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Abstract—In this paper, we present a novel semi-supervised
clustering approach based on Markov process. It deals with
data which include abundant local constraints. We apply the
designed model to a topological region extraction problem,
where topological segmentation is constructed based on sparse
human inputs (potentially provided by human experts). The
model considers human indications as seeds for topological
regions, i.e. the partially labeled data. It results in a regional
topological segmentation of connected free space.

I. INTRODUCTION

For the past decade, more and more robotic systems are
deployed for search and rescue missions [8], [25]. It is not
only because robots could work in extreme cases where
not feasible for human existence, also because they can
build detailed models of target environments, which provide
valuable references for rescue missions. Though the state-of-
art robotic technology has made a lot of progresses in the
autonomy for search and rescue missions [20], [25], the co-
operation between human rescuers and robots is still required,
since it is an important way to leverage the expertise of
both human and the robot. As the basis of such cooperation,
the pattern that how human expert communicate with robots
and share a common understanding of the environment is
essential. Burke et al [8] identified intention recognition as
one of the most important technological challenges in this
research field.

A. Urban Search and Rescue

For search and rescue missions, the aim is to have robots
and human working together as a multi-agent team. However,
not much work explored the utilization of human experience
in mapping process [31], [24]. As a major task for robots,
building a topological environment model of the scene is
the basis for the cooperation among team members, while
humans have a mostly topological representation of their
environments [23]. On the other hand, the output information
from state-of-art robotics mapping methods [12], [30] is
dense and mostly based on metric measurements. There is
a missing link between the raw metric map and the way
humans usually use to understand the world. Therefore, sev-
eral topological mapping techniques [21], [6], [11] have been
developed to bridge this gap. Most existing approaches try
to extract the topological properties of a given environment
automatically without user input. In our previous report [15],
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we showed how can such a regional topological map be
integrated in a multi-agent team, aiding the navigation and
mission planning.

Since the topological map is solely created by the robot,
usually it doesn’t allow human users to flexibly manipulate
its structure. A comprehensive consistent understanding of
the environment is usually not available in such human-robot
multi-agent system. For real applications in search and rescue
which involve human-robot cooperation, it is an inneglectable
shortcoming. Especially, as human experts would rather
follow their routines in dealing with emergency cases [1]
considering their own experience, the autonomy of the robot
can be possibly ignored by the operators [19]. Therefore, the
fusion of human expertise is a key to efficiently develop the
autonomy of the robot in a human-robot team.

However, it is not easy to directly use the input hints from
human in the existing topological mapping methods [21], [6].
The most important issue is - indications from human are
sparse. Furthermore, this subject is not merely about human-
robot interfaces or robot mapping in rescue missions [2]
but also how to unify the understanding of the environment
for both human and robots. For example, in a car accident
scenario, the commander would rather just point to one single
point in the map, stating that “There may be survivors in
this region, behind the crashed red car. Send your men there
to have a better check.” Human can interpret the regional
information quite well. But this indication assumes too much
context and inference for a robotic system to disambiguate. In
this paper, we propose a concise semi-supervised clustering
method based on probability theory and Markov process to
tackle this problem, i.e. how to change the sparse indication
to the latently referred meaning by generating a regional
topological map especially for semi-structured environments.

B. Topological map for semi-structured environments

The problem that we try to tackle is closely related to
topological mapping based on distinct regions. So far, most
works in that direction aim at segmentation of structured
environments, using spectral clustering [10], trumped Gen-
eralized Voronoi Graph (GVG) [28], graph based relaxation
[13] or other Bayesian based methods [7]. However, little
progress has been made in the segmentation problem for
semi-structured environments. The term semi-structured en-
vironment intuitively means that the environment can not be
partitioned in sense of structures such as “rooms,” “corridors”



etc, whereas these structures could be easily identified for
indoor environments. Therefore, it is important to define local
structures, by which the local homology of the segmented
regions can be maintained. As one of the typical data struc-
tures [29], grid-map hinders the performance of topological
segmentation algorithms in the following aspects.

• Abundant local constraints. Salient corners and ill-
shaped obstacles can be constantly observed. It is hard
for a global clustering algorithm to consider these local
constraints. For example, the different sizes of free
regions could cause scaling problems [26] for spectral
sensitive methods, such as spectral clustering [10].

