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Abstract

This paper represents a continuation of [4]. There, a mathematical model which

describes the frictional contact between an elastic body and a foundation was

considered. The variational and numerical analysis of the problem was provided

by considering a weak formulation in terms of displacements, the so-called

primal variational formulation. The aim of the current paper is to study the

problem by using a weak formulation of in terms of the stress, the so-called dual

variational formulation. We start by presenting the model, the assumption on

the data and some preliminary results. Then we state and prove an equivalence

result, Theorem 4.1. We proceed with an existence and uniqueness results,

Theorem 5.1. The proofs are based on arguments of monotonicity, convexity

and lower semicontinuity.
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1 Introduction

Modelling and analysis of contact process is an important topic which, currently,

is still under investigation, as illustred in the recent literature. The reason is that

contact phenomena abound in industry and everyday life and lead to interesting and

non standard mathematical models. Here and below by a mathematical model of

contact we mean a system of partial differential equations, associated to boundary

value conditions and, eventually, to initial conditions, which describe a specific contact

process.

The mathematical models of contact are constructed by considering various con-

stitutive laws (i.e. materials) associated to different contact and frictional conditions.

One of the most popular contact condition is the so-called the Signorini condition,

introduced in [18] to describe the contact with a rigid foundation. The normal compli-

ance contact condition represents a regularization of the Signorini contact condition

and is used to describe the contact with an elastic foundation. It was introduced in

[15], and used in a large number of papers, see [6, 9, 10, 12, 17] and the references

therein. A more general contact condition, called the normal compliance condition

with unilateral constraint, was introduced in [8]. It contains as particular cases both

the Signorini contact condition and the normal compliance condition, and models

the contact with an elastic-rigid foundation. On the other hand, friction is usually

modelled with the Coulomb law of dry friction and its versions or regularizations.

The analysis of mathematical models of contact is based on the weak variational

formulation of the corresponding models. In most of the cases it is given by a varia-

tional or hemivariational inequality in which the unknown is the displacement or the

velocity field, as illustrated in [5, 6, 14, 16, 17, 19], for intance. There, the unique

solvability of the models was obtained by using arguments of monotonicity, convexity

and fixed point and, in the nonconvex case, by using the properties of the Clarke

subdifferential. The progress made in the variational analysis of contact models in

the last period was impressive, as it results from the references above. Nevertheless,

many open problems still remain to be investigated and resolved. The reason is that,

owing to inherent complexity, contact phenomena are modelled by nonlinear problems

that are difficult to analyze and, therefore, new and nonstandard mathematical tools

are required.

Two mathematical models of contact with normal compliance and unilateral con-

straint were recently considered in [3, 4]. In [3] the material’s bahavior was described

with a linear elastic constitutive law and friction was modeled with a slip-dependent

version of Coulomb’s law; the weak solvability of the model was proved by using ar-

guments on pseudomonotone operators followed by a passage to the limit procedure;

a convergence result was proved and its numerical validation was also provided; the

question of the uniqueness of the solution was left open. In contrast, in [4] the mate-

rial’s bahavior was described with a nonlinear elastic constitutive law and friction was
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modeled with a new condition, able to describe the transition from the Coulomb’law

to Tresca’s friction law. In addition, besides the existence of the weak solution to the

model, its uniqueness was proved, a finite element approximation of the problem was

considered and error estimates have been derived. In both [3] and [4] the analysis

of the models was carried out based on variational formulations in terms of displace-

ment, the so-called the primal variational formulation of the corresponding contact

problems.

This paper represents a continuation of [4]. Its aim is to study the mathematical

model in [4] by using a weak formulation in terms of the stress, the so-called dual

variational formulation. Such formulations are used in the literature at least for

three reasons. First, in many contact problems the main interest lies to the contact

stress, since the behavior of the system and especially the surface integrity and wear

depend on it. Second, such formulations can be handled numerically, save error-

prone postprocessing and, therefore, lead to a better prediction to the real contact

situation. And, finally, in most of the cases, they lead to interesting and non standard

mathematical models. References concerning dual variational formulations in the

study of various contact problems include [1, 2, 7, 11, 13, 19, 20].

The rest of the paper is structured as follows. In Section 2 we introduce the

contact problem and describe the frictional contact conditions. Next, in Section 3 we

introduce the notation and some preliminary material, list the assumptions on the

data and state the primal and the dual variational formulation of the problem. In

Section 4 we present an equivalence result, Theorem 4.1. It states the equivalence

between the primal and dual variational formulation of the contact problem. Its proof

is based on arguments of monotonicity and convexity. Then, in Section 5, we provide

an existence and uniqueness results, Theorem 5.1. Its proof is based on arguments

on quasivariational inequalities.

