
extensions. For example, to get all recipes records, the base
query written by a developer is as follows:

SELECT * FROM RECIPE

The first extension of this query ensuring recipes isolation
is:

SELECT * FROM RECIPE
WHERE TenantID=’123’

The second extension allowing recipes sharing is:

SELECT * FROM RECIPE
WHERE(TenantID=’123’ OR GroupID=’3’)

In addition, another reason to early think about separating
base query is the existence of the database variation. In
fact, some tenants may ask for a dedicated database variant.
Supporting this variation will be complex if the developers
directly write the whole query, while the separation of base
queries allows a native support of such variant without
having to rewrite all queries for storing and retrieving data,
when installing dedicated databases.

VI. RELATED WORK

A. SOA variability management

Several authors studied the variability concern in the
context of SOA systems. In [5] authors identify four types
of variability which may occur on SOA. In[23] authors
present a framework and related tool suite for modeling
and managing the variability of Web service-based sys-
tems. They have extended the COVAMOF framework for
the variability management of software product families.
In [11] authors describe an approach to handle variability
in Web services, while [15] focus on variability in business-
process by proposing a VxBPEL language. However, all
these approaches focus on variability in SOA systems, but
they do not address variability in multi-tenant SaaS context.

B. SaaS and Multi-Tenancy

In [9] authors provide a catalog for customization
techniques that can guide developers when dealing
with multi-tenancy, they have identified two types
of customization: Model View Controller (MVC)
customization and system customization. In [3] the
authors propose some architectural choices to make when
building multi-tenant applications, while in [4] authors
discuss their experiences with re-engineering an existing
industrial single-tenant application into a multi-tenant one.
In [17], authors propose a variability modeling technique
for SOA-based multi-tenant applications, they differentiate
between internal variability only visible to the developers,
and external variability that is communicated to the

tenants of the application. However, they do not address
the variability management according to the different
application layers, which we have treated in this paper.

VII. CONCLUSION AND FUTURE WORK

In this work, we have shown the importance and the
complexity of supporting variability at the early stages in
multi-tenant applications. We have also motivating the need
of supporting the variability at different application layers.
We have started from a variability model of a concrete case
study and we have shown different techniques for managing
variability at each system layer.

Our future work consists of extracting variations prop-
erties that have influenced our decision about the layer of
managing variability. Once these properties are identified,
they can be evaluated at each variation. This can enormously
help architects and developers to take the right decision and
to accelerate this heavy task.

REFERENCES

[1] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.
Multi-tenant databases for software as a service: schema-
mapping techniques. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data,
pages 1195–1206. ACM, 2008.

[2] J. Bayer, S. Gerard, O. Haugen, J. Mansell, B. Moller-
Pedersen, J. Oldevik, P. Tessier, J.P. Thibault, and T. Widen.
Consolidated product line variability modeling. 2006.

[3] C.P. Bezemer and A. Zaidman. Multi-tenant saas applications:
maintenance dream or nightmare? In Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution
(IWPSE), pages 88–92. ACM, 2010.

[4] C.P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans,
and A. t Hart. Enabling multi-tenancy: An industrial expe-
rience report. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1–8. IEEE, 2010.

[5] S.H. Chang and S.D. Kim. A variability modeling method
for adaptable services in service-oriented computing. 2007.

[6] A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented
extension to bpel. World Wide Web, 10(3):309–344, 2007.

[7] F. Chong and G. Carraro. Architecture strategies for catching
the long tail. MSDN Library, Microsoft Corporation, pages
9–10, 2006.

[8] O. Ezenwoye and S.M. Sadjadi. Trap/bpel: A framework for
dynamic adaptation of composite services. In Proceedings
of the International Conference on Web Information Systems
and Technologies (WEBIST 2007). Citeseer, 2007.

[9] S. Jansen, G.J. Houben, and S. Brinkkemper. Customization
realization in multi-tenant web applications: case studies from
the library sector. Web Engineering, pages 445–459, 2010.

[10] H. Jegadeesan and S. Balasubramaniam. A method to support
variability of enterprise services on the cloud. In Cloud Com-
puting, 2009. CLOUD’09. IEEE International Conference on,
pages 117–124, 2009.

[11] J. Jiang, A. Ruokonen, and T. Systa. Pattern-based variability
management in web service development. In Web Services,
2005. ECOWS 2005. Third IEEE European Conference on,
pages 12–pp. IEEE, 2005.

[12] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary,
C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, et al.
Web services business process execution language version
2.0. OASIS Standard, 11, 2007.

[13] Y. Kim and K.G. Doh. Adaptable web services modeling
using variability analysis. In Convergence and Hybrid In-
formation Technology, 2008. ICCIT’08. Third International
Conference on, volume 1, pages 700–705. IEEE, 2008.

[14] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati.
An aspect-oriented framework for service adaptation. Service-
Oriented Computing–ICSOC 2006, pages 15–26, 2006.

[15] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou. Vxbpel:
Supporting variability for web services in bpel. Information
and Software Technology, 51(2):258–269, 2009.

[16] F. Leymann and D. Fritsch. Cloud computing: The next
revolution in it. Proceedings of the 52th Photogrammetric
Week, pages 3–12, 2009.

[17] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Vari-
ability modeling to support customization and deployment
of multi-tenant-aware software as a service applications. In
Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pages 18–25. IEEE
Computer Society, 2009.

[18] K. Pohl, G. Bockle, and F. Van Der Linden. Software product
line engineering: foundations, principles, and techniques.
Springer-Verlag New York Inc, 2005.

[19] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving
for aspect-oriented programming. In Proceedings of the 1st
international conference on Aspect-oriented software devel-
opment, pages 141–147. ACM, 2002.

[20] Y. Sam, O. Boucelma, and M.S. Hacid. Web services
customization: a composition-based approach. In Proceedings
of the 6th international conference on Web engineering, pages
25–31. ACM, 2006.

[21] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang. Native
support of multi-tenancy in rdbms for software as a service.
In Proceedings of the 14th International Conference on
Extending Database Technology, pages 117–128. ACM, 2011.

[22] M. Stollberg and M. Muth. Service customization by
variability modeling. In Service-Oriented Computing. IC-
SOC/ServiceWave 2009 Workshops, pages 425–434. Springer,
2010.

[23] C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello.
Modeling and managing the variability of web service-based
systems. Journal of Systems and Software, 83(3):502–516,
2010.

