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Une transition dans un graphe est une paire d’arêtes incidentes à un même sommet. Etant donnés un graphe G = (V,E),
deux sommets s, t ∈ V et un ensemble associé de transitions interdites F ⊆ E×E, le problème de chemin évitant des
transitions interdites consiste à décider s’il existe un chemin élémentaire de s à t qui n’utilise aucune des transitions de
F . C’est-à-dire qu’il est interdit d’emprunter consécutivement deux arêtes qui soient une paire de F . Ce problème est
motivé par le routage dans les réseaux routiers (où une transition interdite représente une interdiction de tourner) ainsi
que dans les réseaux optiques avec des noeuds asymétriques. Nous prouvons que le problème est NP-difficile dans les
graphes planaires et plus particulièrement dans les grilles. Nous montrons également que le problème peut être résolu
en temps polynomial dans la classe des graphes de largeur arborescente bornée.
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1 Introduction
Driving in New-York is not easy. Not only because of the rush hours and the taxi drivers, but because of

the no-left, no-right and no U-turn signs. Even in a “grid-like” city like New-York, prohibited turns might
force you to cross several times the same intersection before eventually reaching your destination. In this
paper, we give hints explaining why it is difficult to deal with forbidden-turn signs when driving.

Let G = (V,E) be a graph. A transition in G is a pair of two distinct edges incident to a same vertex. Let
F ⊆ E×E be a set of forbidden transitions in G. We say that a path P = (v0, . . . ,vq) is F -valid if it contains
none of the transitions of F , i.e., {(vi−1,vi),(vi,vi+1)} /∈ F for any 1 ≤ i ≤ q−1. Given s, t ∈ V , the Path
Avoiding Forbidden Transitions (PAFT) problem is to find an F -valid s-t-path in G. This problem arises in
many contexts. In optical networks, nodes can have asymmetric switching capabilities mostly due to cost-
relevant reasons [CHW+13]. In this context, nodes have some restrictions on their internal connectivity :
traffic on a certain ingress port can only reach a subset of the egress ports. Then, the optical nodes configured
asymmetrically are vertices with forbidden transitions and routing is an application of PAFT. The study of
PAFT is also motivated by its relevance to vehicle routing. In road networks, it is possible that some roads
are closed due to traffic jams, construction, etc. It is also frequent to encounter no-left, no-right and no
U-turn signs at intersections. These prohibited roads and turns can be modeled by forbidden transitions.

A distinction has to be made according to whether the path to find is elementary (cannot repeat vertices)
or non-elementary. Indeed, PAFT can be solved in polynomial time [GM08] for the non-elementary case
(using a simple BFS from t) while finding an elementary path avoiding forbidden transitions has been
proved NP-complete in [Sze03]. This paper studies the elementary version of the PAFT problem in planar
graphs and more particularly in grids. Planar graphs are not only closely related to road networks, they are
also an interesting special case to study while trying to capture the difficulty of the problem. Furthermore,
to the best of our knowledge, this case has not been addressed before in the literature.

Related work. PAFT is a special case of the problem of finding a path avoiding forbidden paths (PFP)
introduced in [VD05]. Given a graph G, two vertices s and t, and a set S of forbidden paths, PFP aims at
finding an s-t-path which contains no path of S as a subpath. When the forbidden paths are composed of

†Due to lack of space, proofs have been sketched or omitted. Full proofs are available here [KMMN15]
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exactly two edges, PFP is equivalent to PAFT. Many papers address the non-elementary version of PFP,
proposing exact polynomial solutions [VD05, AL13]. The elementary counterpart has been recently stu-
died in [PG13] where a mathematical formulation is given and two solution approaches are developed and
tested. The computational complexity of the elementary PFP can be deduced from the complexity of PAFT
which has been established in [Sze03]. Szeider proved in [Sze03] that finding an elementary path avoiding
forbidden transitions is NP-complete and gave a complexity classification of the problem according to the
types of the forbidden transitions. The NP-completeness proof in [Sze03] does not extend to planar graphs.

PAFT is also a generalization of the problem of finding a properly colored path in an edge-colored graph
(PEC). Given an edge-colored graph Gc and two vertices s and t, the PEC problem aims at finding an s-t-
path such that any two consecutive edges have different colors. It is easy to see that PEC is equivalent to
PAFT when the set of forbidden transitions consists of all pairs of adjacent edges that have the same color.
The PEC problem is proved to be NP-complete in directed graphs [GLMM13] which directly implies that
the PAFT problem is NP-complete in directed graphs §.

