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UNIFORM ASSYMPTOTICS IN THE AVERAGE CONTINUOUS CONTROL OF

PIECEWISE DETERMINISTIC MARKOV PROCESSES : VANISHING

APPROACH ∗, ∗∗

Dan Goreac1 and Oana-Silvia Serea2

Abstract. We prove a uniform Abelian result for controlled systems with piecewise deterministic
Markov dynamics : the existence of a uniform limit for value functions with discounted costs as the
discount factor decreases to zero implies the existence of a (uniform) value function with long time
average cost. The result is independent of dissipativity properties of the control system.
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1. Introduction

For sequences of bounded real numbers (xn)n≥1 , Hardy and Littlewood (cf. [17]) have proved that the conver-

gence of the Cesàro means
(

1
n

∑n
i=1 xi

)

n≥1
is equivalent to the convergence of their Abel means

(

δ
∑∞

i=1 (1− δ)
i
xi

)

.

This result has been generalized by Feller (cf. [12], XIII.5) to the case of uncontrolled deterministic dynamics
in continuous time, [2] to deterministic controlled dynamics, etc. A further generalization (cf. [19]) allows the
limit value function with respect to a system governed by controlled deterministic dynamics to depend on the
initial data. In the Brownian diffusion setting, similar results have been obtained in [4].

Piecewise deterministic Markov processes (PDMP) have been introduced by Davis [8], [10]. The literature on
optimal control topics in connection to these processes is extremely wide ( [9], [20], [1], [11], [13], etc.). However,
the cited papers deal mainly with infinite-horizon, discounted costs. The literature on control problems with
long time average cost is less rich. To the best of our knowledge, the first papers to deal with average costs for
impulsive control problems were [5] and [14]. In the framework of continuous control, the first papers on the
long time average cost are [7] and [6].

Controlled piecewise deterministic Markov processes are given by their local characteristics: a vector field
f : RN × U → R

N that determines the motion between two consecutive jumps, a jump rate λ : RN × U → R+

and a transition measure Q : RN × U → P
(

R
N
)

. The set U is a compact metric space (the control space) and

R
N is the state space, for some N ≥ 1. We denote by Xx,u

· the trajectories associated to local characteristics
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(f, λ,Q) issued from x and controlled by u. The construction of controlled PDMPs and basic assumptions are
recalled in section 2.

Whenever δ, t > 0, the δ−discounted value function is given by

vδ (x) = inf
u
δE

[
∫ ∞

0

e−δrg (Xx,u
r ) dr

]

,

and the time averaged value function up to t by

Vt (x) = inf
u

1

t
E

[
∫ t

0

g (Xx,u
r ) dr

]

,

for all x ∈ R
N . Following the idea of [19], we propose a sufficient criterion for the existence of a (uniform) limit

value function for continuous control problems with long run average costs using a uniform vanishing technique.
The vanishing technique has also been employed by [7]. However, the formulation of the long time average
control problem is slightly different in our case. The cost functional in [7] is given by a lim sup formulation
(thus giving an inf/sup value function) :

inf
u

lim sup
t→∞

1

t
E

[
∫ t

0

g (Xx,u
r ) dr

]

= inf
T→∞

inf
u

sup
t≥T

1

t
E

[
∫ t

0

g (Xx,u
r ) dr

]

.

We partially extend the results of [19] to continuous control of piecewise deterministic Markov process. In our
main result (Theorem 4.1), we prove that, whenever limδ→0 v

δ exists uniformly on the state space, the limit
value lim

t→∞
Vt also exists (which gives a sup/inf long time average value function). Moreover, this limit is uniform

in space and the limit value functions coincide. This result can be seen of a counterpart of [7]. Our approach
(implicitely) relies on the theory of viscosity solutions for Hamilton-Jacobi integro-differential systems.

In the first section (section 2), we recall the standard assumptions and the construction of PDMP. Using the
so-called ”shaking of coefficients” method for PDMPs (see [18], [16]), we give some technical tools in section 3.
The main result is stated and proven in section 4.

2. Controlled PDMPs

We consider U (the control space) to be a compact subspace of a metric space R
d and R

N be the state
space, for some N, d ≥ 1.

