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Abstract

This paper presents a full study of the Total Valuation Adjustment (TVA) simulation on

American derivatives. It starts from the formulation of the problem under a general BSDE

framework that includes the funding issue and the default of both parties. It finishes by giving

a benchmark Nested Monte Carlo algorithm and discusses an appropriate implementation

that provides accurate results within a one-minute simulation on Graphic Processing Units

(GPUs). From a theoretical point of view, this paper can be considered as the extension to

American derivatives of the work presented in Crépey (2012a,b). Regarding the algorithmic

part, our study uses convergence rates developed in Newey (1997) as well as similar ideas

to those presented in Gordy and Juneja (2010) and it goes beyond the square Monte Carlo

algorithm detailed in Abbas-Turki et al. (2014) for European derivatives.
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1 Introduction

After the 2007 economic crisis and the new Basel agreements that include the calculation of

the CVA (Credit Valuation Adjustment) as an important part of the prudential rules, a large

number of papers and books have been published on the CVA and the counterparty risk.

For a comprehensive and detailed presentation of the subject, we refer the reader to Brigo

et al. (2013) and to Crépey (2012a,b). The former reference provides an in-depth overview

of the subject with a wide variety of compelling practical examples. The latter presents

the mathematical intuition and details of the subject including a hedging framework. Other

references that are not closely related to our work can be found in Brigo et al. (2013) and

to Crépey (2012a,b).

Although there are a quite few of practitioner papers on the CVA as well as some im-

portant mathematical work that explains the problem, little research has been dedicated to

developing a trustable numerical procedure that can be used to perform the computations.

Cesari et al. (2009) is one of the first references that presents the industry practices in

computing CVA. Among the research papers, maybe the most devoted to computing CVA

are: P. Henry-Labordère (2012), Abbas-Turki et al. (2014a) and M. Fujii and A. Takahashi

(2015). However, none of these papers develop a procedure that works for TVA for any

portfolio of contracts and prove the convergence of the procedure with a reasonable error

upper bound. The main reason for this is the mathematical complexity of the problem that

makes the computational aspect very challenging.

Also due to both mathematical and computational complexity, to our knowledge, there is

no paper that deals with the TVA problem when American contracts are involved. However,

this point is capital especially in markets where American or Bermudan options are widely

exchanged like in fixed income and equity markets. Thus, the first goal of this paper is to

address this lack of theoretical development. We not only derive the TVA BSDE on one

American option, we extend it to a portfolio of American derivatives.

The second goal of this paper is to propose a robust method to compute the TVA on
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an exposure of American, European path-dependent and path-independent contracts. Con-

sequently, this method not only provides accurate results when the exposure is explicit in

terms of the underlying assets, it also works very well when the exposure must be simulated.

This method is based on a nested Monte Carlo and it is studied in two situations: First,

the funding constraints can be neglected and secondly they must be taken into account. For

both situations, we express the upper bound of the Mean Square Error (MSE) in terms of

the number of simulated trajectories. In particular, this allows us to establish an asymptotic

relation between the number of trajectories M0 simulated in the outer stage, the number of

trajectories {Mj}j=1,...,N−1 simulated in the inner stages and the number of time steps N .

The asymptotic relation between {Mj}j=1,...,N−1, M0 and N is useful to decrease the

execution time of the simulation. Indeed, although the implementation is performed on

a GPU with a high number of computing units that run the program in parallel, choosing

appropriate values ofMj as a function ofM0 and N is necessary to perform the computations

within a one-minute simulation. Thus, it is necessary to point out that the structure of the

proposed method, based on nested Monte Carlo, allows us to compute an upper bound for

the MSE and subsequently establish the desired relation between {Mj}j=1,...,N−1, M0 and

N . Moreover, we will show that the resulting algorithm provides quite accurate values since

the variance and the bias of the estimator are sufficiently small.

The rest of this paper is arranged as follows. In Section 2, we give the formulation of the

TVA BSDE and the pre-default TVA BSDE when the contracts involved are American. In

Section 3, we detail the simulation algorithms and we express an upper bound for the MSE

according to the simulation parameters. Section 4 explains the implementation and contains

some numerical results. Section 5 is dedicated to the proof of theorems 3.1 and 3.2.

2 TVA BSDE on American options

To simplify the presentation, we start by considering the TVA on only one American contract

then extend it in Section 2.2 for a more general case.
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2.1 TVA with an optimal stopping time

We consider two defaultable parties: The bank with a default time τ b and the client with

a default time τ c. After selling to the client at time 0 an American contract that should

generate a cumulative dividend D until the maturity T > 0, the bank sets-up a hedging

strategy including collateralization and funding portfolio given by a price-and-hedge pair

(Π, π). The promised dividend stream dDt is effective only if none of the parties defaults till

time t. We call “funder” of the bank a third party insuring the bank’s funding strategy. Let

(Ω,G, (Gt)t∈[0,T ], P ) be a filtrated probability space satisfying the usual conditions. We set

Gt = Gτb,τct ∨ Ft where Gτb,τct = σ(τ b ∧ t, τ c ∧ t) and F is generated by the underlying assets

S such that D is F-adapted. We define also Ḡt = σ(τ ∧ t)∨Ft with τ = τ b ∧ τ c. We assume

that all the considered processes are G-adapted as well as integrable and P is a risk neutral

probability. The price of the TVA contract is computed as the difference between a reference

price and a price that takes into account the counterparty risk and the funding adjustment.

We refer to Crépey (2012a) and Crépey (2012b) for more details on the market conventions

and the meaning of a risk neutral probability in this context.

Assuming that the Azéma supermartingale associated with τ is a positive continuous and

non-increasing process, we can admit Lemma 2.1 which will be useful in the sequel.

Lemma 2.1 i. For any G-measurable random variable Y and any t ≥ 0

Et(Y 1τ>t) =
1τ>t

Et(1τ>t)
Et(Y 1τ>t),

where Et and Et denote respectively the conditional P -expectation given Gt and Ft.

ii. An F-martingale stopped at τ is a Ḡ-martingale and a Ḡ-martingale is a G martingale.

iii. An F-adapted càdlàg process cannot jump at τ .

The first point of this lemma can be found in Dellacherie-Meyer (1980) and a proof of the

other two points is given in Crépey (2012b).

In the case of a European derivative, it is shown in Crépey (2012a) that the pair price-

4



and-hedge satisfies a BSDE on [0, τ ∧ T ] under the risk neutral assumption. In the case of

an American derivative, the situation is exactly the same until the optimal stopping time

τ∗ ∈ [0, T ] after which the contract is exercised and the counterparty risk disappears. Denote

τ̄ = τ ∧ τ∗ the effective maturity and by analogy with Crépey (2012a) we characterize the

bank portfolio as follows.

