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Abstract

We introduce a generalization of the Adaptive Multilevel Splitting algorithm in the
discrete time dynamic setting, namely when it is applied to sample rare events associated
with paths of Markov chains. By interpreting the algorithm as a sequential sampler in
path space, we are able to build an estimator of the rare event probability (and of any non-
normalized quantity associated with this event) which is unbiased, whatever the choice of
the importance function and the number of replicas. This has practical consequences on
the use of this algorithm, which are illustrated through various numerical experiments.

1 Introduction

The efficient sampling of rare events is a very important topic in various application fields
such as reliability analysis, computational statistics or molecular dynamics. Let us describe
the typical problem of interest in the context of molecular dynamics.

1.1 Motivation and mathematical setting

Let us consider the Markov chain (Xt)t∈N defined as the discretization of the overdamped
Langevin dynamics:

∀t ∈ N, Xt+1 −Xt = −∇V (Xt)h+
√

2β−1(Wt+h −Wt). (1)

Typically, Xt ∈ R3N is a high-dimensional vector giving the positions of N particles in R3

at time t h (h > 0 being the time step size), V : R3N → R is the potential function (for
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any set of positions x ∈ R3N , V (x) is the energy of the configuration), β−1 = kBT is the
inverse temperature and Wt is a standard Brownian motion (so that Wt+h −Wt is a vector
of 3N i.i.d. centered Gaussian random variables with variance h). In many cases of interest,
the dynamics (1) is metastable: the vector Xt remains trapped for very long times in some
so-called metastable states. This actually corresponds to a physical reality: the timescale at
the molecular level (namely h, the timestep being typically chosen at the limit of stability
for the stochastic differential equation) is much smaller than the timescales of interest, which
correspond to hopping events between metastable states. Let us denote by A ⊂ R3N and
B ⊂ R3N two (disjoint) metastable states. The problem is then the following: for some
initial condition outside A and B, how to efficiently sample paths which reach B before A?
In the context of molecular dynamics, such paths are called reactive paths. The efficient
sampling of reactive paths is a very important subject in many applications since it is a way
to understand the mechanism of the transition between metastable states (namely between
long-living conformations of the system under study). In mathematical terms, one is interested
in computing, for a given test function ϕ : (R3N )N → R depending on the path (Xt)t∈N of the
Markov chain, the expectation

E
(
ϕ
(
(Xt)t∈N

)
1τB<τA

)
(2)

where τA = inf{t ∈ N : Xt ∈ A}, τB = inf{t ∈ N : Xt ∈ B} and X0 = x0 /∈ (A∪B) is assumed
(for simplicity) to be a deterministic initial position close to A: most trajectories starting from
x0 hit A before B. If ϕ = 1, the above expectation is P(τB < τA), namely the probability
that the Markov chain reaches B before A. This is typically a very small probability: since A
is metastable and x0 is close to A, for most of the realizations, τA is smaller than τB. This is
why naive Monte Carlo methods will not give reliable estimates of (2). We refer for example
to [3, 10] for some examples in the context of molecular simulation.

1.2 The adaptive multilevel splitting algorithm

Many techniques have been proposed in the literature in order to compute quantities such
as (2), in particular control variate techniques, importance sampling methods and splitting
algorithms (see for example the monograph [6] on rare event simulations). Here, we focus
on the Adaptive Multilevel Splitting (AMS) method which has been proposed in [8]. Let us
roughly describe the principle of the method. The crucial ingredient we need is an importance
function:

ξ : R3N → R (3)

which will be used to measure the advance of the paths towards B. This function is known as
a reaction coordinate in the molecular dynamics community, and this is the terminology we
will use here. In this paper, we will also call ξ(Xt) the level of the process Xt at time t. A
useful requirement on ξ is the existence of zmax ∈ R such that

B ⊂ {x ∈ R3N : ξ(x) ∈]zmax,∞[}.

For any path of the Markov chain, we call the maximum level of this path the quantity

sup{ξ(Xt∧τA)t∈N}.

Then, starting from a system of nrep replicas (namely paths with initial conditions x0 and
stopped at time τA), the idea is to remove the worst fitted paths and to duplicate the best
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fitted paths while keeping a fixed number of replicas (we will discuss below generalizations
of the AMS algorithm where the number of replicas may vary). The worst fitted paths are
those with the smallest maximum levels sup{ξ(Xt∧τA)t∈N}. As soon as one of the worst fitted
paths is removed, it is replaced by a resampling of one of the best fitted path: the new path
is a copy of the best fitted path up to the maximum level of the removed paths, and the end
of the trajectory is then sampled using independent random numbers. The algorithm thus
goes through three steps: (i) the level computation step (to determine the level under which
paths will be removed) ; (ii) the splitting step (to determine which paths will be removed and
which ones of the remaining best fitted paths will be duplicated) ; (iii) the resampling step
(to generate new paths from the selected best fitted paths). By iterating these three steps,
one obtains successively systems of nrep paths with an increasing minimum of the maximum
levels among the replicas. The algorithm is stopped when this minimum is larger than zmax,
and an estimator of (2) is then built using a weighted empirical average over the replicas. The
adaptive feature of the algorithm is in the first step (the level computation step): indeed, at
each iteration, paths are removed if their maximum level is below some threshold, and these
thresholds are determined iteratively using empirical quantiles, rather than by fixing a priori
a deterministic sequence of levels (as it would be the case in standard sequential Monte Carlo
algorithms, see [11, 7]). All the details of the algorithm will be given in Section 2.5.

In this work we focus on the application of AMS to sample Markov chains, namely discrete
time stochastic dynamics, and not continuous time stochastic dynamics as in [8] for example.
The reason is mainly practical: in most cases of interest, even if the original model is continuous
in time, it is discretized in time when numerical approximations are needed. There are actually
also many cases where the original model is discrete in time (for example kinetic Monte Carlo
or Markov State Models in the context of molecular dynamics).

The discrete time setting, which is thus of practical interest, raises specific questions in the
context of the AMS algorithm. First, in the resampling step, a natural question is whether
the path should be copied up to the last time before or first time after it reaches the level of
the removed paths. Second, in the discrete time context, it may happen that several paths
have exactly the same maximum level. This implies some subtleties in the implementation of
the splitting step which have a large influence on the quality of the estimators, see Section 5.1.

1.3 Main results and outline

The main results of this work are the following:

• We prove that the AMS algorithm for Markov chains with an appropriate implementa-
tion of the level computation and splitting steps yields an unbiased estimator of the rare
event probability, and more generally of any non-normalized expectation related to the
rare event of the form (2). We actually prove this unbiasedness result for a general class
of splitting algorithm which enters into what we call the Generalized Adaptive Multilevel
Splitting (GAMS) framework.

• Using this GAMS framework, we propose various generalizations of the classical AMS
algorithm which all yield unbiased estimators, in particular to remove extinction and to
reduce the computational cost associated with sorting procedures. Moreover, we show
how the general setting we introduce allows for the sampling of other random variables
than trajectories of Markov chains.
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• We illustrate numerically on toy examples the importance of an appropriate imple-
mentation of the level computation and splitting steps in the AMS algorithm to get
unbiasedness. We also discuss through various numerical experiments the influence of
the choice of the reaction coordinate ξ on the variance of the estimators and we end up
with some practical recommendations in order to get reliable estimates using the AMS
algorithm (see Section 5.4). In particular, using the unbiasedness property proven in
this paper, it is possible to compare the results obtained using different parameters (in
particular different reaction coordinates) in order to assess the quality of the numerical
results.

Compared to the previous results in the literature concerning the AMS algorithm, the
main novelty of this work is the proof of the unbiasedness in a general setting and whatever
the parameters: the number of replicas, the (minimum) number of resampled replicas at each
iteration and the reaction coordinate ξ. The proof of unbiasedness relies on the interpretation
of the AMS algorithm as a sequential Monte Carlo algorithm in path space with the reaction
coordinate as a time index, in the spirit of [16] (the selection and mutation steps respectively
corresponds to the branching step and the resampling step in the AMS algorithm). This anal-
ogy is made precise in Section 3.4. In previous results, see for instance [5, 15, 22], unbiasedness
is proved in an idealized setting, namely for the specific reaction coordinate (known as the
committor function) ξ(x) = Px(τB < τA), and for a different resampling step, where new
replicas are sampled according to the conditional distribution of paths conditioned to reach
the level of the removed replicas. In many cases of practical interest, these two conditions are
not met.

In addition, we illustrate through extensive numerical experiments the influence of the
choice of ξ on the variance. Indeed, as for any Monte Carlo algorithm, the bias is only one
part of the error when using the AMS algorithm: the statistical error (namely the variance) also
plays a crucial role in the quality of the estimator as will be shown numerically in Section 5.
There are unfortunately very few theoretical results concerning the influence of the choice
of ξ on the statistical error. We refer to [4, 9] for an analysis of the statistical error. For
discussions of the role of ξ on the statistical error, we also refer to [14, 13, 20]. In particular,
in the numerical experiments, we discuss situations for which the confidence intervals of the
estimators associated with different reaction coordinates do not overlap if the number of
independent realizations of the algorithm is not sufficiently large. We relate this observation
to the well-known phenomenon of “apparent bias” for splitting algorithms, see [14].

We would like to stress that our results hold in the setting where a family of resampling
kernel indexed by the levels is available (see Section 3.1.2 for a precise definition). This applies
in particular well to the sampling of the probability of trajectories of Markov dynamics (see
Section 3.5.4 for another possible setting). In the terminology of [16], we have in mind the
dynamic setting (considered for example in [8]), and not the static setting (considered for
example in [7, 9]).