Piecewise deterministic control processes have been introduced by Davis [10]. Such processes are given by
their local characteristics: a vector field f : RN ×U → R

N that determines the motion between two consecutive
jumps, a jump rate λ : RN × U → R+ and a transition measure Q : RN × U → P

(

R
N
)

. We denote by B
(

R
N
)

the Borel σ-field on R
N and P

(

R
N
)

the family of probability measures on R
N . For every A ∈ B

(

R
N
)

, the

function (x, u) 7→ Q (x, u,A) is assumed to be measurable and, for every (x, u) ∈ R
N × U , Q (x, u, {x}) = 0.

We summarize the construction of controlled piecewise deterministic Markov processes (PDMP). We let
L
0
(

R
N × R+;U

)

denote the space of U -valued Borel measurable functions defined on R
N × R+. Whenever

u ∈ L
0
(

R
N × R+;U

)

and (t0, x0) ∈ R+ × R
N , we consider the ordinary differential equation

{

dΦt0,x0,u
t = f

(

Φt0,x0,u
t , u (x0, t− t0)

)

dt, t ≥ t0,

Φt0,x0,u
t0

= x0.

We choose the first jump time T1 such that the jump rate λ
(

Φ0,x0,u
t , u (x0, t)

)

satisfies

P (T1 ≥ t) = exp

(

−

∫ t

0

λ
(

Φ0,x0,u
s , u (x0, s)

)

ds

)

.
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The controlled piecewise deterministic Markov processes (PDMP) is defined by

Xx0,u
t = Φ0,x0,u

t , if t ∈ [0, τ1) .

The post-jump location Y1 has Q
(

Φ0,x0,u
τ , u (x0, τ) , ·

)

as conditional distribution given τ1 = τ. Starting from
Y1 at time τ1, we select the inter-jump time τ2 − τ1 such that

P (τ2 − τ1 ≥ t / τ1, Y1) = exp

(

−

∫ τ1+t

τ1

λ
(

Φτ1,Y1,u
s , u (Y1, s− τ1)

)

ds

)

.

We set
Xx0,u

t = Φτ1,Y1,u
t , if t ∈ [τ1, τ2) .

The post-jump location Y2 satisfies

P (Y2 ∈ A / τ2, τ1, Y1) = Q
(

Φτ1,Y1,u
τ2

, u (Y1, τ2 − τ1) , A
)

,

for all Borel set A ⊂ R
N . And so on.

Throughout the paper, unless stated otherwise, we assume the following:
(A1) The function f : RN × U −→ R

N is uniformly continuous on R
N × U and there exists a positive real

constant C > 0 such that

|f (x, u)− f (y, u)| ≤ C |x− y| , and |f (x, u)| ≤ C, (A1)

for all x, y ∈ R
N and all u ∈ U.

(A2) The function λ : RN × U −→ R+ is uniformly continuous on R
N × U and there exists a positive real

constant C > 0 such that
|λ (x, u)− λ (y, u)| ≤ C |x− y| , and λ (x, u) ≤ C, (A2)

for all x, y ∈ R
N and all u ∈ U.

(A3) The function Q : R
N × U −→ P

(

R
N
)

is continuous on R
N × U and for each bounded uniformly

continuous function h ∈ BUC
(

R
N
)

, there exists a continuous function ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣

∣

∣

∣

∫

RN

h (z)Q (x, u, dz)−

∫

RN

h (z)Q (y, u, dz)

∣

∣

∣

∣

≤ ηh (|x− y|) . (A3)

(A4) For every x ∈ R
N and every decreasing sequence (Γn)n≥0 of subsets of RN ,

inf
n≥0

sup
u∈U

Q (x, u,Γn) = sup
u∈U

Q
(

x, u,∩
n
Γn

)

(A4a)

and
inf
n≥1

sup
x∈RN ,u∈U

Q
(

x, u,RN \B (x, n)
)

= 0. (A4b)

Remark 2.1. 1. Assumption (A3) can be somewhat weakened by imposing
(A3’) For each bounded uniformly continuous function h ∈ BUC

(

R
N
)

, there exists a continuous function
ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣

∣

∣

∣

λ (x, u)

∫

RN

h (z)Q (x, u, dz)− λ (y, u)

∫

RN

h (z)Q (y, u, dz)

∣

∣

∣

∣

≤ ηh (|x− y|) .