Definition 2.1 We call a price-and-hedge the pair (Π, π), comprising a G-semimartingale

Π and a hedge π, that satisfies the following BSDE on [0, τ̄ ]:

dΠt + 1t<τ1t≤τ∗dDt − (rtΠt + gt(Πt, πt))dt = dmπ
t

with the final condition Πτ̄ = 1{τ=τ̄}R

where mπ is a G-martingale null at time 0, g is an F-progressively measurable function and

R is a Gτ -measurable recovery.

Notice that, since the F-adapted process D does not jump at time τ from Lemma 2.1 and

by discounting, the previous BSDE becomes

dβtΠt + βtdDt − βtgt(Πt, πt)dt = βtdm
π
t , ∀t ∈ [0, τ̄ ].(2.1)

where β = e−
∫ .
0 rsds is the risk-free discounting asset with an interest rate r generally consid-

ered as the overnight indexed swap rate. In the integral form, the last BSDE is equivalent

to the following

βtΠt = Et

(∫ τ̄

t
βsdDs −

∫ τ̄

t
βsgs(Πs, πs)ds+ βτ1{τ=τ̄}R

)
, ∀t ∈ [0, τ̄ ].(2.2)

When ignoring counterparty risk and assuming a risk-free funding rate, we define pa as the

discounted cumulative clean price of an American contract with an optimal stopping time

τ∗. Under the risk neutral measure P , it is known that (βt∧τ∗pat∧τ∗)0≤t≤T is an F-martingale
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and pa is given by

βtp
a
t = Et

(∫ τ∗

0
βsdDs

)

=

∫ t

0
βsdDs + Et

(∫ τ∗

t
βsdDs

)

=:

∫ t

0
βsdDs + βtP

a
t , ∀t ∈ [0, τ∗],

where P a represents the price of the future cash flows of the contract which we call the clean

price as in Crépey (2012b). Remark that the dividend D can be either seen as a native

swap or as a virtual swap via a repo market. In the examples considered in this paper, we

simplify D and make it only meaningful at τ∗. For instance, if the bank sells a put option

on an asset S with a strike K then Ds = (K − Sτ∗)+1s≥τ∗ and thus P a would be given by

βtP
a
t = Et (βτ∗(Dτ∗ −Dτ∗−)) = Et (βτ∗(K − Sτ∗)+) for each t ∈ [0, τ∗].

By substituting the time t by τ ∧τ∗ = τ̄ in the last equality and conditioning with respect

to Gt we get

Et (βτ̄p
a
τ̄ ) = Et

(∫ τ̄

0
βsdDs + βτ̄P

a
τ̄

)
, ∀t ∈ [0, τ̄ ].

Using Lemma 2.1, the F-martingale (βt∧τ∗pat∧τ∗)0≤t≤T stopped at τ is a G-martingale, we

then deduce the following representation of P a

βtP
a
t = Et

(∫ τ̄

t
βsdDs + βτ̄P

a
τ̄

)
, ∀t ∈ [0, τ̄ ].(2.3)

The clean price can be seen also as the solution of the following BSDE

dβtP
a
t + βtdDt = βtdm

a
t , ∀t ∈ [0, τ̄ ], P aτ̄ = 1τ̄=τP

a
τ(2.4)

where, under usual assumptions on r, ma is the G-martingale null at time 0 defined by

ma
t =

∫ t∧τ̄
0 β−1

s d(βsp
a
s) for t ∈ [0, T ].
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The price of the TVA contract is defined by the process Θ = P a −Π. From (2.2) and (2.3),

we deduce the integral form for the TVA

βtΘt = Et

(
βτ̄Θτ̄ +

∫ τ̄

t
βsgs(P

a
s −Θs, πs)ds

)
, ∀t ∈ [0, τ̄ ],(2.5)

where Θτ̄ = P aτ̄ − 1{τ=τ̄}R.

Moreover, the TVA can be also seen as the solution of the following BSDE that combines

both (2.1) and (2.4)

dβtΘt + βtgt(P
a
t −Θt, πt)dt = βtdmt, ∀t ∈ [0, τ̄ ],(2.6)

with Θτ̄ = P aτ̄ − 1{τ=τ̄}R,

where m is the G-martingale null at time 0 defined by

m = ma −mπ.(2.7)

We assume now that the Azéma supermartingale of τ is time differentiable and we denote

γt = −d ln(Gt)
dt the hazard intensity and αt = e−

∫ t
0 γsds. Denote ξt := P at − Et(R1{t=τ̄}), and

ξ̃t :=
1

P (τ>t|Ft)
Et(ξt1{τ>t}). Notice that ξτ = Θτ̄ and using Lemma 2.1 one can verify that

ξ̃t1{τ>t} = ξt1{τ>t}. Performing a filtration reduction, we introduce as in Crépey (2012b), a

new process called the pre-default TVA.

Definition 2.2 We call the pre-default TVA the solution of the following F-BSDE.

dβ̃tΘ̃t + β̃tg̃t(P
a
t − Θ̃t, πt)dt = β̃tdm̃t, ∀t ∈ [0, τ∗], with Θ̃τ∗ = 0,(2.8)

where β̃ = αβ, m̃ is an F-martingale and g̃ is the F-progressively measurable function defined

by

g̃t(P
a
t − Θ̃t, πt) = gt(P

a
t − Θ̃t, πt) + γtξ̃t, ∀t ∈ [0, τ∗].
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In an integral form, the pre-default TVA is given by

β̃tΘ̃t = Et

(∫ τ∗

t
β̃sg̃s(P

a
s − Θ̃s, πs) + γtξ̃s(P

a
s − Θ̃s, πs)ds

)
, ∀t ∈ [0, τ∗].(2.9)

Let M be the Ḡ-martingale defined by Mt := 1{τ>t} +
∫ t∧τ
0 γsds and assume that the locale

G-martingale
∫ .∧τ̄
0 (Θ̃s − ξs)dMs is a martingale.

Proposition 2.1 Let the pair price-and-hedge (Π, π) be as in Definition 2.1 with a G-

martingale component mπ defined by mπ := ma
.∧τ̄ − m̃.∧τ̄ −

∫ .∧τ̄
0 (Θ̃s − ξs)dMs. Then, the

TVA price is given by Θ = Θ̃J + (1 − J)ξτ , where Jt = 1{τ>t}.

Proof. Let Θ̄ =: Θ̃J + (1− J)ξτ . Using (2.8) and (2.7), we have for t ∈ [0, τ̄ ]

dβtΘ̄t = dJtβtΘ̃t + d(1 − J)βtξτ = dβt∧τ Θ̃t∧τ + βtΘ̃tdJt − βtξtdJt

=
1

αt
dβ̃tΘ̃t + γtβtΘ̃tdt+ βt(Θ̃t − ξt)dJt

= −βt(gt(P at − Θ̃t, πt) + γtξ̃t)dt+ βtdm̃t + βt[(Θ̃t − ξt)dJt + γtΘ̃tdt]

= −βtgt(P at − Θ̃t, πt)dt+ βtdm̃t + βt[(Θ̃t − ξt)dJt + γt(Θ̃t − ξ̃t)dt]

= −βtgt(P at − Θ̃t, πt)dt+ βt
(
dm̃t + (Θ̃t − ξt)dMt

)

= −βtgt(P at − Θ̃t, πt)dt+ βt(dm
a
t − dmπ

t )

= −βtgt(P at − Θ̄t, πt)dt+ βtdmt.