The paper is organized as follows. The AMS algorithm applied to the sampling of paths
of Markov chains is described in Section 2. This algorithm actually enters into a more gen-
eral framework, the Generalized Adaptive Multilevel Splitting (GAMS) framework which is
described in detail in Section 3. The interest of this generalized setting is twofold. First, it is
very useful to allow for variants of the classical AMS algorithm which will still yield unbiased
estimators (some of them are described in Section 3.5). Second, it highlights the essential
mathematical properties that are required to produce unbiased estimators of quantities such
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as (2). This is the subject of Section 4 which is devoted to the main theoretical result of this
work: the unbiasedness of some estimators, including estimators of (2). Finally, Section 5 is
entirely devoted to some numerical experiments which illustrate the unbiasedness result, and
discuss the efficiency of the AMS algorithm to sample rare events.

1.4 Notation

Before going into the details, let us provide a few general notations which are useful in the
following.

• The underlying probability space is denoted by (Ω,F ,P). We recall standard notations:
form σ-fields F1, . . . ,Fm ⊂ F , F1∨. . .∨Fm denotes the smallest σ-field on Ω containing
all the σ-fields F1, . . . ,Fm. For any t, s ∈ N, t ∧ s = min{t, s}. We use the convention
inf ∅ = +∞. For two sets A and B which are disjoint, A t B denotes the disjoint set
union.

• We work in the following standard setting: random variables take values in state spaces
E which are Polish (namely metrizable, complete for some distance dE and separable).
The associated Borel σ-field is denoted by B(E). We will give precise examples below
(see for example Section 2.1 for the space of trajectories for Markov chains).

Then Proba(E) denotes the set of probability distributions on E . It is endowed with
the standard Polish structure associated with the Prohorov-Levy metric which metrizes
convergence in distribution, i.e. weak convergence of probabilities tested on continuous
and bounded test functions (see for example [1]).

The distribution of a E-valued random variable X will be denoted by Law(X).

• If E1 and E2 are two Polish state spaces, a Markov kernel (or transition probability
kernel) Π(x1, dx2) from E1 to E2 is a measurable map from initial states in x1 ∈ E1, to
probability measures in Proba(E2).

• We use the following standard notation associated with probability transitions: for ϕ :
E2 → R a bounded and measurable test function,

Π(ϕ)(x1) =

∫
x2∈E2

ϕ(x2)Π(x1, dx2). (4)

Similarly, we use the notation π(ϕ) =
∫
x∈E2 ϕ(x)π(dx) for π ∈ Proba(E2).

• LetX1 andX2 be random variables respectively with values in E1 and E2 and Π a Markov
kernel from E1 to E2. In the algorithms we describe below, we will use the notion of
conditional sampling: X2 is sampled conditionally on X1 with law Π(X1, . ) (denoted by
X2 ∼ Π(X1, . )) rigorously means that X2 = f(X1, U) a.s. where, on the one hand, U
is some random variable independent of X1 and of all the random variables introduced
before (namely at previous iterations of the algorithm) and, on the other hand, f is a
measurable function which is such that Π(x1, . ) = Law(f(x1, U)), for Law(X1)-almost
every x1 ∈ E1.

• A random system of replicas in E is denoted by

X =
(
X(n)

)
n∈I
∈ Erep, card I < +∞, (5)
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where I ⊂ N∗ is a random finite subset of labels and (X(n))n∈I are elements of E . The
space Erep is endowed with the following distance: for X 1 =

(
x(1,n)

)
n∈I1 and X 2 =(

x(2,n)
)
n∈I2 in Erep, we set

d(X 1,X 2) =

{
2 if I1 6= I2,

min
{∑

n∈I1 dE(x
(1,n), x(2,n)), 1

}
if I1 = I2.

Endowed with this distance, the set Erep is Polish and we denote by B(Erep) the Borel
σ-field. This σ-field can also be written as follows:

B(Erep) =
⊔
I∈I
B(E)card I

where I denotes the ensemble of finite subsets of N∗ (which is a discrete set).

• When we consider systems of weighted replicas, to each replicaX(n) of the system X with
label n ∈ I is attached a weightG(n) ∈ R+, and we use the notation X =

(
X(n), G(n)

)
n∈I .

The topological setting is the same as in the previous item, E being replaced by the
augmented state space E × R.

2 The AMS algorithm for Markov chains

The aims of this section are to define the AMS algorithm applied to paths of a Markov chain
(namely discrete time stochastic processes) and to state the main result on the unbiasedness
of properly defined estimators in this setting.

A special care should be taken to treat the situations when many replicas have the same
maximum level, or the situations when there is extinction of the population of replicas. These
aspects were not treated in details in many previous works where continuous time diffusions
were considered.

2.1 The Markov chain setting

Let X̃ = (X̃t)t∈N be a Markov chain defined on a probability space (Ω,F ,P), with probability
transition P . We assume that X̃t takes values in a Polish state space S. Without loss of
generality, we assume that X̃0 = x0 where x0 ∈ S is a deterministic initial condition. The
generalization to a random initial condition X̃0 is straightforward.

The path space is denoted by

P = {x = (xt)t∈N : xt ∈ S for all t ∈ N} . (6)

It is well-known that, by introducing the distance dP(x, y) =
∑

t∈N
1
2t

(
1 ∧ sups≤tdS(xs, ys)

)
(which is a metric for the product topology), the space (P, dP) is again complete and separable.
We denote by B(P) the corresponding Borel σ-field. We thus see X̃ as a random variable with
values in P.

The set of paths (P,B(P)) is endowed with the natural filtration in time (Bt)t∈N: Bt ⊂
B(P) is the smallest σ-field such that (xs)s∈N ∈ P 7→ (x1, . . . , xt) ∈ St is measurable. The
natural filtration for a given Markov chain X̃ defined on (Ω,F ,P) with values in S is then
given by the pullback of the filtration (Bt)t∈N by X̃ : (Ω,F)→ (P,B(P)).
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2.2 The rare event of interest

Given two disjoint Borel subsets A and B of S, our main objective is the efficient sampling of
events such as {τB < τA} where

τA = inf
{
t ∈ N : X̃t ∈ A

}
and τB = inf

{
t ∈ N : X̃t ∈ B

}
are respectively the first entrance times in A and B. Both τA and τB are stopping times with
respect to the natural filtration of the process X̃.

We are mainly interested in the estimation of the probability P(τB < τA) in the rare event
regime, namely when this probability is very small (typically less than 10−8). This occurs for
example if the initial condition x0 ∈ Ac ∩ Bc is such that x0 is close to A, and A and B are
metastable regions for the dynamics. The Markov chain starting from (a neighborhood of) A
(resp. B) remains for a very long time near A (resp. B) before exiting, and thus, the Markov
chain starting from x0 reaches A before B with a probability close to one. Specific examples
will be given in Section 5.

Let us introduce the Markov chain stopped at time τA: X = (Xt)t∈N where

Xt = X̃t∧τA for any t ∈ N. (7)

The probability distribution of the stopped Markov chain X (seen as a P-valued random
variable) is denoted by

π = Law (X) ∈ Proba(P). (8)

The probability of interest can be rewritten in terms of π:

P(τB < τA) = Eπ
(
1TB(X)<TA(X)

)
where we denote for any path x ∈ P

TA(x) = inf {t ∈ N : xt ∈ A} and TB(x) = inf {t ∈ N : xt ∈ B} .

More generally, the algorithm allows us to estimate expectations of the following form:

π(ϕ) = E (ϕ(X)) , (9)

for any observable ϕ : P → R such that π(|ϕ|) is finite.

Remark 2.1 (On the stopping times τA and τB). We defined above the stopping times as
first entrance times in some sets A and B. As will become clear below, the definition of the
algorithm and the unbiasedness result only require τA and τB to be stopping times with respect
to the natural filtration of the chain X̃ (i.e. TA and TB to be stopping times on (P,B(P))
endowed with the natural filtration).

2.3 Reaction coordinate

The crucial ingredient we need to introduce the AMS algorithm is an importance function, also
known as a reaction coordinate or an order parameter in the context of molecular dynamics.
This is a measurable R-valued mapping defined on the state space S:

ξ : S → R.
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The choice of a good function ξ for given sets A and B is a difficult problem in general. One
of the main aims of this paper is to show that whatever the choice of ξ, it is possible to define
an unbiased estimator of (9). The only requirement we impose on ξ is that there exists a
constant zmax ∈ R such that

B ⊂ ξ−1 (]zmax,+∞[) . (10)

In what follows, the values of ξ are called levels and we will very often refer to the maximum
level of a path, defined as follows:

Definition 2.2. For any path x ∈ P, the maximum level of x is defined as the supremum of
ξ along the path x stopped at TA(x):

Ξ(x) = sup{ξ(xt∧TA(x))t∈N} ∈ R ∪ {+∞} . (11)

The function Ξ can be seen as a reaction coordinate on the path space P.
We also introduce for any level z ∈ R and any path x ∈ P

Tz(x) = inf{t ∈ {0, . . . ,TA(x)} : ξ(xt) > z}, (12)

which is the first entrance time of the path x stopped at TA(x) in the set ξ−1(]z,+∞[). We
emphasize on the strict inequality in the above definition of the entrance times Tz(x): it is one
of the important ingredients of the proof of the unbiasedness of the estimator of (9). Notice
that the above assumption (10) on B is equivalent to the inequality

∀x ∈ P, Tzmax(x) ≤ inf{t ∈ {0, . . . ,TA(x)} : xt ∈ B}.