• Highly noisy observation. Ghost obstacles may be ob-
served during mapping process due to moving objects or
reflecting surfaces. The noisy data with abundant local
constraints make it hard for existing clustering methods
[3], [14] to converge to global minimums.

These issues show that a clustering method based on min-
imization of global cost function may not be feasible for
this problem. Inspired by this deduction, we present an
iterative semi-supervised clustering method, which takes lo-
cally embedded relations between neighbor data into account.
It shows more rational segmentation results than existing
approaches.

C. Semi-supervised clustering

The clustering problem stated in this paper is closely
related to the field semi-supervised clustering [16]. It has
been a very active field during the past decade. The existing
algorithms can be categorized as two main directions: first,
most work focused on adapting unsupervised clustering,
such as K-means [3], [4] or kernel K-means [18]; others
mainly worked on heuristic algorithms. For example, [32]
was based on factorization of similarity matrix; [22] took
a Maximize-a-posterior (MAP) result of a Gaussian Process
Classification etc. The nature of the grid-map data indicates
that methods using global optimization[5], [9] can hardly
model the abundant local constraints efficiently. Therefore, a
semi-supervised clustering method that takes local constraints
into account is required.

Sparse supervision is considered as the initial estimation
of an inherent topological map implied by the supervision,
namely “seeds”[3]. We assume that these labeled data provide
the number of nodes and coarse positions of the nodes for
the final clustering results. Then each cluster will expand
its territory iteratively by sampling the labels of its k-nearest
neighbors. It can be seen that the current state of clustering is
only related to the previous iteration, which models a Markov
process which flooding fill in all neighboring directions.

Apart from this, this paper is organized as follows. In the
next section, a novel semi-supervised clustering algorithm
will be presented and compared with other related methods
on generic test data. The application of the algorithm in
topological mapping will be introduced in section III. The
model update and label update for topological mapping
are presented in sections IV and V respectively. We stress
the difference between our experiment results and another

traditional clustering method in section VI, followed by
conclusion and outlook of our future work.

II. SEMI-SUPERVISED CLUSTERING USING A MARKOV
PROCESS

Semi-supervised clustering is to use a small number of
labeled data to aid the clustering of unlabeled data. We
propose a novel iterative algorithm to realize semi-supervised
clustering considering local constraints. It considers a label-
ing problem as a Markov process, where each intermediates
state stands for a distribution of labels over data points. The
goal is to preserve the locality, namely, local constraints as
much as possible in the final clusters. Topologically speaking,
the clustering process creates a projection, which brings a
certain datapoint from the configuration space to a graph
space. It has been proved that the local embedding relations
to k nearest neighbors are preserved for such projection [27].
So we use a voting process of k nearest neighbors for certain
candidate, which is summarized in Algorithm 1.

A. Algorithm

Algorithm 1: Proposed Semi-supervised clustering
Input:
Set of data points X ← {x1, x2, . . . , xN}, xi ∈ <d,
number of clusters C,
initially labeled data set S = {s1, . . . sc, . . . sC},
models for each cluster Mc.
Output:
A partitional clustering [16] result {X1, . . . Xc}, where
∪Cc Xc = X;
while #(unclustered points) > 0 and !stop do1

Denote the set of labeled data: X̂;2

Get set of nearest neighbors Λ ⊂ X \ {X̂} of X̂;3

for each unlabeled point xu ∈ Λ do4

Knnu ← k-nearest-neighbor(xu, k,X);5

each labeled point in Knnu votes for the cluster6

of xu using its own label;

update the set for labeled data X̂;7

The model for each cluster Mc is a topology which should
at minimum including the following properties:

1) The distances definition between any pair of points
2) The number of nearest neighbors k that should be

considered for k-nearest-neighbor(). The selection of
k depends on the expected sparseness of the target
dataset.

3) A stop condition for the cluster. E.g. when the distance
to the nearest unlabeled point is greater than a rational
threshold, the cluster model should be considered as
stable, hence the clustering should not extend the
current cluster further.

The clustering process results in the following features
• The input data will be partitioned into k clusters;



• By denoting the sum of the distances of k-nearest
neighbors to xi as Ψknn

i , the average of Ψknn
i in each

cluster is minimized.