It is obvious that whenever one assumes (A3) and λ (·) is bounded, the assumption A3’ holds true. Moreover,
all the proofs in this paper can be obtained (with minor changes) when A3’ replaces A3.
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Similarly, one can replace in (A4) Q by λQ.
2. The assumptions (A1-A3) are quite standard when dealing with viscosity theory in PDMP. They appear

under this form in [20] and are needed to infer the uniform continuity of the value function. The assumption
(A4) is needed in the Appendix of [16] to provide stability properties of viscosity solutions. Roughly speaking,
(A4b) states that the probability of exiting the ball centered at the initial point is zero as the radius increases
to ∞. The main linearization result is independent of (A4) as soon as stability for the associated system is
provided.

3. To apply the ”shaking of coefficients” method of [18] (see also [3]), we need to strengthen (A3) (or (A3’))
and assume

(B) For each bounded uniformly continuous function h ∈ BUC
(

R
N
)

, there exists a continuous function
ηh : R −→ R such that ηh (0) = 0 and

sup
u1∈U,u2∈B(0,1)

∣

∣

∣

∣

∫

RN

h
(

z − u2
)

Q
(

x+ u2, u1, dz
)

−

∫

RN

h
(

z − u2
)

Q
(

y + u2, u, dz
)

∣

∣

∣

∣

≤ ηh (|x− y|) . (B)

For further details on these assumptions as well as for connections with stochastic gene networks, the reader is
referred to [15] and [16].

3. Some technical ingredients

Unless stated otherwise, the cost function g : RN −→ R is assumed to be bounded and Lipschitz-continuous.
Moreover, we may assume that 0 ≤ g (x) ≤ 1, for all x ∈ R

N .
For every finite time horizon t > 0, let us introduce the average value function by setting

Vt(x) = inf
u∈L0(RN×R+;U)

1

t
E

[
∫ t

0

g (Xx,u
s ) ds

]

,

for all x ∈ R
N .

For every δ > 0, the δ-discounted value function is given by

vδ(x) = inf
u∈L0(RN×R+;U)

δE

[
∫ ∞

0

e−δtg (Xx,u
t ) dt

]

,

for all x ∈ R
N . It is known (cf. [20]) that vδ is the unique bounded uniformly continuous viscosity solution of

δvδ (x)− δg (x) +H
(

x,∇vδ (x) , vδ
)

= 0, (1)

for all x ∈ R
N , where the Hamiltonian H is given by

H (x, p, ψ) = sup
u∈U

{

−〈f (x, u) , p〉 − λ (x, u)

∫

RN

(ψ (z)− ψ (x))Q (x, u, dz)

}

. (2)

Under the assumptions (A1-4) and (B), using the so-called ”shaking of coefficients” method (introduced in [18]
for Brownian diffusions), there exists a family of regular subsolutions of (1) denoted

(

vδε
)

ε>0
such that

lim
ε→0

sup
x∈RN

∣

∣vδε(x)− vδ (x)
∣

∣ = 0. (3)

For further details, the reader is referred to [16], eq. (11) and (15).
In particular, this allows one to obtain monotonicity results for the discounted value functions.
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Proposition 3.1. 1. For every T0 > 0, every initial data x ∈ R
N and every admissible control u ∈ L

0
(

R
N × R+;U

)

,
one has

lim inf
δ→0

vδ (x) ≤ lim inf
δ→0

E
[

vδ
(

Xx,u
T0

)]

.

2. For every x ∈ R
N , T0 > 0, every δ > 0 and every admissible control u ∈ L

0
(

R
N × R+;U

)

,

E
[

vδ
(

Xx,u
T0

)]

≤ E

[

δ

∫ ∞

0

e−δtg
(

Xx,u
T0+t

)

dt

]

. (4)

Proof. For the first assertion, we begin by fixing δ > 0. For ε > 0, we apply Itô’s formula (cf. Theorem 31.3
in [10]) to e−δ·vδε (X

x,u
· ) on [0, T0] (where v

δ
ε satisfy 3) to get

E
[

e−δT0vδε
(

Xx,u
T0

)]

= vδε (x) + E

[

∫ T0

0

e−δt
(

Uutvδε (X
x,u
t )− δvδε (X

x,u
t )

)

dt

]

.