We denote by
τz = Tz(X) = inf{t ∈ {0, . . . , τA} : ξ(Xt) > z}. (13)

the entrance time associated with the (stopped) Markov chain X. It is a stopping time for
the natural filtration of the Markov chain.

Remark 2.3 (On Assumption (10)). Assumption (10) is extremely useful in practice when
computing approximations of averages of the form Eπ

(
ϕ(X)1TB(X)<TA(X)

)
: it is possible to

remove from memory the replicas which are “declared retired” in the splitting step at each
iteration in the AMS algorithm described below, since by construction we know in advance
that they will not contribute to the computation of the associated estimator. The algorithm
thus only requires to retain a fixed number of replicas, denoted by nrep below.

2.4 Resampling kernel

The AMS algorithm is based on an interacting system of weighted replicas. At each iteration,
copies of the Markov chain are simulated (in parallel) and are ranked according to their
maximum level. The less fitted trajectories, according to their maximum level, are resampled
according to a resampling kernel. For any z ∈ R the resampling kernel πz (which is in fact a
transition probability kernel from R× P to P) is denoted by

πz :

{
P → Proba(P)

x 7→ πz(x, dx
′)

(14)
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and is defined as follows: for any x ∈ P, πz(x, dx′) is the law of the P-valued random variable
Y such that {

Yt = xt if t ≤ Tz(x)

Law(Yt|Ys, 0 ≤ s ≤ t− 1) = P (Yt−1, . ) if t > Tz(x)
(15)

and is stopped at TA(Y ) when Y hits A. We recall that P is the transition kernel of the
Markov chain X. In other words, for t ≤ Tz(x), Y is identically x, while for t > Tz(x),
Yt is generated according to the Markov dynamics on S, with probability transition P , and
stopped when reaching A. We thus perform a branching of the path x at time Tz(x) and
position xTz(x).

Notice that the definition of the resampling kernel implies that if Ξ(x) ≤ z, then the
resampling kernel does not modify x: Tz(x) = +∞ and πz(x, dx

′) is a Dirac mass: Yt =
xt∧TA(x) for any t ∈ N.

One of the important ingredients to prove the unbiasedness of the estimator of (9) is
the following right-continuity property: for all x ∈ P, and for any continuous bounded test
function ϕ : P → R, the mapping

z 7→
∫
P
ϕ(x′)πz(x, dx

′)

is right-continuous, see Section 3.3 for a proof of this statement.

2.5 The AMS algorithm

In this section, we introduce the AMS algorithm in the specific context of sampling of Markov
chain trajectories. The associated unbiased estimator of (9) is given in the next section. A
generalized adaptive multilevel splitting framework which encompasses the AMS algorithm
described here will be provided in Section 3.

Short description of the AMS algorithm In addition to the choice of the reaction
coordinate ξ, the two parameters of the algorithm are nrep, the number of replicas, and
k ∈ {1, . . . , nrep−1} the (minimum) number of replicas resampled at each step of the algorithm.
At the q-th iteration, the replicas of the Markov chain X are denoted by X(n,q) where n is the
label of the replica. The algorithm defines a non-decreasing sequence of random levels Z(q).
At the beginning of iteration q, the level Z(q) is the k-th order statistics of the maximum levels
of the “working” replicas X(n,q) (the notion of “working” replicas is defined below). Then, all
replicas with maximum levels lower or equal to Z(q) are declared retired, and resampled in
order to keep a fixed number nrep of replicas with maximum level strictly larger than Z(q). As
explained above, the resampling procedure consists in duplicating one of the replica such that
its maximum level is larger than Z(q) up to the time τZ(q) , and then in using the resampling
kernel, which amounts in completing the trajectory up to time τA with the Markov transition
kernel P . The set of labels of the nrep replicas obtained at the end of the q-th iteration and
which, by construction, all have a maximum level larger than Z(q) is denoted by I(q+1)

on . The
subscript “on” indicates that these are the replicas which have to be retained to pursue the
algorithm (the so-called “working” replicas in the terminology introduced below). Consistently,
the subscript “off” refers to the “retired” replicas at a given iteration. The algorithm stops
either if the level zmax is reached (namely Z(q) > zmax) or if all the replicas at the end
of iteration q have maximum levels lower than or equal to the k-th order statistics. The
(random) number of iterations is used in the definition of the unbiased estimator of (9).
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Full description of the AMS algorithm The AMS algorithm generates iteratively a
system of weighted replicas in the state space Prep, using selection and resampling steps.

In order to define an estimator of π(ϕ) for any observable ϕ, we will need to consider the
set I(q)

off of all the labels of the replicas which have been declared retired before iteration q
(namely those with a maximum level smaller or equal than Z(q−1)), and we will denote by
I(q) = I

(q)
on t I(q)

off the set of all the labels of the replicas generated by the algorithm. We recall
that t denotes the disjoint set union. Notice that the cardinal of I(q) is increasing, while
card I

(q)
on = nrep for any q. At step q, the replicas with labels in I

(q)
on are referred to as the

working replicas, and the replicas with labels in I
(q)
off as the retired replicas. The unbiased

estimator of (9) associated with the AMS algorithm will be defined in the next section.
We are now in position to introduce the AMS algorithm in full detail (see Figure 1 for a

schematic representation).

The initialization step (q = 0)

(i) Let
(
X(n,0)

)
1≤n≤nrep

be i.i.d. replicas in P distributed according to π, defined by (8).

At this initial stage, all replicas are working replicas i.e. I(0) = I
(0)
on = {1, . . . , nrep} and

I
(0)
off = ∅.

(ii) Initialize uniformly the weights: G(n,0) = 1/nrep for n ∈ {1, . . . , nrep}.

(iii) Compute the order statistics of
(
Ξ(X(n,0))

)
n∈I(0)

on
: namely a permutation Σ(0) of the set

of labels I(0)
on = {1, . . . , nrep} such that

Ξ(X(Σ(0)(1),0)) ≤ . . . ≤ Ξ(X(Σ(0)(nrep),0))

and set the initial level as the k-th order statistics1:

Z(0) = Ξ(X(Σ(0)(k),0)).

(iv) If card
{
n ∈ I(0)

on : Ξ(X(n,0)) ≤ Z(0)
}

= nrep, then set Z(0) = +∞.

Iterations Iterate on q ≥ 0, while the following stopping criterion is not satisfied.

The stopping criterion If Z(q) > zmax, then the algorithm stops. When it is the case, set
Qiter = q. Else perform the following four steps.

The splitting (branching) step

(i) Consider the following partition of the working replicas’ labels in I(q)
on :

I(q)
on = I

(q)

on,≤Z(q) t I
(q)

on,>Z(q)

1Notice that Σ(0) is not necessarily unique since several replicas may have the same maximum level. Nev-
ertheless, the level Z(0) does not depend on the choice of Σ(0). The same remark applies to the definition of
the level Z(q+1) at iteration q ≥ 0, see Remark 2.4.
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where replicas with maximum level smaller or equal than Z(q) have labels in

I
(q)

on,≤Z(q) =
{
n ∈ I(q)

on , Ξ(X(n,q)) ≤ Z(q)
}
,

while the set of replicas’ labels with maximum level strictly larger than Z(q) is

I
(q)

on,>Z(q) =
{
n ∈ I(q)

on , Ξ(X(n,q)) > Z(q)
}
.

We set K(q+1) = card I
(q)

on,≤Z(q) = nrep − card I
(q)

on,>Z(q) . The set I(q)
on denotes the working

replicas at the beginning of iteration q. Among them, the replicas with labels in I(q)

on,≤Z(q)

will be declared retired and replaced by branching replicas with labels in I(q)

on,>Z(q) using

the resampling kernel πZ(q) , as explained below. Notice that necessarily, card I
(q)

on,>Z(q) ≥
1 (otherwise the stopping criterion has been fulfilled before entering the splitting step of
iteration q, namely Z(q) = +∞).

(ii) Introduce a new set I(q+1)
new =

{
card I(q) + 1, . . . , card I(q) +K(q+1)

}
∈ N∗ \ I(q) of labels

for the new replicas sampled at iteration q.

(iii) Define the children-parent mapping P (q+1) : I
(q+1)
new → I

(q)

on,>Z(q) as follows:
(
P (q+1)

(
card I(q) + `

))
1≤`≤K(q+1)

are K(q+1) random labels independently and uniformly distributed in I(q)

on,>Z(q) .

This mapping associates to the label of a new replica the label of its parent. The parent
replica (with label in I

(q)

on,>Z(q)) is used in the resampling procedure to create the new

replica (with label in I(q+1)
new ).

(iv) For any n ∈ I(q)

on,>Z(q) , the branching number

B(n,q+1) = 1 + card
{
n′ ∈ I(q+1)

new : P (q+1)(n′) = n
}

(16)

represents the number of offsprings ofX(n,q). The replicaX(n,q) will be split into B(n,q+1)

replicas: the old one X(n,q) with label n ∈ I(q)

on,>Z(q) and, if B(n,q+1) > 1, B(n,q+1) − 1

new ones with labels n′ ∈ I(q+1)
new such that P (q+1)(n′) = n .

(v) The sets of new labels are then updated as follows:

I(q+1)
on = I

(q)

on,>Z(q) t I(q+1)
new , I

(q+1)
off = I

(q)
off t I

(q)

on,≤Z(q) , I(q+1) = I(q+1)
on t I(q+1)

off .

Notice that by construction card I
(q+1)
on = nrep.

The weights are updated with the following rule:
G(n,q+1) = G(n,q) n ∈ I(q+1)

off

G(n,q+1) =
nrep−K(q+1)

nrep
G(n,q) n ∈ I(q)

on,>Z(q)

G(n,q+1) = G(P (q+1)(n),q+1) n ∈ I(q+1)
new .