Contributions. Our main contribution is proving that the PAFT problem is NP-complete in grids. We
also prove that the problem can be solved in time O((3∆(k+1))2k+O(1)n)) in n-node graphs with treewidth
at most k and maximum degree ∆. In other words, we prove that the PAFT problem is FPT in k+∆.

2 Complexity of the PAFT problem
We start by proving that the PAFT problem is NP-complete in grids. For this purpose, we first prove that

it is NP-complete in planar graphs with maximum degree at most 8 by a reduction from 3-SAT. Then, we
propose simple transformations to reduce the degree of the vertices and prove that the PAFT problem is
NP-complete in planar graphs with degree at most 4. Finally, we prove it is NP-complete in grids.

Lemma 1 The PAFT problem is NP-complete in planar graphs with maximum degree 8.

Sketch of proof. The problem is clearly in NP. We prove the hardness using a reduction from the 3-SAT
problem. We do the proof for multi-graphs for ease of presentation but since a multi-graph can be easily
transformed to a graph by subdividing the edges, the lemma follows. Let Φ be an instance of 3-SAT, i.e., Φ

is a boolean formula with variables {v1, · · · ,vn} and clauses {C1, · · · ,Cm}. We build a grid-like planar graph
G where rows correspond to clauses and columns correspond to variables. In what follows, the colors are
only used to make the presentation easier. Moreover, we consider undirected graphs but, since the forbidden
transitions can simulate orientations, the figures are depicted with directed arcs for ease of presentation.
Gadget Gi j. For any i ≤ n and j ≤ m, we define the gadget Gi j depicted in Figure 1(left) and that consists
of 4 edge-disjoint paths from si j to ti j : 2 “blue” paths BTi j and BFi j, and 2 “red” paths R Ti j and R Fi j. The
forbidden transitions are defined in such a way that the only way to go from si j to ti j is by following one
of the paths in {BTi j,BFi j,R Ti j,R Fi j}. Intuitively, assigning the variable vi to True will be equivalent to
choosing one of the paths BTi j or R Ti j (called positive paths) depicted with full lines in Fig. 1(left). Res-
pectively, assigning vi to False will correspond to choosing one of the paths BFi j or R Fi j (called negative
paths) and depicted by dotted line in Fig. 1(left).

So far, it is a priori not possible to start from si j by one path and arrive in ti j by another path. In particular,
the color by which si j is left must be the same by which ti j is reached. If Variable vi appears in Clause C j, we
add one edge to Gi j as follows. If vi appears positively in C j, we add the brown edge {αi j,βi j} that creates
a “bridge” between BTi j and R Ti j. When Brown edge is present, the forbidden transitions are defined such
that it is possible to switch between the positive paths BTi j and R Ti j when going from si j to ti j. Similarly,
vi appears negatively in C j, we add the green edge {γi j,δi j} that creates a “bridge” between BFi j and R Fi j.
Hence, if vi appears in C j, it will be possible to start in si j by some color and finish in ti j with a different
one. Note that, the type of path (positive or negative) cannot be modified between si j and ti j.
Clause-graph G j. For any j ≤ m, the Clause-gadget G j is built by combining the graphs Gi j, i ≤ n, in a
“line” (see Fig. 2). The subgraphs Gi j are combined from “left to right” (for i = 1 to n) if j is odd and from

§. Note that, in [GLMM13], the authors state that their result can be extended to planar graph. However, there is a mistake in
the proof of the corresponding Corollary 7 : to make their graph planar, vertices are added when edges intersect. Unfortunately, this
transformation does not preserve the fact that the path is elementary.
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FIGURE 1: (left) Example of the Gadget-graph Gi j for Variable vi, and j ≤ m. Brown (resp. green) edge is
added if vi appears positively (resp., negatively) in C j. If vi /∈C j, none of the green nor brown edge appear.
(middle) Example of degree-8 node and allowed transtions {{e,e′}, { f , f ′},{g,g′},{h,h′}}, and (right)
corresponding gadget gv.