2 The model

Everywhere below we denote by Sd the space of second order symmetric tensors on

Rd or, equivalently, the space of symmetric matrices of order d. The inner product

and norm on Rd and Sd are defined by

u · v = uivi , ∥v∥ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ∥τ∥ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain. We denote by Γ its boundary,

assummed to be Lipschitz continuous. We use the notation x = (xi) for a typical

point in Ω ∪ Γ and we denote by ν = (νi) the outward unit normal at Γ. Here

and below the indices i and j run between 1 and d and, unless stated otherwise, the

summation convention over repeated indices is used. An index that follows a comma

3



represents the partial derivative with respect to the corresponding component of the

spatial variable x, e.g. ui,j = ∂ui/∂xj.

The physical setting we consider in this paper is as follows. An elastic body

occupies the domain Ω ⊂ Rd with a Lipschitz continuous boundary divided into three

measurable parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is in equilibrium

under the action of body forces of density f 0 and surface tractions of density f 2 which

act on Γ2. We also assume that the body is fixed on Γ1 and, on Γ3, it is in frictional

contact with an obstacle, the so-called foundation. The classical formulation of the

contact problem we consider in this paper is as follows.

Problem P . Find a displacement field u : Ω → Rd and a stress field σ : Ω → Sd

such that

σ = Fε(u) in Ω, (2.1)

Divσ + f 0 = 0 in Ω, (2.2)

u = 0 on Γ1, (2.3)

σν = f 2 on Γ2, (2.4)

uν ≤ g, σν + p(uν) ≤ 0,

(uν − g)(σν + p(uν)) = 0

}
on Γ3, (2.5)

∥στ∥ ≤ µ p(uν),

−στ = µ p(uν)
uτ

∥uτ∥ if uτ ̸= 0

}
on Γ3. (2.6)

We now provide a short description of the equations and conditions (2.1)–(2.6) in

which, in order to simplify the notation, we do not indicate explicitly the dependence

of various functions on the spatial variable x. For more details concerning the me-

chanical assumptions which lead to the construction of this contact model we send

the reader to [4].

First, Equation (2.1) represents the elastic constitutive law of the material in which

F is a (possible nonlinear) constitutive function while equation (2.2) is the equation

of equilibrium; we use it here since we assume that process is static. Here and below

ε and Div represent the deformation and the divergence operators, respectively, i.e.

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i), Divσ = (σij,j).

Conditions (2.3), (2.4) represent the displacement and traction boundary conditions,

respectively. Finally, conditions (2.5) and (2.6) represent the frictional contact condi-

tion with normal compliance and unilateral constraint in which uν , uτ are the normal

and tangential components of u on Γ given by uν = u · ν, uτ = u − uνν and σν ,
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στ represent the normal and the tangential stress on Γ, that is σν = (σν) · ν and

στ = σν − σνν.

Note that the contact condition (2.5) models the contact with a foundation is

made by a rigid body covered by a layer made by of elastic material, say asperities.

It shows that the penetration is restricted, since uν ≤ g where g > 0 represents the

thickness of the elastic layer. Also, combined with the friction law (2.6), condition

(2.5) shows that when there is penetration, as far as the normal displacement does

not reach the bound g, the contact is described with a normal compliance condition

associated to the Coulomb’s law of dry friction. Here p represents a positive normal

compliance function such that p(0) = 0 and µ denotes the coefficient of friction. When

the normal displacement reaches the bound g, then the normal stress is larger than

the given positive value µp(g) and, moreover, friction follows the Tresca law with the

friction bound µp(g). To conclude, this model describes a natural transition from the

Coulomb law (which is valid as far as 0 < uν < g) to the Tresca frcition law (which

is valid when uν = g).

3 Variational Formulation

In the study of Problem P we need further notation and preliminary material that

we introduce in what follows. Everywhere in this paper we use the standard notation

for Sobolev and Lebesgue spaces associated to Ω and Γ. In addition, we consider the

spaces

Q =
{
σ = (σij) : σij = σji ∈ L2(Ω)

}
, H1 = {u = (ui) : ε(u) ∈ Q } .