(17)
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Observe that for n ∈ I(q+1)
on ,

G(n,q+1) =
nrep −K(q+1)

nrep

nrep −K(q)

nrep
. . .

nrep −K(1)

nrep

1

nrep
.

Moreover, the weight of a replica remains constant as soon as it is retired (namely from
the first iteration q such that its label is in I(q+1)

off ).

The resampling step

(i) Replicas in I(q) are not resampled: for n ∈ I(q), X(n,q+1) = X(n,q).

(ii) For n′ ∈ I(q+1)
new ,X(n′,q+1) is sampled according to the resampling kernel πZ(q)(X(P (q+1)(n′),q), dx′)

defined in Section 2.4. The new replica X(n′,q+1) is thus obtained by branching its parent
replica X(P (q+1)(n′),q).

The level computation step Compute the order statistics of
(
Ξ(X(n,q+1))

)
n∈I(q+1)

on
, namely

a bijective mapping Σ(q+1) : {1, . . . , nrep} → I
(q+1)
on (we recall that card I

(q+1)
on = nrep) such

that
Ξ(X(Σ(q+1)(1),q+1)) ≤ . . . ≤ Ξ(X(Σ(q+1)(nrep),q+1))

and set the new level as the k-th order statistics:

Z(q+1) = Ξ(X(Σ(q+1)(k),q+1)). (18)

If card
{
n ∈ I(q+1)

on : Ξ(X(n,q+1)) ≤ Z(q+1)
}

= nrep then set Z(q+1) = +∞.

Increment Increment q ← q + 1, and go back to the stopping criterion step.

Notice that Qiter is such that

Qiter = inf{q ≥ 0 : Z(q) > zmax}.

The number of times the loop consisting of the three steps (splitting / resampling / level
computation) is performed is exactly Qiter.

If Z(Qiter) = +∞, none of the working replicas at the iteration Qiter − 1 is above the
new level Ξ(X(Σ(Qiter)(k),Qiter)) and thus, all of them would have been declared retired at the
iteration Qiter: this situation is referred to as extinction.

Remark 2.4 (On the number of resampled replicas). It is very important to notice that the
number of resampled replicas is at least k, but may be larger than k. In other words, at
iteration q, with the above notation, K(q+1) may be larger than k. This requires at least
two replicas to have Z(q) as the maximum level at the beginning of iteration q. Actually, it
may even happen that, in the level computation step, all the replicas in I(q+1)

on have Z(q+1) as
the maximum level, which implies extinction: card

{
n ∈ I(q+1)

on : Ξ(Xn,q+1) ≤ Z(q+1)
}

= nrep,

Z(q+1) = +∞ and the algorithm stops.
As an example, let us explain a three step procedure which leads two replicas to have the

same maximum level, which in addition is the minimum of the maximum levels over all the
working replicas, in the case k = 1.

Assume that in the splitting and resampling steps, the three following events occur (see
Figure 2 for a schematic representation):
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Z(0)

Z(1)

Ξ
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1
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q = 0 q = 1
q

1

Figure 1: Schematic representation of the first iteration of the AMS algorithm, with nrep = 4
and k = 2. The replicas numbered 2 and 4 are declared retired at the first iteration, and are
replaced by the replicas with label 5 and 6, which are respectively resampled from the replicas
with labels 3 and 1.

1. One of the selected replica (referred to as X) has the smallest maximum level among all
the others in I(q)

on,>Z(q) .

2. The first time TZ(q)(X) where this replica goes beyond the current level Z(q) also corre-
sponds to the time at which this replica reaches its maximum level:

ξ
(
XT

Z(q) (X)

)
= Ξ(X).

3. By the resampling procedure, the new replica (referred to as Y ) which is generated
(starting from XT

Z(q) (X) at time TZ(q)(X), see the resampling kernel (14)–(15)) is such
that ξ(Yk) ≤ ξ(XT

Z(q) (X)) = Ξ(X) for all k > TZ(q)(X). Thus the new replica Y has
the same maximum level as the selected replica X: Ξ(Y ) = Ξ(X).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

Figure 2: Schematic representation of a procedure leading to the equality of the maximum
levels (y-axis) of two replicas. We represent the evolution of the level of each replica at discrete
times (x-axis). Left: the current level Z(q) is the maximum level of the green-crosses replica.
The blue-squares replica has been selected to be resampled. Right: action of the resampling,
where the new black-crosses replica has the same maximum level as the selected replica. Here
A = {x : ξ(x) < −0.5} and B = {x : ξ(x) > 1}, and zmax = 1.
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Then, at the next iteration, one obtains two replicas which have the same maximum level,
which is the minimum of the maximum levels over all working replicas. As a consequence,
both replicas will be resampled at the next iteration of the algorithm, even if k = 1.

By iterating the procedure, one can thus obtain many replicas having this same maximum
level, or even all replicas having the same maximum level (which leads to extinction). Other
similar procedures can lead to the equality of the maximum levels of two (or more) different
replicas. For instance, even if the selected replica in the first step of the procedure above
does not have the smallest maximum level among others (the first step is thus skipped), the
two next steps will still create two replicas with the same maximum level. This implies that
in some next iteration of the algorithm more than k replicas will be declared retired and
resampled.

The three events above have small probabilities especially if nrep is large, or if the time-step
size is small if one thinks of the Markov Chain as the time discretization of a continuous time
diffusion process (such as (1)). But in practice, over many iterations and many independent
runs, such situations are actually observed and must be taken into account carefully in the
definition of the algorithm. In Section 5.1, we investigate in a simple test case the phenomenon
described in this remark, and we illustrate the importance of a proper implementation of the
splitting and resampling steps in such situations, in order to obtain unbiased estimators.

2.6 The AMS estimator

For any bounded observable ϕ : P → R, a realization of the above algorithm gives an estimator
of the average π(ϕ) (see (9)) defined by:

ϕ̂ =
∑

n∈I(Qiter)

G(n,Qiter)ϕ(X(n,Qiter)). (19)

One of the main aim of this paper is to prove that this estimator is unbiased (see Theorem 4.1
below):

E(ϕ̂) = π(ϕ).

In order to highlight the main features making the estimator unbiased, we will actually prove
this result for a larger class of models and algorithms introduced in Section 3.

A particular choice of interest for some applications is ϕ(x) = 1TB(x)<TA(x), in which case
one obtains an unbiased estimator of the probability p = P(τB < τA). In this case, due to
the assumption (10) on B, only replicas with labels in I

(Qiter)
on contribute to the estimation,

and thus, from one iteration to the other, only replicas with labels in I(q)
on have to be retained,

namely a system of nrep replicas. For this specific observable ϕ(x) = 1TB(x)<TA(x), the
estimator of p = P(τB < τA) is denoted by p̂ and is defined from (19) as:

p̂ =
∑

n∈I(Qiter)
on

G(n,Qiter)1TB(X(n,Qiter))<TA(X(n,Qiter))

=
nrep −K(Qiter)

nrep
. . .

nrep −K(1)

nrep
Pcorr (20)

where in the above the so-called “corrector term” is given by

Pcorr =
1

nrep

∑
n∈I(Qiter)

on

1TB(X(n,Qiter))<TA(X(n,Qiter)) (21)
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namely the proportion of working replicas that have reached B before A at the final iteration.
The properties of this estimator will be numerically investigated in Section 5.

3 Generalized Adaptative Multilevel Splitting

In this section, we introduce a general framework for adaptive multilevel splitting algorithms,
which contains in particular the AMS algorithm of Section 2. We refer to this framework as
the Generalized Adaptive Multilevel Splitting (GAMS) framework. In particular, we prove in
Section 3.3 that the AMS algorithm of Section 2 fits in the GAMS framework. The interest of
this abstract presentation is twofold. First, it highlights the essential mathematical properties
that are required to produce unbiased estimators of quantities such as (9). As will be proven
in Section 4, any algorithm which enters into the GAMS framework yields unbiased estimators
of quantities such as (9). Second, it is very useful to propose variants of the classical AMS
algorithm which still yield unbiased estimators: we propose some of them in Section 3.5.

The section is organized as follows. In Section 3.1, we introduce in a general setting the
quantities we are interested in computing, and the main ingredients we need to state the GAMS
framework. In Section 3.2, the GAMS framework is presented. In Section 3.3, we prove that
the AMS algorithm introduced in Section 2 for the sampling of paths of Markov chains enters
into the GAMS framework. There is a strong analogy between GAMS and Sequential Monte
Carlo algorithms (the branching step and the resampling step below correspond respectively
to the so-called selection and mutation steps): this is made precise in Section 3.4. Finally, we
propose in Section 3.5 some variants of the classical AMS algorithm to illustrate the flexibility
of the GAMS framework.

3.1 The general setting

In this section, we introduce the ingredients and the main assumptions we need in order to
introduce the GAMS framework. Throughout this section, the notations are consistent with
those used in the context of the AMS algorithm.

Let (Ω,F ,P) be a probability space. Let us introduce the state space P, which is assumed
to be a Polish space and let us denote B(P) its Borel σ-field. For example, in Section 2, the
state space is the path space of Markov chains (see (6)). Let X be a random variable with
values in (P,B(P)) and probability distribution

π = P ◦X−1 ∈ Proba(P).