By abuse of notation, we let

Uutφ (Xx,u
t ) = Uu(Xx,u

τi
,t−τi)φ (Xx,u

t ) , whenever τi ≤ t < τi+1,

where τi are the jump times appearing in section 2. Since the functions vδε are (regular) subsolutions of (1), one
gets

e−δT0E
[

vδε
(

Xx,u
T0

)]

≥ vδε (x)− δE

[

∫ T0

0

e−δtg (Xx,u
t ) dt

]

.

Taking the limit as ε→ 0, the equality (3) yields

e−δT0E
[

vδ
(

Xx,u
T0

)]

≥ vδ (x)− δE

[

∫ T0

0

e−δtg (Xx,u
t ) dt

]

.

The conclusion follows by taking liminf as δ → 0 and recalling that 0 ≤ g ≤ 1.
The proof of the second assertion is quite similar. For S > T0, one applies Itô’s formula to e−δ·vδε (X

x,u
· ) on

[T0, S], then lets S → ∞ and ε→ 0. Our proposition is now complete. �

The second ingredient is the following.

Proposition 3.2. If 1 > ε > 0, then, for all initial condition x ∈ R
N , all t > 0 and all u ∈ L

0
(

R
N × R+;U

)

for which

1

t
E

[
∫ t

0

g (Xx,u
r ) dr

]

≤ Vt (x) +
ε

3
,

one is able to find some 0 ≤ T ≤ t
(

1− ε
3

)

such that

1

s
E

[

∫ T+s

T

g (Xx,u
r ) dr

]

≤ Vt (x) + ε,

for every 0 < s ≤ t− T.

Proof. One introduces the set

A :=

{

s ∈ (0, t] :
1

s
E

[
∫ s

0

g (Xx,u
r ) dr

]

> Vt (x) + ε

}

.
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If the set is empty, T = 0 satisfies the conditions. Otherwise, one introduces T := sup {s : s ∈ A} . It is clear
that T ≤ t

(

1− ε
3

)

. Indeed, whenever s ∈
[

t
(

1− ε
3

)

, t
]

,

1

s
E

[
∫ s

0

g (Xx,u
r ) dr

]

≤
1

1− ε
3

(

Vt (x) +
ε

3

)

≤ Vt (x) + ε.

Moreover, the application ζ : (0, t] −→ R given by

ζ (s) :=
1

s
E

[
∫ s

0

g (Xx,u
r ) dr

]

,

for s ∈ (0, t] is continuous. The definition of T yields ζ (T ) ≥ Vt (x) + ε. Finally, for every 0 < s ≤ t− T,

1

s
E

[
∫ s

0

g (Xx,u
r ) dr

]

≤
1

s
((s+ T ) (Vt (x) + ε)− Tζ (T )) ≤ Vt (x) + ε.

The proof of our proposition is now complete. �

4. The uniform vanishing approach to long run averaging

We are now able to state and prove the main result of our paper.

Theorem 4.1. Let us assume that
(

vδ
)

δ>0
is a relatively compact subset of C

(

R
N ; [0, 1]

)

. Then, for every

v ∈ C
(

R
N ; [0, 1]

)

and every sequence (δm)m≥1 such that limm→∞ δm = 0 and
(

vδm
)

m≥1
converges uniformly

to v on R
N , the following equality holds true

lim inf
t→∞

sup
x∈RN

|Vt (x)− v (x)| = 0.

Remark 4.2. In particular, whenever vδ converges to some v∗ uniformly on R
N as δ goes to 0, the functions

Vt converge to v∗ uniformly on R
N as t → ∞. Conversely, whenever

(

vδ
)

δ>0
is a relatively compact subset of

C
(

R
N ; [0, 1]

)

, if Vt converge to some v∗ uniformly on R
N as t → ∞, then v∗ is the only limit point

(

vδ
)

δ>0

with respect to the usual topology on C
(

R
N ; [0, 1]

)

.