The spaces Q and H1 are real Hilbert spaces endowed with the canonical inner prod-

ucts given by

(σ, τ )Q =

∫
Ω

σijτijdx, (u,v)H1 = (u,v)L2(Ω)d + (ε(u), ε(v))Q.

The associated norms are denoted by ∥ · ∥Q and ∥ · ∥H1 , respectively. Also, recall that

H1 = H1(Ω)d algebraically and topologically.

For an element v ∈ H1 we still write v for the trace of v and we denote by vν and

vτ the normal and tangential components of v on Γ given by vν = v ·ν, vτ = v−vνν.

Also, for a regular stress function σ the following Green’s formula holds:∫
Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da for all v ∈ H1. (3.1)

Consider the space

V =
{
v ∈ H1(Ω)d : v = 0 on Γ1

}
.
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It is well known that V is a real Hilbert space endowed with the inner product

(u,v)V = (ε(u), ε(v))Q =

∫
Ω

ε(u) · ε(v) dx,

and the associated norm ∥ · ∥V , respectively. Completeness of the space (V, ∥ · ∥V )
follows from the assumption meas (Γ1) > 0, which allows the use of Korn’s inequality.

We also recall that there exists c0 > 0 which depends on Ω, Γ1 and Γ3 such that

∥v∥L2(Γ3)d ≤ c0∥v∥V for all v ∈ V. (3.2)

Inequality (3.2) represents a consequence of the Sobolev trace theorem.

In the study of the mechanical problem (2.1)–(2.6) we assume that the elasticity

operator F satisfies the following conditions.

(a) F : Ω× Sd → Sd.

(b) There exists LF > 0 such that

∥F(x, ε1)−F(x, ε2)∥ ≤ LF∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ F(x, ε) is measurable on Ω, for any ε ∈ Sd.

(d) There exists mF > 0 such that

(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ∥ε1 − ε2∥2
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(e) The mapping x 7→ F(x,0Sd) belongs to Q.

(3.3)

We also assume that the body forces and tractions densities have the regularity

f 0 ∈ L2(Ω)d, f 2 ∈ L2(Γ2)
d. (3.4)

The normal compliance function and the coefficient of friction satisfy

(a) p : Γ3 × R → R+.

(b) There exists Lp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2)) (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ p(x, r) is measurable on Γ3, for any r ∈ R.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.5)

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. x ∈ Γ3. (3.6)

Note that assumptions (3.3)–(3.6) are used in the analysis of the primal variational

formulation of the contact model P. Examples of constitutive functions F and normal

compliance functions p which satisfy assumptions (3.3) and (3.5), respectively, can

be found in [6, 19], for instance. Now, to derive a dual variational of the contact

model P we need an additional assumption on the geometry of the problem. Thus,

we assume that

there exists θ ∈ V such that θ = ν on Γ3. (3.7)

Examples of domains Ω together with subsets Γ1, Γ3 ⊂ Γ for which assumption

(3.7) holds are presented below, both in the two and three dimensional case.
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Example 1. Let

Ω = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 < 1 },
Γ1 = {x = (x1, x2) ∈ R2 : x2

1 + x2
2 = 1, x1 ≤ 0, x2 ≤ 0 },

Γ3 = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1, x1 ≥ 0, x2 ≥ 0 }

and consider the function θ : R2 → R defined by

θ(x1, x2) =



(x1, x2) if x1 ≥ 0, x2 ≥ 0,

(0, x2) if x1 ≤ 0, x2 ≥ 0,

(0, 0) if x1 ≤ 0, x2 ≤ 0,

(x1, 0) if x1 ≥ 0, x2 ≤ 0.

Then, it is easy to see that θ ∈ H1(Ω)2, θ = 0 on Γ1 and θ = ν on Γ3, i.e. θ satisfies

assumption (3.7).

Example 2. Let a, b, c be positive constants and let

Ω = {x = (x1, x2, x3) ∈ R3 : 0 < x1 < a, 0 < x2 < b, 0 < x3 < c },
Γ1 = {x = (x1, x2, x3) ∈ R3 : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, x3 = c },
Γ3 = {x = (x1, x2, x3) ∈ R3 : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, x3 = 0 }.

Consider the function θ : IR3 → IR defined by

θ(x1, x2, x3) =
(
0, 0,

x3 − c

c

)
.

Then, it is easy to see that θ ∈ H1(Ω)2, θ = 0 on Γ1 and θ = ν on Γ3, i.e. θ satisfies

assumption (3.7).