The aim of the algorithms we present is to estimate

π(ϕ) =

∫
P
ϕ(x)π(dx) (22)

for a given bounded measurable observable ϕ : P → R.
The two main ingredients we need in addition to (P,B(P), π) is a filtration on (P,B(P))

(from which we build filtrations on (Prep,B(Prep)) and on (Ω,F ,P)) and some probability
kernels πz(x, ·) from R× P to P. Let us introduce them in the next two sections.
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3.1.1 The filtrations

In order to define the GAMS framework, we need an additional structure on (P,B(P)), namely
a filtration indexed by real numbers that we call in the following “levels”. Therefore, we assume
in the following that the space (P,B(P)) is endowed with a filtration indexed by levels z ∈ R

(filtz)z∈R ⊂ B(P), (23)

namely a non-decreasing family of σ-fields: for any z < z′, filtz ⊂ filtz′ ⊂ B(P). For example,
in the context of Section 2, the filtration is defined as follows: for any z ∈ R, filtz is the smallest
σ-field on P which makes the application x ∈ P 7→ (xt∧Tz(x))t≥0 ∈ (P,B(P)) measurable.

From the filtration given by (23), we construct a filtration (filtrep
z )z∈R on the space of

replicas (Prep,B(Prep)) (defined by (5)) by considering the disjoint union of the filtration filtz
on P:

filtrep
z =

⊔
I∈I

(
filtz

)card I

where, we recall, I denotes the ensemble of finite subsets of N∗.
For any random variable X : (Ω,F)→ (P,B(P)), we define a filtration

(
filtXz

)
z∈R on the

probability space by pulling-back the filtration (filtz)z∈R:

filtXz = X−1
(
filtz

)
. (24)

If X =
(
X(n)

)
n∈I ∈ P

rep denotes a random system of replicas – i.e. a random variable
X : (Ω,F)→ (Prep,B(Prep)) – we also define the filtration

(
filtXz

)
z∈R by the same pulling-back

procedure:
filtXz = X−1

(
filtrep

z

)
.

By convention, we set filtχ−∞ = σ(I) the σ-field generated by the random set of labels I,
and filtχ+∞ = F . As a consequence for any z ∈ R we have filtX−∞ ⊂ filtXz ⊂ filtX+∞.

We finally introduce the notion of stopping level, which is simply a reformulation of the
notion of stopping time in our context where the filtrations are indexed by levels instead of
times.

Definition 3.1 (Stopping level, Stopped σ-field). Let (Fz)z∈R be a filtration on (Ω,F ,P).
A stopping level Z with respect to (Fz)z∈R is a random variable with values in R such that
{Z ≤ z} ∈ Fz for any z ∈ R. The stopped σ-field, denoted by FZ , is characterized as follows:

A ∈ FZ if and only if ∀z ∈ R, A ∩ {Z ≤ z} ∈ Fz.

In particular, Z is a FZ-measurable random variable.

Remark 3.2 (On the definition of the filtrations). In many cases of practical interest, for
any z ∈ R, filtz is defined as the smallest filtration which makes an application Fz : P →
(E ,B(E)) measurable, for some Polish space E . For example, in the setting of Section 2,
Fz : P → P and Fz(x) = (xt∧Tz(x))t≥0. Then, filtrep

z is the smallest filtration which makes the
application Gz : Prep → Erep measurable with Gz((X(n))n∈I) = (Fz(X

(n)))n∈I .
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3.1.2 The resampling kernels πz(x, ·)

The second ingredient we need in addition to the filtrations introduced above is a transition
probability kernel from R×P to P (R×P being endowed with the Borel σ-field B(R×P)):
(z, x) ∈ R × P 7→ πz(x, ·) ∈ Proba(P). By convention, for any x ∈ P , we set π−∞(x, ·) = π
(which is consistent with Assumption 1 below) and π+∞(x, ·) = δx . For an explicit example
of a resampling kernel in the Markov chain example of Section 2, we refer to Section 2.4.

This kernel is used in the resampling step as a family of transition probabilities from P
to P, indexed by the level z. For a given level z ∈ R and a given state x ∈ P, πz(x, dx′) is
the probability distribution of the resampling of the state x from level z. In the following, we
will refer to this transition probability kernel as a resampling kernel, since it is used in the
resampling step.

3.1.3 Assumptions on (filtXz )z∈R and (πz)z∈R.

We will need two assumptions on (filtXz )z∈R and (πz)z∈R. First, in the proof of a key auxiliary
result below (Lemma 4.5), we use Doob’s optional stopping theorem. The required right-
continuity property is ensured by the following assumption.

Assumption 1. For any x ∈ P, and any continuous bounded test function ϕ : P → R,{
R→ R
z 7→ πz(ϕ)(x)

is right-continuous. Moreover, limz→−∞ πz = π−∞ = π (the convergence being in distribu-
tion).

We use here the notation introduced in (4): ∀z ∈ R, ∀x ∈ P, πz(ϕ)(x) =
∫
y∈P ϕ(y)πz(x, dy).

Second, we require a consistency relation between the filtration (filtXz )z∈R and the transi-
tion probability kernel (πz)z∈R.

Assumption 2. Let us consider X, (filtXz )z∈R and (πz)z∈R as introduced above. We assume
the following consistency relation: if X is distributed according to πz(x, ·) for some (z, x) ∈
R× P, then for any z′ ≥ z and for any bounded measurable test function ϕ : P → R,

E
(
ϕ(X)|filtXz′

)
= πz′(ϕ)(X) a.s.

As a consequence (by letting z → −∞ in the previous assumption), for X distributed
according to π, πz′(X, ·) is a version of the law of X conditionally on filtXz′ for any z′ ∈ R.
Therefore, the σ-field filtXz′ can be interpreted as containing all the information on a replica
X necessary to perform the resampling from X at a given level z′ ∈ R.

Let us finally mention that in addition to these two assumptions and from a more practical
point of view, it is also implicitly assumed that it is possible to sample according to the prob-
ability measure π (step (ii) of the initialization step below) and according to the probability
distribution πz(x, ·), for any x ∈ P and z ∈ R (step (ii) of the resampling step below).

We will check in Section 3.3 that the Markov chain example of Section 2 enters into the
general setting introduced in this section.

We are now in position to introduce the GAMS framework in the following section.
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3.2 The Generalized Adaptive Multilevel Splitting framework

The aim of this section is to introduce a general framework for splitting algorithms (which we
refer to as the Generalized Adaptive Multilevel Splitting (GAMS) framework in the sequel).
The structure of the GAMS framework we describe below is quite similar to the one for the
AMS algorithm of Section 2. It iterates over three successive steps: (1) the branching or
splitting step, (2) the resampling step and (3) the level computation step. These steps are
performed until a suitable stopping criterion is satisfied. We denote by Qiter the number
of iterations, which in general is a random variable. At each iteration step q ≥ 0 of the
algorithm the distribution π is approximated by an empirical distribution over a system of
weighted replicas X (q) := (X(n,q), G(n,q))n∈I(q) ∈ Prep, where I(q) ⊂ N∗ is the (random) finite
set of labels at step q of the algorithm and G(n,q) ∈ R+ is the (random) weight attached to
the replica X(n,q).

As will become clear, in order to obtain a fully implementable algorithm from the GAMS
framework, three procedures need to be made precise (i) the stopping criterion, (ii) the com-
putation rule of the branching numbers and (iii) the computation of the stopping levels. These
procedures require to define three sets of random variables: (S(q))q≥0, (B(n,q+1))q≥0,n∈I(q)) and
(Z(q))q≥0, that are used in the GAMS framework presented in the next section 3.2.1. The pre-
cise assumptions on these random variables will be stated in Section 3.2.2 (see Assumption 3
below). As already mentioned above, the AMS algorithm of Section 2 corresponds to specific
choices of these three items, but this framework allows for many variants (see Section 3.5).
The estimator associated with the GAMS framework is finally defined in Section 3.2.3.

3.2.1 Precise definition of the GAMS framework

We now introduce the Generalized Adaptive Multilevel Splitting (GAMS) framework, which
is an iterative procedure on an integer index q ≥ 0.

The initialization step (q = 0)

(i) Choose a finite non empty initial set of labels I(0) = {1, . . . , card I(0)} ⊂ N∗.

(ii) Let (X(n,0))n∈I(0) be a sequence of P-valued i.i.d. random variables, and distributed
according to the probability measure π.

(iii) Initialize uniformly the weights: for any n ∈ I(0) set G(n,0) = 1/ card I(0).

(iv) Define the system of weighted replicas X (0) = (G(n,0), X(n,0))n∈I(0) and for any z ∈ R,
define the σ-field of events F (0)

z = filtX
(0)

z .

(v) Sample the initial level Z(0) (it is assumed to be a (F (0)
z )z∈R – stopping level).

(vi) Define the σ-field of events F (0) = F (0)

Z(0) .

Iteration Iterate on q ≥ 0, while the stopping criterion is not satisfied.

The stopping criterion Sample the random variable S(q) ∈ {0, 1} (which is assumed to
be F (q)-measurable). If S(q) = 0 then the algorithm stops and we set Qiter = q. Otherwise, if
S(q) = 1, the three following steps are performed.
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The splitting (branching) step

(i) Conditionally on F (q), sample the N-valued random branching numbers
(
B(n,q+1)

)
n∈I(q)

such that for any n ∈ I(q)

E
(
B(n,q+1)|F (q)

)
> 0 a.s.

The random variable B(n,q+1) represents the number of offsprings X(n,q). If B(n,q+1) ≥ 1,
the replica X(n,q) will be split into B(n,q+1) replicas: the old one (parent) X(n,q) with
label n ∈ I(q) and, if B(n,q+1) > 1, B(n,q+1) − 1 new ones (children) that are defined in
the resampling step below. If B(n,q+1) = 0, the replica is removed from the system. Let
us thus introduce the set of labels of such replicas: I(q+1)

killed =
{
n ∈ I(q) : B(n,q+1) = 0

}
.