Then, Θ̄ satisfies the BSDE as Θ with the same limit condition, this ends the proof.

2.2 Multiple optimal stopping times

Let us consider now n American contracts with different maturities Ti > 0, different optimal

stopping times τ∗i ∈ [0, Ti] and different dividend streams dDi
t. In that case, the counterparty

risk vanishes after τ∗ = max0≤i≤n(τ∗i ) and the effective maturity time becomes τ̄ = τ ∧ τ∗.
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From (2.3), the clean price P a,i of each contract is given by

βtP
a,i
t = Et

(∫ τ̄ i

t
βsdD

i
s + βτ̄ iP

a,i
τ̄ i

)
, ∀t ∈ [0, τ̄ i]

or equivalently βt∧τ̄ iP
a,i
t∧τ̄ i = Et

(∫ τ̄

t
βsdD

i
s∧τ̄ i + βτ̄ iP

a,i
τ̄ i

)
, ∀t ∈ [0, τ̄ ],

where τ̄ i = τ ∧ τ∗i . We define the overall clean price of all contracts at time t ∈ [0, τ̄ ] by

P at =:
1

βt

n∑

i=1

βt∧τ̄ iP
a,i
t∧τ̄ i .

This yields to the following BSDE for P a

βtP
a
t = Et

(∫ τ̄

t
βsdDs +

n∑

i=1

βτ̄ iP
a,i
τ̄ i

)

= Et

(∫ τ̄

t
βsdDs + βτ̄P

a
τ̄

)
, ∀t ∈ [0, τ̄ ],

where dD is the global dividend stream defined by dDt :=

n∑

i=1

dDi
t∧τ̄ i . By analogy to the

previous section, the price-and-hedge pair (Π, π) satisfies a BSDE given, in an integral form,

by

βtΠt = Et

(∫ τ̄

t
βsdDs −

∫ τ̄

t
βsgs(Πs, πs)ds+ βτ1{τ=τ̄}R

)
, ∀t ∈ [0, τ̄ ].

Thus, we deduce the integral form of the TVA BSDE

βtΘt = Et

(
βτ̄Θτ̄ +

∫ τ̄

t
βsgs(P

a
s −Θs, πs)ds

)
, ∀t ∈ [0, τ̄ ],

where Θτ̄ = P aτ̄ + 1{τ=τ̄}R.

Consequently, Proposition 2.1 remains true in this setup with

ma
t =

n∑

i=1

ma,i
t =

n∑

i=1

∫ t∧τ̄ i

0
β−1
s dβsp

a,i
s , where βtp

a,i
t = Et

(∫ τ∗i

0
βsdD

i
s

)
.
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3 Benchmark simulation using nested Monte Carlo

We present here an overview of the overall algorithm. We also discuss the differences between

Section 3.2 where we consider the funding issues and Section 3.1 where we study essentially

an extension of the square Monte Carlo explained in Abbas-Turki et al. (2014). In the

following, depending on the context, we use Pt either for the clean exposure of a portfolio or

for the clean exposure of only one contract.

Since the paper by Brigo and Pallavicini (2008), the (CVA) Credit Valuation Adjustment

can be viewed as an option on the clean exposure called Contingent Credit Default Swap

(CCDS). When the clean exposure Pt is computed on a basket of contracts that are priced

by closed expressions, the CVA and, more generally, the TVA can be calculated thanks to

a one-stage simulation using either PDE discretization or Monte Carlo as in Crépey et al.

(2014). However, when the underlying contracts have to be simulated as in the case of

American options, it is more reasonable to perform a two-stage simulation: The outer stage

for the TVA and the inner stages to compute the underlying contracts. Indeed, the TVA can

be considered as a corrective value on Pt and mispricing the latter could produce significant

errors on the former. So, using a one-stage simulation with the same set of trajectories for

both TVA and the clean exposure would be a poor choice when implementing global methods

like regressions or when the default is strongly dependent on the exposure Pt.

Our purpose is to develop a method that can be considered as a benchmark not only

when the exposure involves American derivatives but also European derivatives that are not

expressed by closed formulas. Although the proposed two-stage Monte Carlo is quite heavy

to implement on a CPU, it will run much faster on a GPU. Moreover, in order to decrease

the execution time and run a one-minute simulation, we propose in sections 3.1 and 3.2 a

judicious procedure to choose the appropriate number of trajectories that have to be drawn

in the inner stages.

For both sections 3.1 and 3.2, we fix the number of time steps used for the SDE dis-

cretization of the underlying asset S = (S1, ..., Sd) to be a multiple of N : Nsde = q × N .
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Using Nsde time steps, we simulate M0 outer stage trajectories from t0 = 0 to tNsde
= T .

From each value Stqk , with k ∈ {1, ..., N}, we simulate Mk inner stage trajectories that end

at tNsde
= T .
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Figure 1: An example of a two-stage simulation with M0 = 2, M6 = 8 and M8 = 4.

In Figure 1, we illustrate only two inner simulations starting at different times. Because

the inner simulations are used to compute the clean exposure Pt, it is conceivable to draw

fewer trajectories when t approaches T . Indeed, as t → T the simulation variance Vt asso-

ciated to Pt decreases to 0. In addition, Vt produces a bias on the outer simulation of the

TVA which gets smaller as Vt → 0. We point out also that the bias of the estimator of

Pt vanishes when the exposure involves only European contracts. For American contracts,

the bias produced by Longstaff-Schwartz algorithm is generally small and will be neglected

in this paper. We refer the reader to Glasserman (2003) for more details on the bias of

American options estimators.

For fixed and sufficiently high values of M0 and N , our purpose is to study the effect of

Vt on the bias of the TVA estimator and thus on the choice of M1...MN−1. This study will
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be first implemented, in Section 3.1, when funding constraints are ignored and thus when

CVA0,T =

N−1∑

k=0

E
(
P+
tq(k+1)

1τ∈(tqk ,tq(k+1)]

)
,(3.1)

then for more general case, in Section 3.2,

Θtqk = Etqk

(
Θtq(k+1)

+ hg(tq(k+1), Ptq(k+1)
,Θtq(k+1)

)
)
, ΘtqN = 0,(3.2)

where Θt is the pre-default TVA process and h = T/N . In the sequel, P replaces P a used

in Section 2, CVA0,T represents Θ0 given in (2.5) when we set g and R to zero and the Θ of

(3.2) is used for the pre-default TVA Θ̃t introduced in (2.8). Also to simplify notations, we

assume that T = 1 then h = 1/N . In standard applications when T 6= 1, one should increase

or decrease linearly the value of N depending on whether T > 1 or T < 1.