B. Validation

We evaluated the proposed algorithm on a commonly used
2-ring dataset as shown in figure 1. We do not consider a
kernel-based projection of the data space in these results, so
that all the algorithms in comparison use Euclidean distance
as local constraints. Figure 1(a) depicts the raw data and
two labeled datapoints as supervision. The labeled data are
marked in read and blue dots. The proposed method is
compared with two typical algorithms as follows. Figure 1(b)
shows the seeded-Kmeans [3], which is the most widely
cited semi-supervised variation for standard K-means. The
two curves in the figure show the trajectories of the iterated
mean positions for both clusters respectively. Because of
the limitation that seeded-Kmeans needs to find the global
optimal of the objective function in Euclidean space, the
two rings can not be correctly classified. Figure 1(c) shows
the result using affinity-propagation [14], which is a typical
iterative unsupervised clustering method using local message
passing. We could see that although the clusters are locally
well-defined, the labeled data are omitted and there are more
than two clusters in the final classification result. In figure
1(d), we show the result using the proposed algorithm1. The
linking arrows among datapoints indicate the process of how
the points are treated in sequence. We can see that the two
rings can be correctly clustered. Please notice that we do not
use explicit pairwise constraints, such as must-link or cannot-
link. Intuitively, these constraints are embedded in k-nearest
neighbors.

C. Reasoning

As for iterative approaches, the results in figure 1(b) and
(c) can be considered as two extreme types of clustering.
Seeded-Kmeans considers only global constraints of the data;
in the contrary, affinity propagation maximize the importance
of local constraints. Nevertheless, the proposed method is
compromised. On one hand, it globally considers the clus-
tering problem as a complete process, hence the labeling is
updated upon global distribution of the data points. On the
other hand, the evolution of each cluster is entirely based
on the local voting results, which takes the common opinion
of k nearest neighbors for each unlabeled data point. As a
result, the global constraints and local constraints are merged
efficiently.

III. PROBLEM FORMULATION FOR SEMI-SUPERVISED
TOPOLOGICAL SEGMENTATION

In this section, we introduce how could the proposed model
convert sparse information to regional definitions for robot
mapping. We firstly uniformly decompose the free space of

1Empirically we choose k between 5∼15, which will lead to the same
result. Spectral clustering will show a similar result [17]. But since it is not
an iterative method, it is not discussed here. Further explanation of how can
spectral clustering be integrated and especially analysis of its shortcomings
are discussed in our previous work [21].
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(a) 2-ring dataset
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(d) Result of the proposed method
Fig. 1. Better see in color. Comparison of results on a typical 2-ring dataset

the metric map using small grid cells, as shown in figure 2,
in order to relief the computational complexity.

Fig. 2. Raw map and decomposition results
After that, the topological problem is considered as a

labeling problem for each grid cell in the map. As a con-
vention, each region in the topological map is considered as
a node. We represent each node of the topological map by
a model Mi, which contains properties of the node such as
the mean position µi, and the maturity of the representation
ξi (stop condition for the model) etc. 2 Therefore, to obtain
a topological map, we need to label all the cells according
to local isomorphism over cell distributions.

A. Definitions

The random variables that we consider in this model are:
• Position µi is the gravity center of topological region i

in the metric map;
• Maturity ξi is a measure of the potential that region i

will keep growing. When maturity ξi is bigger, it indi-
cates that the region i is less likely to keep growing. We
use this parameter to represent a gentle stop condition
for the cluster. It controls the growing speed of a region.;

• Model Mi of a region combines µi and ξi;

2Further properties such as convexity may be considered, by following
the same scheme.



• Label Ln contains the information that how all the cells
are labeled. n is the index of a cell on the free space of
the known metric map.

B. Model

Starting with the human indications, the final topological
segmentation is considered as the final state of a Markov
process. We depict an updating law of the state estimation
as follows, assuming Markov property as the proposed algo-
rithm:

P (tLN ,
tM | t−1LN

t−1M)

= P (tLN ,
tM | t−1LN

t−1M , t−2LN
t−2M , . . . )

(1)
where tLN is the distribution of labels over the N discretized
cells, at iteration t. N is the number of free cells in the map.
It indicates that the labeling at the current iteration is only
related to the latest previous states. M : {M1,M2, . . .MK},
where K is the number of nodes, doesn’t depend on the
previous labeling. Throughout all this article, bold font is
used to represent vectors.