We now turn to the variational formulation of Problem P . To this end we intro-

duce the set of admissible displacements U , the function j : V × V → IR and the

element f ∈ V defined by

U = {v ∈ V : vν ≤ g a.e. on Γ3 }, (3.8)

j(u,v) =

∫
Γ3

p(uν)vν da+

∫
Γ3

µ p(uν)∥vτ∥ da ∀u ∈ V, v ∈ V, (3.9)

(f ,v)V =

∫
Ω

f 0 · v dx,+

∫
Γ2

f 2 · v da ∀v ∈ V. (3.10)

Assume that (u,σ) are sufficiently regular functions which satisfy (2.1)–(2.6) and

let v ∈ U . We use Green’s formula (3.1) and definition (3.10) to see that

(σ, ε(v)− ε(u))Q = (f ,v − u)V +

∫
Γ3

σν(vν − uν) da (3.11)

+

∫
Γ3

στ · (vτ − uτ ) da.
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Next, we use the frictional contact conditions (2.5), (2.6) and the definition (3.8) to

obtain ∫
Γ3

σν(vν − uν) da ≥ −
∫
Γ3

p(uν)(vν − uν) da, (3.12)

∫
Γ3

στ · (vτ − uτ ) da ≥
∫
Γ3

µ p(uν)∥uτ∥ da (3.13)

−
∫
Γ3

µ p(uν)∥vτ∥ da.

Finally, we combine equality (3.11) with inequalities (3.12) and (3.13), then we use

the constitutive law (2.1) and the definitions (3.8)–(3.9). As a result we obtain the

following variational formulation of the frictional contact problem P .

Problem PV . Find a displacement field u such that

u ∈ U, (Fε(u), ε(v)− ε(u))Q + j(u,v)− j(u,u) ≥ (f ,v−u)V ∀v ∈ U. (3.14)

Note that Problem PV is formulated in terms of the displacement field and, for

this reason, we refer to it as the primal variational formulation of Problem P . Once

the displacement field is known, the stress field can be easily obtained by using the

constitutive law (2.1).

Our aim in what follows is to derive a second variational formulation of the contact

problem P , in terms of stress, the so-called dual variational formulation. To this end

we note that, since meas (Γ1) > 0, the range of the deformation operator ε : V → Q,

denoted ε(V ), is a closed subspace of Q. A proof of this preliminary result can be

found in [19] page 87. It is a direct consequence of the equality

∥v∥V = ∥ε(v)∥Q ∀v ∈ V. (3.15)

Denote by P : Q → ε(V ) the projection operator on ε(V ) ⊂ Q and note that equality

(3.15) shows that ε : V → ε(V ) is an invertible operator. We denote in what follows

by ε−1 : ε(V ) → V the inverse of ε. Also, we recall that assumption (3.3) implies

that F : Q → Q is a strongly monotone Lipschitz continuous operator and, therefore,

using Proposition 1.25 in [19] it follows that it is invertible. Moreover, the inverse

of F , denoted F−1, is still a strongly monotone Lipschitz continuous operator. The

ingredients above allow us to define the operator Λ : Q → V defined by

Λσ = ε−1PF−1σ ∀σ ∈ Q. (3.16)

The importance of this operator arises in the fact that it helps to inverse the

elastic constitutive law, as it results from the following elementary result.

8



Lemma 3.1. Assume (3.3) and let σ ∈ Q, v ∈ V be such that σ = Fε(u). Then

u = Λσ.

Proof. Equality σ = Fε(u) shows that ε(u) = F−1σ and, therefore, since ε(u) ∈
ε(V ) we have ε(u) = Pε(u) = PF−1σ which implies that u = ε−1PF−1σ. We com-

bine this equality with the definition of (3.16) to see that u = Λσ, which concludes

the proof.

Besides the operator Λ we consider the element g̃ ∈ V given by

g̃ = gθ ∈ V (3.17)

where, recall, g is a positive constant. In addition, for every η ∈ V we consider the

set Σ(η) ⊂ Q defined by

Σ(η) = { τ ∈ Q : (τ , ε(v)− ε(g̃))Q + j(η,v − g̃) ≥ (f,v − g̃)V ∀v ∈ U } . (3.18)

Then we consider the following variational problem.