As for (3.2), we consider an intensity model for the default time τ of equation (3.1) and we

assume that its hazard rate is a function of the exposition Pt. When compared to structural

models or to intensity models with a hazard rate expressed as a function of the underlying

assets, assuming that the hazard rate depends on Pt is more difficult to study as one must

take into account the effect of Vt on simulating τ . Admitting that we are dealing with this

complex setting, one can extend the obtained results bellow to simpler situations.

Unlike (3.1), (3.2) involves the computation of some conditional expectations during a

backward induction. Consequently, although both (3.1) and (3.2) are based on an intensity

model and on a two-stage simulation like the one illustrated in Figure 1, they are imple-

mented differently. Below, we detail the implementation of each expression and calculate

asymptotically its MSE. In the following, we replace the tq∗k index by k and we denote

by P̂1, ..., P̂N−1 the simulated expositions using the inner trajectories. Then, we define

∆P
k =

√
Mk

(
P̂k − Pk

)
, ∆Θ

k =
(
Θ̂k −Θk

)
where Θ̂ is the simulated value of Θ and we

make the following assumption that is an extension of Assumption 1 in Gordy & Juneja

(2010).
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Assumption 3.1 Defining ϕM0,...,MN−1
(p1, ..., pN−1, θ1, ..., θN−1, δ

p
1 , ..., δ

p
N−1, δ

θ
1 , ..., δ

θ
N−1) as

the density of the random vector (P1, ..., PN−1,Θ1, ...,ΘN−1,∆
P
1 , ...,∆

P
N−1,∆

Θ
1 , ...,∆

Θ
N−1) with

respect to the Lebesgue measure, we assume that its partial derivatives

∂ukϕM0,...,MN−1
, ∂2uk,ulϕM0,...,MN−1

, uk = pk or θk and ul = pl or θl with k, l = 1, ..., N − 1

exist and are continuous for each (M0, ...,MN−1). With uk, ul as before and ui = pi or θi,

for i = 1, ..., N − 1 lim
|ui|→∞

ϕM0,...,MN−1
= 0, lim

|ui|→∞
∂ukϕM0,...,MN−1

= 0, lim
|ui|→∞

∂2uk,ulϕM0,...,MN−1
= 0

uniformly on all the variables except ui and uniformly on M0, ...,MN−1. Moreover, for each

(M0, ...,MN−1), there exist nonnegative functions ϕ0
M0,...,MN−1

, ϕ1
M0,...,MN−1

and ϕ2
M0,...,MN−1

such that ϕM0,...,MN−1
≤ ϕ0

M0,...,MN−1
(δp1 , ..., δ

p
N−1, δ

θ
1 , ..., δ

θ
N−1),

∣∣∂ukϕM0,...,MN−1

∣∣ ≤ ϕ1
M0,...,MN−1

(δp1 , ..., δ
p
N−1, δ

θ
1 , ..., δ

θ
N−1),

∣∣∂2uk ,ulϕM0,...,MN−1

∣∣ ≤ ϕ2
M0,...,MN−1

(δp1 , ..., δ
p
N−1, δ

θ
1 , ..., δ

θ
N−1)

for all (p1, ..., pN−1, θ1, ..., θN−1, δ
p
1 , ..., δ

p
N−1, δ

θ
1 , ..., δ

θ
N−1) with

sup
M0,...,MN−1

∫

R2N−2

|δpk|r1 |δθl |r2ϕiM0,...,MN−1
(δp1 , ..., δ

p
N−1, δ

θ
1 , ..., δ

θ
N−1)dδ

p
1 ...dδ

p
N−1dδ

θ
1 ...dδ

θ
N−1<∞

for k, l = 1, ..., N − 1, i = 0, 1, 2, r1 ≥ 0, r2 ≥ 0 and 0 ≤ r1 + r2 ≤ 4.

This assumption is needed to justify the Taylor expansion performed in sections 3.1, 3.2

and ensures that one can ignore the higher order terms. In what follows, we assume also that

the underlying asset S is a truncation of a positive Lévy process. The truncation should be

performed such that the support of S is a Cartesian product of compact connected intervals

on which the density of S is bounded away from zero.

13



3.1 TVA without funding constraint

We present an optimized version of the square Monte Carlo simulation MC2 taken as a

benchmark algorithm in Abbas-Turki et al. (2014). Because MC2 was not the main subject

of the latter paper, the authors implemented a simple version of MC2 with M0 =M1 = ... =

MN−1. However, here we would like to express M1, ..., MN−1 as functions of (M0, N) that

have to be sufficiently big. The other difference with the MC2 presented in Abbas-Turki et

al. (2014) is the possibility here to simulate American derivatives using the inner trajectories.

This will be performed thanks to N ×M0 local dynamic programming inductions that are

explained at the end of this subsection and its implementation is detailed in Section 4.

We introduce new functions F 1
k+1(x1, ..., xk+1), F

2
k+1(x1, ..., xk+1), F

3
k+1(x1, ..., xk+1) and

F 4
k+1(x1, ..., xl, y) with





F 1
k+1(x1, ..., xk+1) = E

(
1τ∈(kh,(k+1)h]|P1 = x1, ..., Pk+1 = xk+1

)
,

F 2
k+1(x1, ..., xk+1) = (xk+1)

+F 1
k+1(x1, ..., xk+1),

F 3
k+1(x1, ..., xk+1) = (xk+1)

+E
(
1τ>(k+1)h|P1 = x1, ..., Pk+1 = xk+1

)
and

F 4
k+1(x1, ..., xj , y) = E

(
F 2
k+1(x1, ..., xj , Pj+1, ..., Pk+1)|Sj = y

)
.

(3.3)

Thus, the simulated value ĈVA0,T of (3.1) is given by

ĈVA0,T =
N−1∑

k=0

1

M0

M0∑

i=1

F 2
k+1

(
P̂1(S

i
1), ..., P̂k+1(S

i
k+1)

)
(3.4)

where {Si}i∈{1,...,M0} are independent copies of the underling asset S that are generated in

the outer simulation.

As said previously, we take the hazard rate of τ to be a function of the exposition Pt. This

function is assumed constant by parts and can be decomposed using a family {fk}1≤k≤N of

14



twice differentiable functions such that

P (τ > kh|P1 = x1, ..., Pk = xk) = exp

(
− 1

N

k∑

i=1

fi(xi)

)
.(3.5)

Before announcing the main theorem of this section, we should consider an additional

constraint on M1, ...,MN−1 that makes possible dealing with American contracts using re-

gression methods. Indeed, an approximation of an American contract by a Bermudan leads

to

Pk(x) = sup
θ∈Tk,N

E (Φk,θ(Sθ)|Sk = x) ,(3.6)

where Φs,t(x) = βtΥ(x)/βs with Υ is the payoff and β is the risk-free discounting asset.