Since the model of a node is not related to whatever label
given to it, this updating law can be further decomposed into
the model update and label update phases. The update can
be factorized as follows.

P (tLN ,
tM | t−1LN ,

t−1M)

=

[
K∏
i=1

P (tMi | t−1Mi)

]
P (tLN | t−1LN

tM)
(2)

It shows the estimation of the current states at iteration t
given the previous ones. Here we assume the models of
different nodes are independent.

Hence if we use hatted parameters to represent the esti-
mation. The graph representation of the update law is shown
as figure 3. The model of regions Mi has been expanded to
its properties µi and ξi.

t−1ξi. . .

t−1Ln

t−1µi
tµ̂i

tξ̂i . . .

tLn

t−1Mi
tM̂i

Model update
Label update

K

Fig. 3. Graph Model

As depicted in figure 3, t−1Ln is the only directly ob-
servable variable from the previous step t − 1. In model
update phase, the topological model t−1Mi : {t−1µi,

t−1 ξi}
is inferred from the labeling status. t−1Mi provides refer-
ence for estimating new position and maturity. According

to algorithm 1, each cluster first defines which unlabeled
neighbors need to be considered as candidates for labeling.
Then newly inferred labeling tLn is achieved by label update
phase, namely by local voting results. Model update and label
update are introduced in the next two sections respectively.

IV. MODEL UPDATE

In this section, we introduce how the model is updated, i.e.
how do µ and ξ evolve over iterations. As defined previously,
the model update is represented as:

P (tMi | t−1Mi) = P (tµi
tξi | t−1µi

t−1ξi) (3)

The position of the node µi and its maturity ξi are inde-
pendent, on the condition of knowing the labeling status, as
t−1Ln d-separate them in the graph. Besides, µi at iteration
t doesn’t depend on the labeling at t− 1. The model update
can therefore be factorized as:

P (tMi | t−1Mi) = P (tµi | t−1µi
t−1ξi)P (tξi | t−1ξi)

(4)
Following equation 4, we consider position update and ma-
turity separately. The model update defines which cells are
to be labeled in this iteration, reflecting step 3 in algorithm
1.

A. Position update
The first part of equation 4 shows that the change of

the mean position of a node is related to the maturity of
the region. Intuitively, the more mature a region is, the less
probable the position will change. The distribution over the
next position is therefore specified as a Gaussian distribution
centered on the previous position t−1µ, whose variance is
related to the maturity, as follows:

P (tµi | t−1µi
t−1ξi) ∼ N(tµi ; t−1µi, σi) (5)

where σi = ν eλ·
t−1(1−ξi). ν is a parameter that defines the

maximum step of the position change at each iteration, and
λ a parameter that defines the strength that maturity affects
the position change. It shows that when the region tend to
be mature, hence ξi → 1, the position of the region stays
unchanged,

B. Maturity update
Maturity tξi represents the following ratio in practice.

tξi =
#stable cells in regions i

#cells in region i
where a stable cell means that all its neighbor cells are
labeled. If all the cells for a certain region i are stable cells,
it indicates that the node will not change anymore, hence
ξi = 1.

Ideally the maturity of a region will tend to increase from
0 to 1.0 during the expansion of regions. A Markov process
of Beta distribution with high concentration at the mode is
used to demonstrate this relation, i.e.:

P (tξi | t−1ξi) ∼ Beta(tξi | t−1ξi;α, β)

where β =


α− 1
t−1ξi

+ 2− α, if t−1ξi 6= 0

α, otherwise

(6)



α is the parameter to define the sharpness of the Beta
distribution. β is defined by taking the mode of the Beta
distribution at t−1ξi. A greater α indicates a faster evolution
of the maturity α, namely faster to stop growing. 3

V. LABEL UPDATE

According to section IV, the models of nodes can be
updated separately. The label update process utilize the newly
estimated model at iteration t as the real model for the
node, i.e. tMi ≈ ˆtMi. According to Bayesian theory, the
probability distribution of the labeling over all the cells:

P (tLn | tM , t−1Ln) ∝ P (tLn | t−1Ln)P ( ˆtM | tLn,
t−1 Ln)

(7)
The second part is calculated by P ( ˆtM | tLn,

t−1 Ln) =
P ( ˆtM | tLn), considering the Markov property. Notice that
the update from current labeling tLn to current model ˆtM
is quite straightforward, if we consider each regional model
represents the nature of each region that is defined by a
distinctive label. As a result, the update of the models is
represented as:

P ( ˆtMi | tLn) ∼ N( ˆtµi;
tµi,Σi)N( ˆtξi;

tξi, σ̄i), (8)

where Σi and σ̄i are empirically small values.
Following algorithm 1, we assume the labeling of each

single cell are only locally dependent. Considering an arbi-
trary cell in the map, we could see that it has maximum
eight second ordered neighbors. The distributions of the
labels of these neighbors are multinomial distributions, by
which the label of the center cell is voted. In another word,
the voting operation can also be seen as a sampling from
the existing multinomial prior. The distribution is calculated
from the number of cells that have the same label. It means
that the sampling of the label for the center cell is subject
to a Dirichlet prior summarizing the neighbor labels. This
dependency is represented as follow.

P (tLc|t−1Lcn) ∝
B∏

m=1

ψlm−1
m (9)

where tLc is the label of an arbitrary cell c at iteration t,
t−1Lcn is the distribution of neighboring labels for cell c at
t−1. B is the number of different labels among the neighbor
cells, B ≤ K. ψm is the normalized ratio of label m among
the neighbor cells. lm is a count of label m, as multinomial
parameter.

By combining equation 9 8 and 7, the label of a cell is
finally determined by maximizing a posterior (MAP) defined
in equation 7.

VI. TESTS AND DISCUSSION

In application, the raw input are sparse indications
from human input. We consider these indications as semi-
supervisions. In another words, they define both the initial
state of each cluster model. We remap these indications to
the decomposed map and update t=0Ln accordingly.

3The results give in this paper use α = 5.

A. Comparison

We compare the proposed algorithm with the result of
seeded-Kmeans on the same dataset with same distance
definition. A comparison result is shown in figure 4. Figure
4(a) depicts a targeting simulated indoor environment. The
indications are direct manual inputs marked in blue color,
which are sparse and arbitrary information. The seeded-
EM result shown in figure 4(c) depicts how topological
regions are distributed based on the Euclidean distances. The
shortcoming is quite straightforward. The regions can not be
correctly parted especially the Euclidean distance can not
handle obstacles or blocked areas easily. The result using the
proposed approach, in figure 4(e), has strong improvement
in detecting compact regions while considering the maturity
of regions.

(a) Map and indication (b) seeded-Kmeans (c) our approach
Fig. 4. Result comparison

B. Results on real data-sets

From the given results, we could see that the proposed
method could handle the compactness of the topological
regions and human indications at the same time. As far
as the search and rescue mission is considered, we would
like to provide more results using real data-set in different
environment. Figure 5 shows a segmentation result in a
typical structured indoor environment. All the rooms and
corridor are correctly segmented in the metric map based
on the indication, shown in figure 5(c).

Figure 6 shows the result of a tunnel environment. The
blue indications mark the space among crashed cars and
wood tiles. We could see that the approach is able to create
topological regions only based on sparse spatial indications.

(a) Raw map and indications (b) Result of this paper
Fig. 5. Result of a typical structured indoor environment.

VII. CONCLUSION

In this paper, we introduce a novel iterative semi-
supervised clustering method using Markov process. We
present its application in a topological segmentation problem



Fig. 6. Tunnel environment. From left to right: Google Map of the region;
human indications; segmentation result.

based on sparse human indications. It is able to obtain a topo-
logical segmentation respecting sparse spatial indications, as
well as adapting to the local structure and compactness from
a metric map. Comparing to other methods, the proposed
approach can better adapt to specific needs of a human user
in different conditions.

It should be noted that this study has examined only
the case of a known configuration space. This limitation is
acceptable for off-line tasks such as mission level planning.
As for incremental mapping, slam, and navigation tasks,
the approach need to be adapted accordingly. For example,
intermediate metric maps can also be used to generate local
topological maps.
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