Problem PD
V . Find a stress field σ such that

σ ∈ Σ(Λσ), (F−1σ, τ − σ)Q ≥ (ε(g̃), τ − σ)Q ∀ τ ∈ Σ(Λσ). (3.19)

We refer in what follows to PD
V as the dual formulation of problem P . Its link

with the primal variational formulation, PV , together with its unique solvability, will

be studied in the next two sections. Here we restrict ourselves to note that both

problem PV and PD
V are expressed in term of elliptic quasivariational inequalities in

which the unknown is the dispalcement and the stress field, rerspectively. In the case

of Problem PV the set of constraints is given but the problem is governed by the

functionl j which depends on the solution. In contrast, Problem PD
V there is no such

functional but, there, the set of constraints depends of the solution.

We end this section with two additional preliminary results.

Lemma 3.2. Assume (3.5), (3.6) and (3.7). Then, the element g̃ defined by (3.17)

satisfies the following properties.

(a) g̃ ∈ U.

(b) 2v − g̃ ∈ U ∀v ∈ U.

(c) λ(v − g̃) ∈ U ∀λ ≥ 0, ∀v ∈ U.

(d) j(v, 2v − g̃) + j(v, g̃) = 2j(v,v) ∀v ∈ U.

(e) j(u,v)− j(u, g̃) = j(u,v − g̃) ∀u,v ∈ U.

(3.20)
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Proof. We use (3.7) to see that θν = 1 on Γ3 and, therefore, (3.17) implies that

g̃ν = g on Γ3, which shows that g̃ ∈ U . Let v ∈ V and λ ≥ 0. Then 2vν − g̃ν ≤ g and

λ(vν − g̃ν) ≤ 0 on Γ3 which imply that 2v − g̃ ∈ U and λ(v − g̃) ∈ U , respectively.

This proves the inclusions (3.20)(a)–(c).

Next, we use (3.17) to see that g̃τ = 0 on Γ3 which implies that

∥2vτ − g̃τ∥ = 2 ∥vτ∥ − ∥g̃τ∥, ∥vτ − g̃τ∥ = ∥vτ∥ − ∥g̃τ∥ on Γ3, ∀v ∈ V. (3.21)

We now combine the definition (3.9) with equalities (3.21) to see that (3.20) (d)–(e)

hold, which concludes the proof.

Lemma 3.3. Assume (3.5) and (3.6) and let j be the functional given by (3.9). Then,

for each u ∈ V there exists ξ(u) ∈ V such that

j(u,v)− j(u,u) ≥ (ξ(u),v − u) ∀v ∈ V (3.22)

Proof. Let u ∈ V and denote by ξ̃(u) the function defined by

ξ̃(u) =

{ uτ

∥uτ∥ if uτ ̸= 0

0 if uτ = 0
a.e. on Γ3.

Then, it is easy to see that for all v ∈ V we have

ξ̃(u) · (vτ − uτ ) ≤ ∥vτ∥ − ∥uτ∥ a.e. on Γ3.

Therefore, we deduce that∫
Γ3

µ p(uν)(∥vτ∥ − ∥uτ∥) da ≥
∫
Γ3

µ p(uν)ξ̃(u) · (vτ − uτ ) da ∀v ∈ V

and, using (3.9) yields

j(u,v)− j(u,u) (3.23)

≥
∫
Γ3

p(uν)(vν − uν) da+

∫
Γ3

µ p(uν)ξ̃(u) · (vτ − uτ ) da ∀v ∈ V.

Next we apply the Riesz representation theorem to obtain that there exists a unique

element ξ(u) ∈ V such that

(ξ(u),v)V =

∫
Γ3

p(uν)vν da+

∫
Γ3

µ p(uν)ξ̃(u) · vτ da ∀v ∈ V. (3.24)

We combine now (3.23) and (3.24) to obtain (3.22) which concludes the proof.

Note that Lemma 3.2 states the subdifferentiability of the function v 7→ j(u,v) in

the point u, for each u ∈ V . Its statement follows from a classical result concerning

the subdifferentiability of convex lower semicontinuous functions. Nevertheless, for

the convenience of the reader, we decided to present above a constructive proof of

this result.

10



4 Equivalence results

We now study the link between the variational problems Problem PV and PD
V . Our

main result in this section is the following equivalence result.

Theorem 4.1. Assume (3.3)− (3.7). Then, the following statements hold:

1) If u is a solution to Problem PV and σ = Fε(u), then σ is a solution to

Problem PD
V .

2) Conversely, if σ is a solution to Problem PD
V , then there exists a unique u ∈ V

such that σ = Fε(u) and, moreover, u is a solution to Problem PV .