Besides, Tk,N represents the set of stopping times that take their values in {k, ...,N}. The

computation of (3.6) is performed using the Longstaff-Schwartz algorithm introduced in

Longstaff and Schwartz (2001) and well detailed in Clément & al. (2002). We set Pk(x) =

E (Φk,τk(Sτk)|Sk = x) with

τN = N,

∀k ∈ {N − 1, ..., 0}, τk = k1Ak
+ τk+11Ac

k
,

(3.7)

where Ak =
{
Φk+1,k(Sk) > E

(
Pk+1(Sk+1)

∣∣∣Sk
)}

. The conditional expectation involved in

Ak is approximated using a regression on a basis of monomial functions where Kk is its

cardinal. This regression uses the inner trajectories and thus allows us to approximate Pk(x)

by

P̂k(x) =
1

Mk

Mk∑

i=1

Φk,τ̂ ik

(
Siτ̂ ik

∣∣∣Sik = x
)

(3.8)

and the dependence on the inner trajectories can be seen from fixing Sik to be equal to

x. In (3.8), τ̂k is simulated thanks to a similar induction to (3.7) in which we replace the
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conditional expectation involved in Ak by a regression.

Then, we are able to announce the following result.

Theorem 3.1 As long as Assumption 3.1 is fulfilled and K3
j /Mj → 0 for each j when

American contracts are involved, we get

MSE
(
ĈVA0,T −CVA0,T

)
= E

[(
ĈVA0,T − CVA0,T

)2]

≤ N2

M0
max

k∈{0,...,N−1}
Var

(
F 2
k+1

(
P̂1(S

i
1), ..., P̂k+1(S

i
k+1)

))

+

N∑

j=1

1

4NM2
j

(
E
[
Vj(S

i
j)f

′′
j (Pj(S

i
j))F

3
j (P1(S

i
1), ..., Pj(S

i
j))
])2

+

N∑

j=1

1

4NM2
j


E


Vj(Sij)f ′′j (Pj(Sij))

N−1∑

k=j

F 4
k+1(P1(S

i
1), ..., Pj(S

i
j), S

i
j)





2

+
N∑

j=1

N

4M2
j

(
E
[
Vj(S

i
j)F

1
j (P1(S

i
1), ..., Pj(S

i
j))|Pj(Sij) = 0

]
ϕj(0)

)2

+N

N∑

j=1

(N − j + 1)2O

(
1

M4
j

)

where ϕj is the density of Pj(S
i
j) and Vj(x) = Var

(√
Mj

(
P̂j(x)− Pj(x)

))
.

Using this result, it is natural to take Mj ∼
√
M0/N when ϕj(0) vanishes or generally

when ϕj(0) is small enough, otherwise, it is sufficient to take Mj ∼
√
M0. However, we point

out that with both choices, it is necessary to make sure that N is not too big in order to

control the variance term in the previous inequality. Moreover, when American options are

involved, K3
j /Mj must be small enough.

Theorem 3.1 allows to establish a condition on the value of Mj for all j ∈ {1, ..., N − 1}.

However, it is interesting to see how Mj should decrease with respect to j as Vj(x) also

decreases. It is easy to express a relationship between Mj and Mj+1 when the exposition

involves only European contracts and the underlying asset S is a truncation of a log-Normal

process. In this case and assuming a sufficient regularity on the function Φ0,N , Vj(x) =

16



Var
(
Φ0,N

(√
(N − j)/NG

))
≈ (N−j)/NΦ′

0,N (0)+O((N−j)2/N2) where G is a truncation

of a standard Gaussian variable. Thus, one can set

Mj =
N − j

N − 1
M1 with either M1 =

√
M0

N
or M1 =

√
M0.(3.9)

When American options are involved, we will see that the choice (3.9) is good numerically

as long asM0 is big enough. Indeed, this ensures that the value ofMN−1, which is the smallest

among all the Mj>0, makes K3
N−1/MN−1 small enough.

Even though we presented only asymptotic choices ofMj , we will make them quantitative

in Section 4. In particular, we will see that K3
j /Mj ≤ 1 is quite sufficient because of the

induction (3.7) robustness that is used for the dynamic programming.

3.2 Pre-default TVA BSDE

As said previously, although both the approximation of (3.1) and the approximation of (3.2)

are based on an outer stage and on an inner stage simulation, the conditional expectation

involved in (3.2) requires a more advanced implementation. In particular, we need to simulate

two independent sets {Si}i∈{1,...,M0} and {S̃i}i∈{1,...,M0} of the underlying asset S. Where

{Si}i∈{1,...,M0} are used in the outer simulation and {S̃i}i∈{1,...,M0} are used to compute the

regression matrix Ψk that is given for each k by

Ψk = T

(
1

M0

M0∑

i=0

ψ(S̃ik)
tψ(S̃ik)

)
(3.10)

and ψ is a basis of monomial functions where K is its cardinal. T is an operator that must

satisfy assumption 3.2. Then, the simulated value Θ̂k(S
i
k) of (3.2) is defined thanks to the
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following induction





For k = 1, ..., N − 1

Θ̂k(x)=
tψ(x)Ψ−1

k


 1

M0

M0∑

j=1

ψ(Sjk)

(
Θ̂k+1(S

j
k+1) +

1

N
g
(
k+1, Θ̂k+1(S

j
k+1), P̂k+1(S

j
k+1)

))



and Θ̂N (x) = 0, Θ̂0(S0) =
1

M0

M0∑

j=1

(
Θ̂1(S

j
1) +

1

N
g
(
1, Θ̂1(S

j
1), P̂1(S

j
1)
))
.

(3.11)

The proof of Theorem 3.2 involves an intermediary random function Θ̃k(x) that satisfies





For k = 1, ..., N − 1

Θ̃k(x)=
tψ(x)Ψ−1

k


 1

M0

M0∑

j=1

ψ(Sjk)

(
Θk+1(S

j
k+1) +

1

N
g
(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

))



and Θ̃N (x) = 0, Θ̃0(S0) =
1

M0

M0∑

j=1

(
Θ1(S

j
1) +

1

N
g
(
1,Θ1(S

j
1), P1(S

j
1)
))
.

(3.12)

T used in (3.10) denotes a set of transformations that makes Ψk satisfy:

Assumption 3.2 Ψk →a.s. E
(
ψ(S̃ik)

tψ(S̃ik)
)
as M0 → ∞ and Ψk remains symmetric. For

a fixed M0, denoting by {χk,i}i=1,...,K the eigenvalues of Ψk we have also the property

max
i=1,...,K

E

(∣∣∣χ−1
k,i

∣∣∣
4
)
<∞ and setting Σk = E

(
Ψ−1
k

)

we assume that for any K × K deterministic matrix A there exists a positive function

hAk (M0,K) that vanishes as K3/M0 → 0 such that
∣∣E(Ψ−1

k AΨ−1
k )−ΣkAΣk

∣∣ ≤ hAk (M0,K).