(ii) Compute the total number of new replicas K(q+1) =
∑

n∈I(q) max{B(n,q+1) − 1, 0}.

(iii) Introduce the set I(q+1)
new =

{
max I(q) + 1, . . . ,max I(q) +K(q+1)

}
⊂ N∗ \ I(q) for new

labels and update the total set of labels

I(q+1) =
(
I(q) \ I(q+1)

killed

)
t I(q+1)

new . (25)

(iv) Set a children-parent map P (q+1) : I
(q+1)
new → I(q)\I(q+1)

killed such that for any n ∈ I(q)\I(q+1)
killed

we have
card

{
n′ ∈ I(q+1)

new : P (q+1)(n′) = n
}

= max{B(n,q+1) − 1, 0}.

This map associates to the label of a new replica the label of its parent. The parent
replica (with label n ∈ I(q) \ I(q+1)

killed ) is used in the resampling procedure to create the
new replica with label n′ ∈ I

(q+1)
new , where n and n′ are related through the children-

parent map by P (q+1)(n′) = n. Notice that this map is uniquely determined up to
a permutation of I(q+1)

new . For notational convenience, we extend the map to I(q+1) as
follows: P (q+1)(n) = n for any n ∈ I(q) \ I(q+1)

killed .

(v) Update the weights as follows: for all n′ ∈ I(q+1) and n ∈ I(q) \ I(q+1)
killed such that

P (q+1)(n′) = n,

G(n′,q+1) =
G(n,q)

E
(
B(n,q+1)|F (q)

) . (26)

The resampling step

(i) Replicas in I(q) \I(q+1)
killed are not resampled i.e. for any n ∈ I(q) \I(q+1)

killed , X(n,q+1) = X(n,q).

(ii) For n′ ∈ I(q+1)
new ,X(n′,q+1) is sampled according to the resampling kernel πZ(q)(X(P (q+1)(n′),q), dx),

i.e. by branching its parent replica X(P (q+1)(n′),q).

Then set X (q+1) = (X(n,q+1), G(n,q+1))n∈I(q+1) .
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The level computation step

(i) For any z ∈ R, define the σ-field of events

F (q+1)
z = F (q) ∨ σ(P (q+1)) ∨ filtX

(q+1)

z . (27)

The σ-field generated by P (q+1) contains in particular the σ-field generated by (B(n,q+1))n∈I(q) .

(ii) Sample the next level Z(q+1) ∈ R, which is assumed to satisfy:

• Z(q+1) ≥ Z(q) a.s.

• Z(q+1) is a stopping level with respect to
(
F (q+1)
z

)
z∈R

.

(iii) Define the σ-field of events F (q+1) = F (q+1)

Z(q+1) .

Increment Increment q ← q + 1 and go back to the stopping criterion.

For theoretical purposes, we need in the following to define the system of weighted repli-
cas (X (q))q≥0 and the associated filtration

(
F (q)

)
q≥0

for all q ≥ 0 (and not only up to the
iteration Qiter). This is simply done by considering the algorithm above with S(q) = 0 for all
q ≥ 0.

Remark 3.3 (On the labeling). The way the replicas are labeled is purely conventional.

3.2.2 From the GAMS framework to a practical algorithm

In the GAMS framework, we have defined (see (27)) a family of σ-fields which is indexed both
by the level z ∈ R and by the iteration index q ≥ 0 and which is denoted by

(
F (q)
z

)
q≥0,z∈R

. By

construction, this family of σ-fields satisfies F (q)
z ⊂ F (q′)

z′ if q < q′ or {q = q′ and z ≤ z′}: in
other words, the family

(
F (q)
z

)
q≥0,z∈R

is a filtration if N×R is endowed with the lexicographic

ordering. At the end of the q-th iteration of the algorithm (q ≥ 0), one can think of the σ-field
F (q+1) = F (q+1)

Z(q+1) as containing all the necessary information required to perform the next step
of the algorithm.

To make a practical splitting algorithm which enters into the GAMS framework, three
sets of random variables need to be defined: (S(q))q≥0, (B(n,q+1))q≥0,n∈I(q)) and (Z(q))q≥0. As
already stated above, we assume the following on these random variables.

Assumption 3. The random variables ((S(q))q≥0, (B(n,q+1))q≥0,n∈I(q)), and (Z(q))q≥0) satisfy
the following properties:

• the sequence of random variables (S(q))q≥0 needed for the stopping criterion, are such
that S(q) is with values in {0, 1} and is F (q)-measurable;

• the sequence of branching numbers (B(n,q+1))q≥0,n∈I(q) are with values in N, are assumed
to be sampled conditionally on F (q) (see Section 1.4 for a precise definition) and such
that E

(
B(n,q+1)|F (q)

)
> 0 a.s.;

• the sequence (Z(q))q≥0 of stopping levels are with values in R, satisfy Z(q+1) ≥ Z(q) and
are such that Z(q) is a stopping level with respect to

(
F (q)
z

)
z∈R

(see Definition 3.1).
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As explained above, once these three sets of random variables have been defined, the
GAMS framework becomes a practical splitting algorithm which yields an unbiased estimator
of (22) (this will be proven in Section 4).

Let us emphasize that the requirement that Z(q) is a (F (q)
z )z∈R-stopping level is fundamen-

tal to obtain unbiased estimators. It will be instrumental to apply Doob’s optimal stopping
Theorem for appropriate martingales in the proof of unbiasedness.

As a consequence of the measurability property of (S(q))q≥0, one easily gets the following
property on Qiter:

Proposition 3.4. The random variable Qiter is a stopping time with respect to the filtration(
F (q)

)
q≥0

.

Remark 3.5 (On the measurability of the system of replicas with respect to (F (q)
z )z∈R). Let

us emphasize that for any q ≥ 0, the system of replicas (X(n,q))n∈I(q) is F-measurable but it
is not measurable with respect to F (q) = F (q)

Z(q) (which indeed stores the information only up
to the stopping level Z(q)).

3.2.3 The estimator

For any integer q ≥ 0 and any bounded test function ϕ : P → R, we define the estimator

π̂(q)(ϕ) =
∑
n∈I(q)

G(n,q)ϕ(X(n,q)) (28)

of π(ϕ). As will be proven in Section 4, any algorithm which enters into the GAMS framework
is such that π̂(q)(ϕ) is an unbiased estimator of π(ϕ): for any q ≥ 0, E

(
π̂(q)(ϕ)

)
= π(ϕ).

Moreover, under appropriate assumptions (see Theorem 4.1), this statement can be generalized
when q is replaced by the random number of iterations Qiter of the algorithm:

E

 ∑
n∈I(Qiter)

G(n,Qiter)ϕ(X(n,Qiter))

 = π(ϕ).

The proof of this result is given in Sections 4.3 and 4.4 and is based on martingale arguments.

3.3 The AMS algorithm enters into the GAMS framework

In this section, we explain how the GAMS framework encompasses the AMS algorithm of
Section 2. We thus go back to the setting described there and prove that the modelling and
algorithmic assumptions of sections 3.1 and 3.2 are satisfied in this case.

3.3.1 Modelling assumptions

Let us first check that the so-called dynamical setting (namely the sampling of paths of Markov
chains) that we considered in Section 2 for the AMS algorithm enters into the general setting
of Section 3.1.

In Section 2, (P,B(P), π) is the path space for Markov chains, endowed with the standard
topology, as explained in Section 2.1. The filtration (filtz)z∈R on (P,B(P)) is defined by: for
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all z ∈ R, filtz is the smallest σ-field which makes the application x ∈ P 7→ xt∧(Tz(x)) ∈ P
measurable:

filtz = σ
(
x 7→ (xt∧(Tz(x)))t≥0

)
. (29)

Finally, for any z ∈ R and x ∈ P, the resampling kernel πz(x, ·) is defined by (14)–(15).
Let us now check that Assumptions 1 and 2 are satisfied. The conditions of Assumption 2

are consequences of the strong Markov property applied to the chain t 7→ Xt ∈ S defined by
(7) at the stopping time τz (the strong Markov property always holds true for discrete-time
Markov processes).

The right-continuity property of Assumption 1 crucially relies on the definition (12) of
Tz(x) as the entrance time of the path t 7→ xt in the level set ξ−1

]
z,+∞

[
: the fact that ]z,∞[

is an open set implies z 7→ Tz(x) is right continuous. More precisely, we have the following
Lemma.

Lemma 3.6. Assumption 1 is satisfied for the resampling kernel defined by (14)-(15). More
precisely, for any x ∈ P, the resampling kernel z ∈ R 7→ πz(x, . ) ∈ Proba(P) is piece-
wise constant and right continuous, where Proba(P) is endowed with standard convergence in
distribution.

Proof. First, assume that Tz(x) = +∞, which means that Ξ(x) ≤ z. Then, for any ε ≥ 0
we still have Tz+ε(x) = +∞. In that case πz(x, . ) is a Dirac mass: πz(x, . ) = πz+ε(x, . ) =
δ(xt∧TA(x))t≥0

.
Now, assume that Tz(x) < +∞. Then, for ε ∈]0, ξ(xTz(x))− z[, Tz(x) = Tz+ε(x), and by

the definition of the resampling kernel, πz(x, . ) = πz+ε(x, . ).