Proof. 1) Let u be a solution to Problem PV and let σ = Fε(u). Then Lemma 3.1

implies that

u = Λσ (4.1)

and, moreover, (3.14) yields

(σ, ε(v)− ε(u))Q + j(u,v)− j(u,u) ≥ (f ,v − u)V ∀v ∈ U. (4.2)

We take v = 2u− g̃ and v = g̃ in (4.2) and use the equalities (3.20)(d), (e) to obtain

(σ, ε(u)− ε(g̃))Q + j(u,u− g̃) = (f ,u− g̃)V . (4.3)

Then, we add (4.2) and (4.3) and use (3.20)(e) to see that

(σ, ε(v)− ε(g̃))Q + j(u,v − g̃) ≥ (f ,v − g̃)V ∀v ∈ U. (4.4)

We now combine (4.4) and the definition (3.18) to deduce that

σ ∈ Σ(u). (4.5)

Moreover, (3.18) and (4.3) imply that

(τ − σ, ε(u)− ε(g̃))Q ≥ 0 ∀ τ ∈ Σ(u)

and, since ε(u) = F−1σ, we deduce that

(F−1σ, τ − σ)Q ≥ (ε(g̃), τ − σ)Q ≥ 0 ∀ τ ∈ Σ(u). (4.6)

We now combine (4.1), (4.5) and (4.6) to deduce that σ is a solution to PD
V , which

concludes the first part of the proof.

2) Assume now that σ satisfies (3.19) and consider an element z ∈ Q such that

(z, ε(v))Q = 0 ∀v ∈ V (4.7)
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Then, using (3.18) we deduce that τ = σ ± z ∈ Σ(Λσ) and, testing in (3.19) with

τ = σ ± z ∈ Σ(Λσ), we deduce that

(F−1σ − ε(g̃), z)Q = 0. (4.8)

On the other hand, since ε(V ) is a closed subspace of Q we deduce that

ε(V )⊥⊥ = ε(V ) (4.9)

where the superscript ⊥ indicates the orthogonal complement in Q. Using (4.7) and

(4.8) we see that F−1σ − ε(g̃) ⊥ z for all z ∈ ε(V )⊥ and, by (4.9) it follows that

F−1σ − ε(g̃) ∈ ε(V ). Therefore, there exists ũ ∈ V such that ε(ũ) = F−1σ − ε(g̃).

Let u = ũ+ g̃. Then ε(u) = F−1σ, i.e. σ = Fε(u). This proves the existence part.

The uniqueness of u follows from equality (3.15). In addition, Lemma 3.1 shows that

Λσ = u. (4.10)

Next, we prove that u is a solution to Problem PV and, to this end, we start

proving that u ∈ U . Let PU : V → U be the projector on the nonempty closed

convex subset U ⊂ V . Arguing by contradiction, we assume in what follows that

u /∈ U. (4.11)

Then u ̸= PUu, i.e.

(PUu− u, PUu− u)V > 0. (4.12)

Next, using (4.12) and the variational characterization of the projection we have

(PUu− u,v)V ≥ (PUu− u, PUu)V > (PUu− u,u)V ∀v ∈ U.

These inequalities imply that there exists α ∈ IR such that

(PUu− u,v)V > α > (PUu− u,u)V ∀v ∈ U

and, using (3.20)(c) with λ = 1 it follows that

(PUu− u,v − g̃)V > α > (PUu− u,u)V ∀v ∈ U. (4.13)

Let τ̃ = ε(PUu− u) ∈ Q. Then (4.13) yields

(τ̃ , ε(v)− ε(g̃))Q > α > (τ̃ , ε(u))Q ∀v ∈ U (4.14)

and, taking v = g̃ in the previous inequality, we obtain that

α < 0. (4.15)
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Assume now that there exists ṽ ∈ U such that

(τ̃ , ε(ṽ)− ε(g̃))Q < 0. (4.16)

We use property (3.20)(c) and test with v = λ(ṽ − g̃) in (4.14), where λ ≥ 0. As a

result we obtain

λ(τ̃ , ε(ṽ)− ε(g̃))Q > α+ (τ̃ , ε(g̃))Q ∀λ > 0.

Therefore, passing to the limit as λ → ∞, and using (4.16) we deduce that

−∞ ≥ α+ (τ̃ , ε(g̃))Q

which contradicts α ∈ R. We conclude from above that

(τ̃ , ε(v)− ε(g̃))Q ≥ 0 ∀v ∈ U. (4.17)

Next, equality (4.10) combined with the regularity σ ∈ Σ(Λσ) and the definition

(3.18) imply that

(σ, ε(v)− ε(g̃))Q + j(u,v − g̃) ≥ (f,v − g̃)V ∀v ∈ U.