Basically, Assumption 3.2 announces a fact that a programmer must check when imple-

menting the regression. It is even natural to assume that T allows to have {χ−1
k,i}i=1,...,K ∈ L∞,

when this fact is true one can compute the function hAk that fulfills the previous inequality.

Now, we are ready to announce the theorem.

Theorem 3.2 As long as assumptions 3.1 and 3.2 are fulfilled and K3
j /Mj → 0 for each
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j when American contracts are involved, if {Θi(x)}0≤i≤N−1 is of class Cs on the support of

S ∈ Rd then there exists a positive constant C such that for each 0 ≤ k ≤ N − 1

E

[(
Θ̂k(S

i
k)−Θk(S

i
k)
)2]

≤ CK

N2

N−1∑

l=k


E



Vl+1(S

j
l+1)∂

2
P g
(
l + 1,Θl+1(S

j
l+1), Pl+1(S

j
l+1)

)

2Ml





2

+O

(
K

M0
+

K

N4M2
l

+
K2

N2M0
+
K1−2s/d

N2
+K−2s/d

)
.

The s-continuous differentiability assumed in Theorem 3.2 can be gotten either from the

regularity of g or from the regularity of the transition density of S using (3.2).

From this result, a reasonable choice of the number of inner trajectories isMj ∼
√
M0/N

for j ∈ {1, ..., N − 1}. Moreover, using the same arguments as the one presented in Section

3.1, when the exposition involves only European contracts and the underlying asset S is a

truncation of a log-Normal process, we can set

Mj =
N − j

N − 1
M1 with M1 =

√
M0

N
.(3.13)

Also, when American options are involved, we will see that the choice (3.13) is good numer-

ically as long as M0 is big enough.

Although the proof of Theorem 3.2 is detailed in the last section, we should make few

remarks on the key tools that are needed for the proof. The first point that is really essential

is the independence between Ψk and {Si}i∈{1,...,M0}, otherwise the computation of the square

error would be much more difficult. This is why Ψk is computed thanks to a new set of outer

trajectories {S̃i}i∈{1,...,M0}. The other important point is the use of Theorem 4 in Newey

(1997) which announces the following.

Theorem 3.3 We denote f(X) = E(Y |X) and f̂ the approximation of f thanks to a regres-

sion on a basis of K monomials. We assume that the support of X ∈ Rd is a cartesian product

of compact connected intervals on which the density of X is bounded away from zero. More-
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over, we compute f̂ thanks to a regression that involves independent copies (Xi, Yi)i∈{1,...,M0}

of the couple (X,Y ). If f is of class Cs on the support of X and if K3/M0 → 0, then

∫
[f(x)− f̂(x)]2dF0(x) = Op(K/M0 +K−2s/d)

where F0 is the cumulative distribution of X.

Theorem 3.3 with a Ψk that satisfies Assumption 3.2 allows to conduct all the computa-

tions in order to get Theorem 3.2.

4 Simulation framework and results

This section starts by presenting additional details on how the simulations are implemented

and computing the complexity induced by this implementation. Then, it finishes by some

compelling numerical results that shows the robustness of the method presented in this paper

and that illustrates the theoretical asymptotic result established in the previous section.

4.1 Implementation and complexity

As already explained in Section 3, the proposed algorithm is based on nested (square) Monte

Carlo simulation. As Monte Carlo is well suited to parallel architecture, we perform the

implementation of our algorithm on the GPU “NVIDIA geforce 980 GTX” which includes

2048 parallel processing units. This massive computing power allows to reduce the execution

time of the overall solution to make it quite interesting to use for real applications in the

industry. This fact is true despite the high complexity of our method that has however the

property to be very accurate.

The parallelization of this method is performed according to both the outer and the inner

trajectories. First, one has to simulate the outer trajectories and to store them on the GPU if

enough memory is available, otherwise to store them on the machine RAM (Random Access
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Memory). Then, at each time step j ∈ {1, ..., N} of m outer trajectories with m = M0/m0,

we simulate the Mj inner trajectories. The reason of considering the outer trajectories per

a group of m realizations is due to the limitation of the memory space available on GPU

which makes impossible dealing with M0 ×Mj memory space occupation when M0 and Mj

are sufficiently big. Consequently, for each j ∈ {1, ..., N}, we find ourselves obliged to repeat

m0 times the same operation but on different m×Mj data.

When the exposure involves only European contracts, the m0 repeated operations com-

pose a common Monte Carlo simulation for the m ×Mj inner trajectories. However, when

the exposure includes also American contracts, one has to perform a lot of regressions in

addition to the standard Monte Carlo operations. Formally speaking, if the exposure in-

cludes also American contracts, one has to perform N − j − 1 regressions at each time

step j ∈ {1, ..., N − 1} and for each outer trajectory using Mj inner trajectories involved

in a projection on Kj monomials. The complexity of each regression is proportional to

Mj × K3
j and then the computations performed per each time step are of the order of

O((N − j − 1)M0Mj(d+K3
j )) where d is the number of underlying assets S. To explain ex-

actly how the different operations are performed and optimized on the GPU, we are preparing

a paper that will be submitted within a couple of months to a computing journal.

Let us now study the overall complexity of the algorithm assuming that Kj = K0 does not

change according to j with Mj & K3
0 and that M0 is much bigger than N2. The complexity

induced by the computation of (3.4) and of (3.11) are almost the same and one can get the

following orders:

• For Mj =
N − j

N − 1
M1 with M1 =

√
M0

N
, then the complexity ∼ O

(
(d+K0)NM

3/2
0

)
.

• For Mj =
N − j

N − 1
M1 with M1 =

√
M0√
N

, then the complexity ∼ O
(
(d+K0)(NM0)

3/2
)
.

• For Mj =
N − j

N − 1
M1 with M1 =

√
M0, then the complexity ∼ O

(
(d+K0)N

2M
3/2
0

)
.

These orders justify the necessity to employ the GPU computing power to reduce the

execution time and make the overall solution usable by the banking industry.
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4.2 Numerical results

In this section, we give some numerical results associated to three different expositions. For

these examples we use the same three dimensional Black & Scholes model for the underlying

assets S = (S1, S2, S3)

dSit = rdt+ σi

i∑

j=1

̺ijdW
j
t , i = 1, 2, 3,(4.1)

with r = the risk neutral interest rate = ln(1.1), Si0 = 100, σi = 0.2 and ̺ = {̺ij}1≤i,j≤d

comes from the Cholesky decomposition of the correlation matrix (δi−j+0.5(1−δi−j))i,j=1,2,3

where δ is the Kronecker symbol. We point that our method is quite robust according to

the dimension of the problem and when increasing the number of random factors one has

to increase smoothly the number of outer trajectories M0 to have the same accuracy order.