“right to left” (for i = n to 1) otherwise. For any j ≤m odd, the subgraph G j starts with a red edge {s j,s1 j}
and then, for 1 < i≤ n, the nodes si j and ti−1, j are identified. Finally, there is a blue edge from tn j to a new
node t j. For any j ≤ m even, the subgraph G j starts with a blue edge {s j,sn j} and then, for 1 < i ≤ n, the
nodes ti j and si−1, j are identified. Finally, there is a red edge from t1 j to a new node t j. Forbidden transitions
are defined such that, when passing from a gadget Gi j to the next one, the same color must be used (entering
in ti j = si, j+1 by an edge with some color, the same color must be used to leave this node). However, in such
nodes, we can change the type (positive or negative) of path.

Note that if we enter a Clause-graph with a red (resp. blue) edge, we can only leave it with a blue (resp.
red) edge. This means that a path must change its color inside the Clause-graph, and must hence use a brown
or green edge. The use of a brown (resp. green) forces a variable that appears positively (resp. negatively)
in the clause to be set to true (resp. false) and validates the Clause.

t3j
t2j

v1 negative in Cj

assigned to True v2 positive in Cj

assigned to True

v3 not appearing in Cj

assigned to False v4 positive in Cj

assigned to True

s1j t1j t4j

sj

tj

FIGURE 2: Case j odd. Clause-graph G j for a Clause C j = v̄1∨ v2∨ v4 in a formula with 4 Variables. The
bold path corresponds to an assignment of v1,v2 and v4 to True, and of v3 to False.

Main graph. To conclude, we have to be sure that the assignment of the variables is coherent between the
clauses. For this purpose, let us combine the subgraphs G j, j ≤ m, as follows (see Fig 3). First, for any
1≤ j < m, let us identify t j and s j+1. Then, some nodes (depicted in grey in Fig 3) of Gi j are identified with
nodes of Gi, j+1 in such a way that using a positive (resp., negative) path in Gi j forces to use the same type of
path in Gi, j+1. That is, the choice of the path used in Gi j is transferred to Gi, j+1 and therefore it corresponds
to a truth assignment for Variable vi. Finally, forbidden transitions are defined in order to forbid “crossing”
a grey node, i.e., it is not possible to go from Gi, j to Gi, j+1 via a grey node.

Finally, we prove that there is an elementary s1-tm path in G if and only if Φ is satisfiable. 2

Lemma 2 The PAFT problem is NP-complete in planar graphs with maximum degree 4.
Sketch of proof. The graph G built in the proof of Lemma 1 is planar and each vertex v of G has either
degree at most 4, degree 5 or 8. Vertices of degree 5 can be modified to have only degree 3. Then, using
the specific structure of forbidden transitions around v, we can replace each degree-8 vertex v of G by a
gadget gv made of vertices of degree at most 4. Gadget gv is designed such that it can be crossed at most
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FIGURE 3: Combining C j = v̄1∨ v2∨ v4 and C j+1 = v2∨ v̄3∨ v̄4 (Case j odd).

once by a path and only if the edges used to enter and leave gv correspond to an allowed transition around
v. Fig. 1(middle) and 1(right) give an example of a vertex v in G and the corresponding gadget gv in G′. 2

Theorem 1 The problem of finding a path avoiding forbidden transitions is NP-complete in grids.
Sketch of proof. A planar grid embedding of a graph G maps G into a grid such that each vertex of G is
mapped into a distinct vertex of the grid and each edge e of G into a path of the grid whose endpoints are
mappings of vertices linked by e. Two paths of the grid corresponding to two edges of G are vertex-disjoint,
except, possibly, at the endpoints. Starting from the graph defined in the reduction presented above, we use
the fact that any n-node graph G with maximum degree at most 4 can be mapped into a grid of size at most
O(n2) in polynomial-time [Val81]. The key point is that the initial graph has maximum degree at most 4
(see Lemma 2) which allows us to transfer the forbidden transitions into the grid. 2

On the positive side, by using dynamic programming on a tree-decomposition of the input graph, we prove :
Theorem 2 The problem of finding a path avoiding forbidden transitions is FPT when parameterized by
k+∆ where k is the treewidth and ∆ is the maximum degree. In particular, there exists an algorithm that
finds the shortest path avoiding forbidden transitions between two vertices in time O((3∆(k+1))2k+O(1)n))
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