Therefore using (4.17) we deduce that τ̃ + σ ∈ Σ(u). This allows to test in (3.19)

with τ = τ̃ + σ and, as a result, we find that

(F−1σ, τ̃ )Q ≥ (ε(g̃), τ̃ )Q.

We now use equality σ = Fε(u) to obtain

(ε(u), τ̃ )Q ≥ (ε(g̃), τ̃ )Q

and, since τ̃ = ε(PUu− u) ∈ Q, we find that

(PUu− u,u)V ≥ (PUu− u, g̃)V . (4.18)

On the other hand, taking v = g̃ in (4.13), we obtain

(PUu− u, g̃)V > (PUu− u,u)V (4.19)

The inequalities (4.19) and (4.18) lead to a contradiction. Therefore, we deduce that

assumption (4.11) is not valid, and we conclude that

u ∈ U. (4.20)

Next, we denote by

τ (u) = ε(f − ξ(u)) (4.21)
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where ξ(u) is the element defined by the Lemma 3.3. Then, using (3.22), we have

(τ (u), ε(v)− ε(u))Q ≥ (f ,v − u)V + j(u,u)− j(u,v) ∀v ∈ V. (4.22)

We note that (3.20)(a), (b) allow to take v = 2u− g̃ and v = g̃ in (4.22) . Therefore,

using equality (3.20)(d) we obtain

(τ (u), ε(u)− ε(g̃))Q + j(u,u− g̃) = (f ,u− g̃)V . (4.23)

Then, we combine (4.22) and (4.23) and use (3.20)(e) to see that

(τ (u), ε(v)− ε(g̃))Q + j(u,v − g̃) ≥ (f ,v − g̃)V ∀v ∈ U. (4.24)

This inequality implies that τ (u) ∈ Σ(u) and, using (4.10), it shows that τ (u) ∈
Σ(Λσ). Therefore, testing in (3.19) with τ = τ (u) we have

(F−1σ, τ (u)− σ)Q ≥ (ε(g̃), τ (u)− σ)Q

and, since F−1σ = ε(u), it follows that

(τ (u), ε(u)− ε(g̃))Q ≥ (σ, ε(u)− ε(g̃))Q. (4.25)

Next, we combine (4.23) and (4.25) to deduce that

(f ,u− g̃)V ≥ (σ, ε(u)− ε(g̃))Q + j(u,u− g̃). (4.26)

Finally, since σ ∈ Σ(Λσ), (4.10) implies that σ ∈ Σ(u) and, therefore, since u ∈ U ,

(3.18) shows that

(f ,u− g̃)V ≤ (σ, ε(u)− ε(g̃))Q + j(u,u− g̃). (4.27)

Inequalities (4.26) and (4.27) yield

(f ,u− g̃)V = (σ, ε(u)− ε(g̃))Q + j(u,u− g̃),

i.e.

(σ, ε(g̃)− ε(u))Q − j(u,u− g̃) = (f , g̃ − u)V . (4.28)

On the other hand, since σ ∈ Σ(u) we have

(σ, ε(v)− ε(g̃)Q + j(u,v − g̃) ≥ (f ,v − g̃)V ∀v ∈ U, (4.29)

We now add (4.28) and (4.29) to obtain

(σ, ε(v)− ε(u)Q + j(u,v − g̃)− j(u,u− g̃) ≥ (f ,v − u)V ∀v ∈ U.

and, using (3.20)(e) yields

(σ, ε(v)− ε(u))Q + j(u,v)− j(u,u) ≥ (f ,v − u)V ∀v ∈ U.

Finally, since σ = Fε(u), we find that that

(Fε(u), ε(v)− ε(u))Q + j(u,v)− j(u,u) ≥ (f ,v − u)V ∀v ∈ U. (4.30)

We combine now inequality (4.30) with (4.20) to see that u is a solution to Problem

PV , which completes the proof.
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5 Existence and Uniqueness results

We now proceed with the study of the existence and uniqueness of the solution for

problems PV and PD
V . Our main results in this section is the following.

Theorem 5.1. Assume (3.3)–(3.6). Then the following statements hold.

1) Problem PV has at least a solution.