Studying more quantitatively the affect of the dimension and the choice of the model will be

done in a future work that deals with various practical examples.

For the following simulation, we take T = 1, M0 = 13 × 104 trajectories, N = 10

and Nsde = 50. Although one can simulate exactly (4.1) without discretization, we use here

Nsde > N because we need sufficient number of time steps in order to simulate S
3
T = sup

0≤t≤T
S3
t

by sup
0≤k≤Neds

S3
tk

that will be involved in two European path-dependent examples of tables 1 & 2.

Table 1: European exposition with a payoff Υ(ST ) =
(
S1
T

2
+

S2
T

2
− S

3

T

)
+

and fi(xi) = 0.01 + 0.01(xi)+, g(k, p, θ) = 0.01p(p− θ)+.

M1 Θ0 Θ0 std CVA0,T CVA0,T std√
M0

N
0.01364 4× 10−5 0.0296 2× 10−4

√
M0√
N

0.01307 4× 10−5 0.0294 2× 10−4

√
M0 0.01265 3× 10−5 0.0291 2× 10−4
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In tables 1, 2 and 3, we study the changes in the values of the estimators of CVA0,T and

of the pre-default TVA Θ0 when M1 increases with Mj =
N − j

N − 1
M1. In all tables, the values

postfixed by std represent the empirical standard deviation computed on 16 realizations of

the estimator. From the values of these standard deviations, we conclude that M0 = 130K

trajectories is sufficiently big as the variance of the simulations is quite small.

Table 2: European exposition with a payoff: Υ(ST ) =
(

3S1
T

10
+

7S2
T

10
− S

3

T

)
+
−
(

7S1
T

10
+

3S2
T

10
− S

3

T

)
+

and fi(xi) = 0.01 + 0.01(xi)+, g(k, p, θ) = 0.05(p− θ)+.

M1 Θ0 Θ0 std CVA0,T CVA0,T std√
M0

N
2.72× 10−3 10−5 0.0365 8× 10−4

√
M0√
N

2.44× 10−3 10−5 0.0453 8× 10−4

√
M0 2.28× 10−3 10−5 0.0520 8× 10−4

√
N
√
M0 2.24× 10−3 10−5 0.0528 8× 10−4

Table 3: American exposition with a payoff: Υ(ST ) =
(
κ− S1

T

3
− S2

T

3
− S3

T

3

)
+
, κ = 100

and fi(xi) = 0.01 + 0.01(xi)+, g(k, p, θ) = 0.01p(p− θ)+.

M1 Θ0 Θ0 std CVA0,T CVA0,T std√
M0√
N

0.0242 10−4 0.0356 2× 10−4

√
M0 0.0229 10−4 0.0351 2× 10−4

Regarding the value of M1 that affects the bias of the estimators, we see in Table 1 that

M1 =
√
M0

N is quite sufficient to compute CVA0,T and taking M1 =
√
M0√
N

produces a very

small bias on Θ0 when compared to
√
M0. We have also the same case for Θ0 in Table 2,

however CVA0,T has a big bias if we take M1 too small which is due to the fact that the

density of the exposition has a significant value at zero. As far as Table 3 is concerned, we

do not show the simulations for M1 =
√
M0
N since this number is not sufficient to perform the

regressions needed for the Longstaff-Schwartz algorithm required by our condition Mj & K3
0

(here K0 = 4). Nevertheless, we see that M1 =
√
M0√
N

is quite sufficient to have very accurate

results of Θ0 and CVA0,T .
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5 Proof of theorems 3.1 and 3.2

Proof of Theorem 3.1: The condition K3
j /Mj → 0 is related to the convergence of of the

Longstaff-Schwartz algorithm studied in Stentoft (2004) which uses the results presented in

Newey (1997) and Clément & al. (2002). Given (3.5), (3.3) becomes





F 1
k+1(x1, ..., xk+1) = e−

1
N

∑k
i=1 fi(xi)

(
1− e−

1
N
fk+1(xk+1)

)
,

F 2
k+1(x1, ..., xk+1) = (xk+1)

+F 1
k+1(x1, ..., xk+1),

F 3
k+1(x1, ..., xk+1) = (xk+1)

+e−
1
N

∑k+1
i=1 fi(xi) and

F 4
k+1(x1, ..., xj , y) = e−

1
N

∑j
i=1 fi(xi)E

(
e−

1
N

∑k+1
i=j+1 fi(Pi(Si))

∣∣∣Sj = y
)
.

(5.1)

Besides, MSE
(
ĈVA0,T − CVA0,T

)
can be decomposed into two terms: a variance term

E

[(
ĈVA0,T − E

[
ĈVA0,T

])2]
and a square bias term

(
E
[
ĈVA0,T − CVA0,T

])2
. Regarding

the variance, one gets easily

E

[(
ĈVA0,T − E

[
ĈVA0,T

])2]
≤ N2

M0
max

k∈{0,...,N−1}
Var

(
F 2
k+1

(
P̂1(S

i
1), ..., P̂k+1(S

i
k+1)

))
.

As for the square bias term one has to perform a second order Taylor expansion according

to P . Doing the computations, we obtain

E
[
ĈVA0,T − CVA0,T

]
=

1

2

N∑

j=1

1

NMj
E
[
(∆p

j )
2f ′′j (Pj(S

i
j))F

3
j (P1(S

i
1), ..., Pj(S

i
j))
]

+
1

2

N∑

j=1

1

Mj
E
[
(∆p

j )
2ε(Pj(S

i
j))F

1
j (P1(S

i
1), ..., Pj(S

i
j))
]

−1

2

N∑

j=1

1

NMj
E

[
(∆p

j )
2f ′′j (Pj(S

i
j))

N−1∑

k=l

F 2
k+1(P1(S

i
1), ..., Pk+1(S

i
k+1))

]

+
1

2

N∑

j=1

(N − j + 1)O

(
1

M2
j

)

and ε is the Dirac distribution at 0. Thanks to an integration by parts using Assumption 3.1:
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E
[
(∆p

j )
2ε(Pj(S

i
j))F

1
j (P1(S

i
1), ..., Pj(S

i
j))
]
= E

[
(∆p

j)
2F 1

j (P1(S
i
1), ..., Pj(S

i
j))|Pj(Sij) = 0

]
ϕj(0).

We point out that, conditionally to σ({Sil}l=1,...,j), (∆
p
j ) and F

2
k+1(P1(S

i
1), ..., Pk+1(S

i
k+1))

are independent as (∆p
j) involves the inner simulation which is conditionally to σ({Sil}l=1,...,j)

independent from the outer simulation and thus independent from σ({Sil }l=j+1,...,k+1).

Finally, conditioning according to σ({Sil}l=1,...,j) in each expectation involved in the value

of E
[
ĈVA0,T − CVA0,T

]
and using the Markov property, then taking the square of it and

using the inequality (

n∑

i=1

ai)
2 ≤ n

n∑

i=1

a2i , we get the required result.