Proof. Let us fix v ∈ C
(

R
N ; [0, 1]

)

and some sequence
(

vδm
)

m≥1
converging uniformly to v on R

N .

Step 1. We claim that for every ε > 0, there exists T > 0 such that

Vt (x) ≥ v (x)− ε, (5)

for all t ≥ T and all x ∈ R
N .

We begin by fixing some ε > 0. Our uniform convergence assumption yields the existence of some m0 ≥ 1
such that

sup
y∈RN

∣

∣vδm(y)− v (y)
∣

∣ ≤
ε

8
,

for all m ≥ m0. Let us fix m ≥ m0. Since limT→∞

∫∞
Tε
4

δ2mse
−δmsds = 0, there exists some T > 0 for which

∫ ∞

Sε
6

δ2mse
−δmsds <

ε

8
. (6)

for all S ≥ T.
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Step 1.1. We reason by contradiction. Let us suppose that, for some ε > 0, for every T ′ > 0 there exists

some t ≥ T ′ and some x ∈ R
N such that

Vt (x) < v (x)− ε. (7)

In particular, one can find some t ≥ T satisfying (7). By proposition 3.2, one gets the existence of some
admissible control process u and some time horizon 0 ≤ T0 ≤ t

(

1− ε
6

)

such that

1

s
E

[

∫ s+T0

T0

g (Xx,u
r ) dr

]

≤ Vt (x) +
ε

2
< v (x)−

ε

2
, (8)

for every 0 < s ≤ tε
6 . One notices that (ω-wise), the function s 7→ φ (s) :=

∫ s

0
g
(

Xx,u
T0+r

)

dr is absolutely

continuous on the compact set
[

0, tε6
]

. Also, its (ds-almost everywhere) derivative coincides (ds-a.e.) with the
càdlàg function s 7→ g (Xx,u

s ). This equality should be understood P− a.e. In particular, using the integration
by parts formula for absolutely continuous functions and taking expectation, we get

δmE

[

∫ tε
6

0

e−δmsg
(

Xx,u
s+T0

)

ds

]

= δme
−δm

tε
6 E

[

∫ T0+
tε
6

T0

g (Xx,u
r ) dr

]

+ δ2mE

[

∫ tε
6

0

e−δms

∫ T0+s

T0

g (Xx,u
r ) drds

]

.

Hence, using the inequalities (8) and (6), then recalling that g ≤ 1, we have

δmE

[
∫ ∞

0

e−δmsg
(

Xx,u
s+T0

)

ds

]

= δmE

[

∫ tε
6

0

e−δmsg
(

Xx,u
s+T0

)

ds

]

+ δmE

[

∫ ∞

tε
6

e−δmsg
(

Xx,u
s+T0

)

ds

]

≤ δ2mE

[

∫ tε
6

0

se−δms 1

s

∫ T0+s

T0

g (Xx,u
r ) drds

]

+
ε

8

≤ v (x)−
3ε

8
. (9)

Step 1.2. The monotonicity Proposition 3.1 and the choice of δm yield

v (x)−
ε

8
≤ E

[

v
(

Xx,u
T0

)]

−
ε

8
≤ E

[

vδm
(

Xx,u
T0

)]

≤ δmE

[
∫ ∞

0

e−δmsg
(

Xx,u
s+T0

)

ds

]

.

We recall that the inequality (9) holds true to finally get

v (x)−
ε

8
≤ v (x)−

3ε

8
,

which is an obvious contradiction. The first step is now complete.
Step 2. We will show that, for every ε > 0, there exists m0 ≥ 1 such that

Vδ−1
m

(x) ≤ v (x) + ε, (10)

for all m ≥ m0 and all x ∈ R
N .