3.3.2 Algorithmic assumptions

As explained in Section 3.2, to obtain a practical splitting algorithm which enters into the
GAMS framework, three procedures need to be made precise: the stopping criterion, the
computation rule of the branching numbers and the computation of the stopping levels. These
procedures should satisfy the measurability requirements of Assumption 3.

The stopping criterion In the AMS algorithm, we set S(q) = 1Z(q)>zmax
which is indeed

a F (q)-measurable random variable, since Z(q) is a (F (q)
z )z∈R-stopping level, see Lemma 3.7

below.

The computation rule of the branching numbers The branching numbers B(n,q+1)

are defined in the splitting step (iv) of the AMS algorithm by (16), for n ∈ I
(q)

on,>Z(q) . We

extend the definition for n ∈ I(q) \ I(q)

on,>Z(q) by simply setting B(n,q+1) = 1. It is then
easy to check that they satisfy the requirements of Assumption 3. Notice that in the AMS
algorithm, the total number of new replicas K(q+1) =

∑
n∈I(q) max{B(n,q+1) − 1, 0} is given

by K(q+1) = card I
(q)

on,≤Z(q) . Moreover, all branching numbers are positive, so that I(q+1)
killed = ∅.

Another particular feature of the AMS algorithm is that the map P (q+1) takes values in the
strict subset I(q)

on,>Z(q) of I(q).
Let us check that the computation rule (17) for the weights in the AMS algorithm is indeed

consistent with the formula (26) given in the GAMS framework. First, for n ∈ I
(q+1)
off =

I
(q)

on,≤Z(q) t I
(q)
off , B(n,q+1) = 1, P (q+1)(n) = n and, consistently, G(n,q+1) = G(n,q).

22



Second, for n ∈ I(q)

on,>Z(q) , it is clear that E
(
B(n,q+1)|F (q)

)
does not depend on n (since

the random variables are exchangeable in n ∈ I
(q)

on,>Z(q)). In addition, by construction,∑
n′∈I(q)

on,>Z(q)

B(n′,q+1) = nrep. Thus, we have by a simple counting argument: for any

n ∈ I(q)

on,>Z(q) ,

E
(
B(n,q+1)|F (q)

)
=

1

card I
(q)

on,>Z(q)

∑
n′∈I(q)

on,>Z(q)

E
(
B(n′,q+1)|F (q)

)

=

E
(∑

n′∈I(q)

on,>Z(q)

B(n′,q+1)|F (q)

)
card I

(q)

on,>Z(q)

=
nrep

nrep −K(q+1)
.

Thus for n ∈ I
(q)

on,>Z(q) (and since P (q+1)(n) = n) the formula G(n,q+1) =
nrep−K(q+1)

nrep
G(n,q)

in (17) for the AMS algorithm is indeed consistent with the updating formula (26) formula
for the weights in the GAMS framework.

Third, for n ∈ I(q+1)
new , G(n,q+1) = G(P (q+1)(n),q+1) =

nrep−K(q+1)

nrep
G(P (q+1)(n),q) which is again

consistent with the updating formula (26) formula for the weights in the GAMS framework
since nrep−K(q+1)

nrep
= 1/E

(
B(P (q+1)(n),q+1)|F (q)

)
.

Computation of the stopping levels Let us now check that the requirements on Z(q)

in Assumption 3 are satisfied. By definition of Z(q+1) (see the level computation step of the
AMS algorithm), it is clear that Z(q+1) ≥ Z(q) (actually, the strict inequality Z(q+1) > Z(q)

holds). It remains to prove that Z(q) is a stopping level for the filtration (F (q)
z )z∈R.

We start with an elementary result, which again highlights the importance of the strict
inequality > z in the definitions (12) and (13) of Tz(x) and τz.

Lemma 3.7. Let X : Ω → P be a Markov chain over the state space S (see Equation (6)).
Then the random variable Ξ(X) (where, we recall, the maximum level mapping Ξ is defined
by (11)) is a (filtXz )z∈R-stopping level: for any z ∈ R, {Ξ(X) ≤ z} ∈ filtXz .

Proof. On the one hand, we clearly have the equality of subsets of P:

{x ∈ P : Ξ(x) ≤ z} = {x ∈ P : Tz(x) = +∞} .

On the other hand, τz = Tz(X) is a filtXz -measurable random variable. The result is then a
consequence of these two facts.

We are now in position to prove the last results which is needed for Assumption 3 to hold.

Lemma 3.8. For any q ≥ 0, Z(q) is a stopping level with respect to the filtration (F (q)
z )z∈R:

for any z ∈ R, {Z(q) ≤ z} ∈ F (q)
z .

Proof. Set by convention Z(−1) = −∞ and let us consider q ≥ 0. Let us introduce the k-th
order statistics over the maximum levels at iteration q: L(q+1) = Ξ(X(Σ(q+1)(k),q+1)). Let us
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also introduce M (q+1) = max{Ξ(X(n,q+1)) : n ∈ I(q+1)
on }. By definition of Z(q+1) (see the level

computation step of the AMS algorithm),

Z(q+1) = L(q+1)1{L(q+1)<M(q+1)} + (+∞)1{L(q+1)=M(q+1)}.

Therefore, for any z ∈ R, (using the partition Ω = {M (q+1) ≤ z} t {M (q+1) > z})

{Z(q+1) ≤ z} = {L(q+1) ≤ z} ∩ {L(q+1) < M (q+1)}
= {L(q+1) < M (q+1) ≤ z} t {L(q+1) ≤ z < M (q+1)}.

These events are all in the σ-field σ
({

Ξ(X(n,q+1)) ≤ z
}
,
{

Ξ(X(n,q+1)) ≤ Z(q)
}
, n ∈ I(q+1)

)
(in

particular, the set of labels I(q+1)
on is measurable with respect to

{
Ξ(X(n,q+1)) ≤ Z(q)

}
). To

conclude, note that by construction (level computation step, (i)) and thanks to Lemma 3.7:
for any z ∈ R,

σ
({

Ξ(X(n,q+1)) ≤ z
}
,
{

Ξ(X(n,q+1)) ≤ Z(q)
}
, n ∈ I(q+1)

)
⊂ filtX

(q+1)

z∨Z(q) ⊂ F (q+1)
z .

3.3.3 Almost sure mass conservation

The classical AMS algorithm satisfies an additional nice property, namely it conserves almost
surely the mass in the following sense:

Definition 3.9. A splitting algorithm which enters into the GAMS framework satisfies the
almost sure mass conservation property if

∀q ≥ 0,
∑
n∈I(q)

G(n,q) = 1 a.s. (30)

Indeed, using the definition (17) of the weights and in particular the fact that all the
weights (G(n,q))

n∈I(q)

on,Z(q)

are the same: for any q ≥ 0,

∑
n′∈I(q+1)

G(n′,q+1) =
∑

n′∈I(q+1)
off

G(n′,q+1) +
∑

n′∈I(q+1)
on

G(n′,q+1)

=
∑

n′∈I(q)

on,≤Z(q)
tI(q)

off

G(n′,q) +
∑

n∈I(q)

on,>Z(q)
tI(q+1)

new

nrep −K(q+1)

nrep
G(P (q+1)(n),q)

=
∑

n′∈I(q)

on,≤Z(q)
tI(q)

off

G(n′,q) +
∑

n∈I(q)

on,>Z(q)

G(n,q) =
∑

n′∈I(q)

G(n′,q).

Thus, since
∑

n′∈I(q) G(n′,0) = 1, by induction on q, (30) is satisfied. This property will be
useful in Theorem 4.1 below: it is one of the two sufficient conditions to prove the unbiasedness
of the estimator ϕ̂ = π̂(Qiter)(ϕ) (π̂(q)(ϕ) being defined, we recall, by (28)).

Notice that this property is not generally satisfied for any algorithm which enters into the
GAMS framework. Actually, it is only true in general on average: by taking ϕ(x) = 1 and
Qiter = q in Theorem 4.1 below, one indeed obtains: ∀q ≥ 0, E

(∑
n′∈I(q) G(n′,q)

)
= 1.
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3.4 Reformulation of the AMS algorithm as a Sequential Monte-Carlo
method

The aim of this section is to make more explicit the link between the AMS algorithm and a
Sequential Monte Carlo (SMC) sampler, for readers who are familiar with SMC methods. For
those who are not, this section can be easily skipped.

For a reaction coordinate with discrete values, the AMS algorithm presented in Section 2
can be understood as a sequential importance sampling algorithm, where weights are assigned
to replicas, and replicas are then duplicated and killed to compensate for these weights and
obtain unbiased estimators (see for example [12] for a nice introduction to SMC methods
and [7] for a discussion of the relationship between SMC algorithms and multilevel splitting
algorithms).

To highlight the similarity between the AMS algorithm and a SMC sampler, let us assume
that the reaction coordinate takes values in the finite set {1, 2, . . . , zmax}

ξ : S → {1, 2, . . . , zmax}.

Let us now introduce a new way to label the successive iterations of the algorithm, by using
the levels z ∈ {1, 2, . . . , zmax} rather than the iteration index q ≥ 0. Notice indeed that for
each z, there exists a unique iteration index q ≥ 0 such that z ∈ [Z(q−1), Z(q)). Let us then
set: for all z ∈ {1, 2, . . . , zmax} and q such that z ∈ [Z(q−1), Z(q)),

J (z) = I(q),

Y (n,z) = (X
(n,q)

t∧Tz(X(n,q))
, t ∈ N), ∀n ∈ I(q),

H(n,z) = G(n,q), ∀n ∈ I(q).