�

Proof of Theorem 3.2: Like in the proof of Theorem 3.1, the condition K3
j /Mj → 0 is

needed for the convergence of of the Longstaff-Schwartz algorithm. In this proof, we study

separately the variance E

[(
Θ̂k(x)− E

[
Θ̂k(x)

])2]
and the bias E

[
Θ̂k(x)−Θk(x)

]
involved

in E

([
Θ̂k(x)−Θk(x)

]2)
. It is quite heavy to develop each term involved in the variance.

Because we are interested by the term that decreases the least as M0 → ∞, we assume that

Θ̂k(x) is independent from Sjk as the terms {Sji }k+1≤i≤N are involved only once (weighted

by 1/M0) when computing backwardly Θ̂k(x).

Denoting

Θk+1(S
j
k+1) = Θ̂k+1(S

j
k+1) +

1

N
g
(
k+1, Θ̂k+1(S

j
k+1), P̂k+1(S

j
k+1)

)
,

then Θ̂k(x) =
tψ(x)Ψ−1

k


 1

M0

M0∑

j=1

ψ(Sjk)Θk+1(S
j
k+1)


 and using Assumption 3.2

E

[(
Θ̂k(x)− E

[
Θ̂k(x)

])2]
=E


tr


Ak(x)




1

M2
0

M0∑

i,j

ψ(Sik+1)
tψ(Sjk+1)Θk+1(S

i
k+1)Θk+1(S

j
k+1)

−mk+1
tmk+1










+h
ψ(x)tψ(x)
k (M0,K)O

(
K

M0

)

with Ak(x) = Σkψ(x)
tψ(x)Σk, mk+1 = E(ψ(Sik+1)Θk+1(S

i
k+1)) and tr is the trace operator.
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Thanks to the asymptotic independence of Θ̂k(x) and S
i
k, we obtain

E

[(
Θ̂k(S

i
k)− E

[
Θ̂k(S

i
k)
])2]

= O

(
K

M0

)
.

Regarding the bias, if we denote Bk(x) = E
[
Θ̂k(x)− Θ̃k(x)

]
then

(
E
[
Θ̂k(S

i
k)−Θk(S

i
k)
])2

≤ 2
(
E
[
Bk(S

i
k)
])2

+ 2
(
E
[
Θ̃k(S

i
k)−Θk(S

i
k)
])2

≤ 2
(
E
[
Bk(S

i
k)
])2

+ 2E

([
Θ̃k(S

i
k)−Θk(S

i
k)
]2)

and using Theorem 4 in Newey (1997) as well as the boundedness part in Assumption 3.2,

we have

E

([
Θ̃k(S

i
k)−Θk(S

i
k)
]2)

= O

(
K

M0
+K−2s/d

)
.

Besides

Bk(x)=
tψ(x)ΣkE


ψ(Sjk)



Θ̂k+1(S

j
k+1)−Θk+1(S

j
k+1) +

1
N g
(
k+1, Θ̂k+1(S

j
k+1), P̂k+1(S

j
k+1)

)

− 1
N g
(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

)







and performing a second order Taylor expansion according to Θk+1(S
j
k+1) and Pk+1(S

j
k+1)

Bk(x)=
tψ(x)ΣkE




ψ(Sjk)




∆Θ
k+1(S

j
k+1)+

1
N∆Θ

k+1(S
j
k+1)∂Θg

(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)
)

+ 1
2NMk

[∆P
k+1(S

j
k+1)]

2∂2P g
(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

)

+ 1
2N [∆Θ

k+1(S
j
k+1)]

2∂2Θg
(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

)

+o

(∣∣∣∆k+1(S
j
k+1)

∣∣∣
2

2

)







where ∆k+1(S
j
k+1) = (∆Θ

k+1(S
j
k+1),∆

p
k+1(S

j
k+1)) and | · |2 is the Euclidean norm. In the

previous equality, the first order term in ∆p
k+1(S

j
k+1) vanishes as E

(
∆p
k+1(S

j
k+1)|S

j
k+1

)
= 0

that removes also the term in ∆p
k+1(S

j
k+1)∆

Θ
k+1(S

j
k+1) as the random functions ∆p

k+1(x) and

∆Θ
k+1(x) are independent because the first one is simulated using the inner trajectories and
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the other one using the outer ones. Besides, one can only keep the first and the third term

and ignore all the others and obtain

Bk(x)=
tψ(x)ΣkE


ψ(S

j
k)



∆Θ
k+1(S

j
k+1)+

[∆P
k+1(S

j
k+1)]

2

2NMk
∂2P g

(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

)

+O

(
1

N2Ml
+

√
K

N
√
M0

+
K−s/d

N

)





 .

After conditioning according to Sjk+1 and ignoring E
(
Θ̃k+1(S

j
k+1)−Θk+1(S

j
k+1)|S

j
k+1

)
, we

obtain the following induction

Bk(x)=
tψ(x)ΣkE


ψ(S

j
k)



Bk+1(S

j
k+1)+

Vk+1(S
j
k+1)

2NMk
∂2P g

(
k+1,Θk+1(S

j
k+1), Pk+1(S

j
k+1)

)

+O

(
1

N2Ml
+

√
K

N
√
M0

+
K−s/d

N

)







and because BN (x) = 0, one can establish for each 0 < k ≤ N − 1

E
[
Bk(S

j
k)
]
=E
(
tψ(Sjk)

)
Σk

N−1∑

l=k





l∏

i=k+1

ΦiΣiE


ψ(Sjl )



Vl+1(S

j
l+1)∂

2
P g(l+1,Θl+1(S

j
l+1),Pl+1(S

j
l+1))

2NMl

+O
(

1
N2Ml

+
√
K

N
√
M0

+ K−s/d

N

)











where Φi = E
(
ψ(Sji−1)

tψ(Sji )
)
. For k = 0, E

[
B0(S

j
0)
]
differs from the other E

[
Bk(S

j
k)
]∣∣∣
k>0

by a last term (l = 0) which does not involve ψ(Sj0) or Σ0.

There exists then a positive constant C such that for each 0 ≤ k ≤ N − 1

(
E
[
Bk(S

j
k)
])2

≤ CK

N2

N−1∑

l=k


E



Vl+1(S

j
l+1)∂

2
P g
(
l + 1,Θl+1(S

j
l+1), Pl+1(S

j
l+1)

)

2Ml






2

+O

(
K

N4M2
l

+
K2

N2M0
+
K1−2s/d

N2

)
.

Using this final expression as well as the asymptotic behavior of E

([
Θ̃k(S

i
k)−Θk(S

i
k)
]2)

and of the variance term, we get the required result.

�
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S. Crépey (2012b): Bilateral Counterparty Risk under Funding Constraints–Part II: CVA.

Forthcoming in Mathematical Finance.
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