Once again, we argue by contradiction. We assume that, for some ε ∈
(

0, 29
)

and every m1 ≥ 1, there exists

some m ≥ m1 and some x ∈ R
N for which

Vδ−1
m

(x) > v (x) + ε.
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We define

η (ε) := e−(1−
ε
2 )
(

2−
ε

2

)

− 2e−1. (11)

One notices that limε→0 η (ε) = 0. The uniform convergence assumption yields the existence of some n0 such
that

vδm (y) ≤ v (y) +
εη (ε)

8
, (12)

for all m ≥ n0 and all y ∈ R
N . On the other hand, the inequality (5) yields the existence of some T0 > n0 such

that, for every s ≥ T0 and every y ∈ R
N , u ∈ U ,

E

[

1

s

∫ s

0

g (Xy,u
r ) dr

]

≥ Vs (y) ≥ v (y)−
εη (ε)

8
. (13)

Under our assumptions, for every m1 > T0, one finds some m ≥ m1 and some xm ∈ R
N such that, for every

control u ∈ L
0
(

R
N × R+;U

)

,

v (xm) + ε < Vδ−1
m

(xm) ≤ δmE

[

∫ δ−1
m

0

g (Xxm,u
r ) dr

]

.

In particular, for every admissible control process u and every δ−1
m

(

1− ε
2

)

≤ r ≤ δ−1
m ,

1

r
E

[
∫ r

0

g (Xxm,u
l ) dl

]

=
δ−1
m

r

(

δmE

[

∫ δ−1
m

0

g (Xxm,u
l ) dl

])

−

−
1

r
E

[

∫ δ−1
m

r

g (Xxm,u
l ) dl

]

≥
δ−1
m

r
(v (xm) + ε)−

δ−1
m − r

r
≥ v (xm) +

7ε

16
. (14)

We recall that g ≥ 0. For every admissible control process u ∈ L
0
(

R
N × R+;U

)

, using (14) and (13) and the
integration by parts formula for absolutely continuous functions, one has, for every R large enough,

δmE

[

∫ R

0

e−δmsg (Xxm,u
s ) ds

]

≥ E

[

∫ R

0

δ2mse
−δms 1

s

∫ s

0

g (Xxm,u
r ) drds

]

≥

∫ δ−1
m

δ−1
m (1− ε

2 )
δ2mse

−δms
E

[

1

s

∫ s

0

g (Xxm,u
r ) dr

]

ds

+

∫ R

0

1(T0,∞)\[δ−1
m (1− ε

2 ),δ
−1
m ] (s) δ

2
mse

−δms
E

[

1

s

∫ s

0

g (Xxm,u
r ) dr

]

ds

≥

(

v (xm) +
7ε

16

)

ω
(

δm, δ
−1
m

)

+

(

v (xm)−
εη (ε)

8

)
∫ R

0

1(T0,∞)\[δ−1
m (1− ε

2 ),δ
−1
m ] (s) δ

2
mse

−δmsds,

where ω (δ, t) := e−δ(t(1− ε
2 ))
(

δt
(

1− ε
2

)

+ 1
)

− e−δt (δt+ 1) . Taking R→ ∞, it follows that

δmE

[
∫ ∞

0

e−δmsg (Xxm,u
s ) ds

]

≥

(

v (xm) +
7ε

16

)

η (ε) +

(

v (xm)−
εη (ε)

8

)

(

e−T0δm (δmT0 + 1)− η (ε)
)

,



176 ESAIM: PROCEEDINGS AND SURVEYS

where η (ε) is given by (11). Hence, for m > m1 such that e−T0δm (T0δm + 1) ≥ 1− εη(ε)
16 ,

δmE

[
∫ ∞

0

e−δmsg (Xxm,u
s ) ds

]

≥

(

v (xm) +
7ε

16

)

η (ε)

+

(

v (xm)−
εη (ε)

8

)

((

e−T0δm (T0δm + 1)− η (ε)
))

≥ v (xm) +
7εη (ε)

16
−
εη (ε)

8
−
εη (ε)

16
≥ v (xm) +

εη (ε)

4
.

Since this inequality holds true for arbitrary u ∈ L
0
(

R
N × R+;U

)

, one gets

vδ
−1
m (xm) ≥ v (xm) +

εη (ε)

4
,

which comes in contradiction with (12). The proof of our theorem is now complete. �
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