2) There exist a constant α0 which depends only on Ω, Γ1, Γ3 and F such that the

solution of Problem PV is unique, if

Lp∥µ∥L∞(Γ3) < α0. (5.1)

3) If (3.7) holds then Problem PD
V has at least a solution.

4) If (3.7) and (5.1) hold then Problem PD
V has a unique solution.

5) If (3.7) and (5.1) hold, then the solution of Problem PV and PD
V , obtained at

points 2) and 4), respectively, are related by the elastic constitutive law σ = Fε(u).

Proof. 1) The proof of this point follows from arguments of elliptic quasivariational

inequalities, as shown in [4]. Nevertheless, for the convenience of the reader, we

resume below its main steps.

First, we consider the operator A : V → V defined by

(Au,v)V = (Fε(u), ε(v))Q ∀u, v ∈ V. (5.2)

We use assumption (3.3) to see that A is a strongly monotone Lipschitz continuous

operator on the space V . Moreover, we use assumptions (3.5), (3.6) and the property

of the trace map to see that the functional j defined by (3.9) satisfies the following

conditions: {
For all η ∈ U, the function v 7→ j(η,v) : U → R
is convex, j(η,v) ≥ 0 for all v ∈ U and j(η,0X) = 0.

(5.3)


For all sequences {ηn} ⊂ U and {un} ⊂ U such that

ηn ⇀ η in V, un ⇀ u in X and for all v ∈ U,

the inequality below holds:

lim sup
n→∞

[j(ηn,v)− j(ηn,un)] ≤ j(η,v)− j(η,u).

(5.4)

Finally, we recall that U is a closed convex subset of V such that 0X ∈ U . The

existence of a solution of Problem PV follows now from a classical argument of qua-

sivariational inequalities, see for instance [19, p. 51].

15



2) In order to prove the uniqueness part, let u1, u2 ∈ V be two solution to Problem

PV . Then, using (3.14) and (3.3), after a standard computation we find that

mF ∥u1 − u2∥2V ≤ j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2). (5.5)

Moreover, using the definition (3.9) of the function j, the properties (3.5) of the

function p and the trace inequality (3.2) it turns that

j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2) (5.6)

≤ c20Lp ∥µ∥L∞(Γ3)∥u1 − u2∥2V .

Let

α0 =
mF

c20
. (5.7)

and note that, clearly, α0 depends only on Ω, Γ1,Γ3 and F . Assume that (5.1) holds.

Then it follows from (5.5)–(5.7) that u1 = u2, which concludes the proof.

3) Assume (3.7) holds. Denote by u a solution to Problem PV whose existence is

guaranteed by 1) and let σ = Fε(u). Then, using Theorem 4.1 1) it follows that σ

is a solution to Problem PD
V which ends the proof.

4) Assume now that (3.7) and (5.1) hold and let σ1 and σ2 be two solutions to

Problem PD
V . Then, it follow from Theorem 4.1 1) that there exists two elements

u1,u2 ∈ V such that

σ1 = Fε(u1), σ2 = Fε(u2). (5.8)

Moreover, u1 and u2 are solutions to Problem PV . Using now the smallness assump-

tion (5.1) we deduce by 2) that

u1 = u2. (5.9)

We combine (5.8) and (5.9) to see that σ1 = σ2, which concludes the proof.

5) Let u be a solution to the Problem PV and let σ be a solution to the Problem

PD
V . Denote

σ̃ = Fε(u). (5.10)

Then, Theorem 4.1 1) guarantees that σ̃ is a solution to Problem PD
V . It follows now

from the uniqueness of the solution in 4) that

σ̃ = σ. (5.11)

Equalities (5.10) and (5.11) imply that σ = Fε(u).

Assume in what follows that (3.3)–(3.7) and (5.1) hold. Then Theorem 4.1 pro-

vides the unique solvability of both the primal variational formulation P and the

dual variational formulation PD
V . Moreover, it shows that if the displacement field u

is the solution of the primal variational formulation P and the stress field σ in the

solution of the variational formulation PD
V , then u and σ are connected by the elastic
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constitutive law σ = Fε(u). For this reason we refear to the pair (u,σ) as a weak

solution to the frictional contact problem P and we conclude that this problem has a

unique weak solution. Note that condition (5.1) represents a smallness inequality for

the coefficient of friction. Whether this condition represents an intrinsic feature of

this frictional contact problem P or it is only a limitation of our mathematical tools

remains an open question. Clearly, this question deserves more investigation in the

future.
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