The random variables J (z), Y (n,z) andH(n,z) are thus respectively the new set of labels, the new
system of replicas and the new system of weights, indexed by the levels z rather than the itera-
tion index q. One can then check that the sequence of weighted replicas (Y (n,z), H(n,z))n∈J(z) is
obtained by applying a standard sequential Monte Carlo algorithm which iterates the following
two steps:

1. A splitting step, equivalent to the splitting step of Section 2.5: replicas that have reached
the z-level set are split and weighted according to the splitting rule which conserves the
total number of replicas above z. The weights of replicas that have not reached the
z-level set are not modified.

2. A mutation step, where all replicas are resampled independently according to πz, but
with paths stopped at the stopping time Tz+1 (defined by (12)).

In the SMC algorithm presented above, all the replicas are resampled which is not the
case for the classical AMS algorithm. The following lemma is then crucial to reformulate the
AMS algorithm as a SMC sampler. We recall that the resampling kernel πz(x, dx′) has been
defined in Section 2.4. Moreover, the children-parent mapping has been extended to I(q+1)

on by
setting P (q+1)(n) = n for n ∈ I(q+1)

on \ I(q+1)
new .

Lemma 3.10. Consider the algorithm AMS introduced in Section 2.5. Assume that in the
resampling step, all replicas are resampled. More precisely, replace the two items (i) and (ii)
in the resampling step by a single one:
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(i) For all n ∈ I(q+1)
on , X(n,q+1) is sampled with the resampling kernel πZ(q)(X(P (q+1)(n),q), dx′).

Then, the probability distribution of the algorithm is unchanged: the random variables
(X(n,Qiter), G(n,Qiter))n∈I(Qiter) have the same law for the modified algorithm as for the original
one.

This lemma is easily checked following the same induction argument as in the proof of
Proposition 4.3.

The discussion above thus shows that the AMS algorithm can be recast in the framework
of sequential sampling. The interpretation of multi-level splitting methods as a sequential
sampling method is not new (see e.g. [16]). We refer to the classical monographs [12, 11]
for respectively applications of Sequential Monte-Carlo methods in Bayesian statistics, and a
comprehensive associated mathematical analysis. In particular, from the point view of [11],
the Adaptive Multi-level Splitting method for Markov chains (namely the dynamical setting)
considered here can be interpreted as a time-dependent Feynman-Kac particle model with
hard obstacles where: (i) the time index is given by the discrete levels z, (ii) the particles are
paths of the Markov chain stopped at Tz, and (iii) the hard obstacle at level z corresponds to
reach A before the z-level set. Note however that strictly speaking, the version presented in the
present section slightly differs from the classical presentation of Feynman-Kac particle models
in [11] since all the replicas are used in the estimators, including those who have reached A.
But this does not change the global picture.

To conclude, let us recall that the construction of unbiased estimators for averages of the
form (9) is standard for SMC algorithms. In the SMC language, averages such as (9) are
called non-normalized averages, normalized averages being conditional expectations, namely
ratios of two such averages. From this point of view, the unbiasedness result of the present
work (see Theorem 4.1) is therefore not a surprise. Actually, another strategy of proof of
Theorem 4.1 would be to rely on general unbiasedness results for SMC samplers, using the
equivalence between AMS and SMC described above for discrete reaction coordinates, and
then to extend the result to continuous reaction coordinates by considering a continuous limit
of discrete levels.

3.5 Examples of algorithmic variants

In this section, we consider the setting and the AMS algorithm of Section 2, and we propose
variants which fit into the Generalized Adaptive Multilevel Splitting framework and may
improve the efficiency of the algorithm in several directions (see Sections 3.5.1, 3.5.2 and 3.5.3).
In particular, Theorem 4.1 applies to the three examples detailed below. Moreover, we also
illustrate the interest of the general setting we have introduced by providing in Section 3.5.4
an example which does not enter into the standard dynamical setting (sampling of paths of
Markov chains) and for which the AMS algorithm could be used.

3.5.1 Removing extinction

We first introduce a variant of the AMS algorithm in the Markov chain setting (Section 2),
which is designed in order to remove the possibility of equality of levels for two different
replicas – this phenomenon is explained in Remark 2.4 for the AMS algorithm. This variant
enters into the GAMS framework and thus leads to unbiased estimators. With this variant,
exactly k replicas are resampled at each iterations. In particular, extinction of the system of
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replicas cannot occur. However, the algorithm requires the use of a rejection procedure for
each resampling, which may slow down the simulation. Let us now describe this variant in
detail.

Let z ∈ R be a level and x ∈ P. The definition (see (12)) of Tz(x) remains the same,
but the resampling kernel πz defined by (14)–(15) is modified as follows. Given x ∈ P, the
probability law πz(x, dx

′) is the distribution of a random variable Y ∈ P sampled as follows:

• For t ≤ Tz(x)− 1, Yt = xt.

• When Tz(x) < +∞, YTz(x) is sampled using the transition kernel P (xTz(x)−1, . ) of
the Markov chain, conditionally on ξ(YTz(x)) > z. This can be done for example us-
ing a rejection procedure: a sequence (Y`)`∈N∗ of i.i.d. random variables distributed
according to P (xTz(x)−1, . ) is sampled, and one considers YTz(x) = YL where L =
inf {` ∈ N∗ : ξ(Y`) > z}.

• For t > Tz(x), the Markov transition kernel P is used to sample the end of the trajectory,
up to the stopping time TA(Y ) where the path is stopped:

Law(Yt|(Ys)0≤s≤t−1) = P (Yt−1, . ).

The definition of the filtration (filtz)z∈R needs to be adapted in order to check Assump-
tion 2. The filtration filtz is the smallest σ-field which makes the application x ∈ P 7→
(Tz(x), (xt∧(Tz(x)−1))t≥0) ∈ N× P measurable:

filtz = σ(x 7→ (Tz(x), (xt∧(Tz(x)−1))t≥0)). (31)

Notice that we need Tz(x) in addition to (xt∧(Tz(x)−1))t≥0 since we need to know the time
at which the chain reaches the level z. In order to check Assumption 2, let us introduce
the auxiliary Markov chain with values in S × {0, 1}: X̃t = (Xt,1ξ(Xt+1)>z). Then Assump-
tion 2 follows from the strong Markov property applied to X̃t and the family of stopping
times indexed by z defined by τ̃z = inf

{
t ≥ 0 : 1ξ(Xt+1)>z = 1

}
. Indeed, Fτ̃z = filtXz , and

E(ϕ(X)|Fτ̃z) = πz(ϕ)(X).
With this modification of the classical AMS algorithm of Section 2, it is easy to check that

the event that two replicas have the same maximum level is of probability zero, at least if the
natural additional property is satisfied: if Y1 and Y2 are generated according to P (xTz(x)−1, . ),
where x ∈ P is such that Tz(x) < +∞, then P(ξ(Y1) = ξ(Y2)) = 0. This additional condition
is satisfied in many practical cases, for example if the Markov Chain is defined as the Euler-
Maruyama discretization of a Langevin dynamics, see (1).

3.5.2 Randomized level computation

To run the AMS algorithm of Section 2, a sorting procedure of the replicas according to their
maximum levels is required. More precisely, at the initialization step, all replicas must be
sorted according to their maximum levels; at further iterations, the procedure is faster, since
only the new replicas that have been resampled need to be sorted.

It is possible to propose algorithms within the GAMS framework which never require
the sorting of the entire system of replicas. The idea is to sample at iteration q a (small)
random subset I(q+1) ⊂ I

(q+1)
on . The level Z(q+1) is then defined as the k-th order statistics

of maximum levels computed only on the replicas with labels in I(q+1). Notice that such
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algorithms introduce some flexibility in the implementation of the level computation, which
may be useful to design efficient parallelization strategies to speed up the computation.

Notice that Assumption 3 on the stopping-levels (Z(q))q≥0 is then satisfied by slightly
modifying the definition of the σ-fields indexed by z in the level computation step as follows:

F (q+1)
z = F (q) ∨ σ(P (q+1)) ∨ filtX

(q+1)

z ∨ σ(I(q+1)).

3.5.3 Additional selection

It is also possible to modify the branching rules so that larger branching numbers are affected to
replicas which are in areas which have been identified as important to get an accurate estimate
of π(ϕ) (in the spirit of a sequential importance sampling algorithm). For instance, in the
bi-channel case of Section 5.2, it is possible to enforce a higher probability of branching for
replicas which visit the channel which is not sampled sufficiently well. The only requirements
to implement these strategies is that the branching numbers are defined in such a way that
Assumption 3 is satisfied.

3.5.4 Application to the sampling of a Gaussian bridge

We presented above variants of the AMS algorithm. The GAMS framework also allows for
different general setting: splitting algorithms can be used to sample other random variables
than paths of Markov chains with levels defined as sup{ξ(Xt∧τA)t≥0} for some stopping time
τA and some reaction coordinate function ξ. Actually, under appropriate assumptions, the
following cases also enter into the setting of the GAMS framework: path-dependent reaction
coordinates (duration of the path, integral over the path), sampling of continuous time stochas-
tic processes (diffusions, jump processes, branching processes), sampling of non-homogeneous
stochastic processes, etc... Let us discuss in this section as an example the sampling of a
Gaussian bridge.

Let κ ∈ N∗ be given, and consider the following Gaussian bridge distribution in P = Rκ:

π(dx1 . . . dxκ) =
1

Zκ
e−

1
2(x2

1+(x1−x2)2+...+(xκ−1−xκ)2+x2
κ)dx1 . . . dxκ

where Zκ > 0 is the appropriate normalization constant. This distribution is a discrete version
of a Brownian Bridge, and can be interpreted as a Gaussian random walk (X1, X2, . . . , Xκ+1)
starting from X0 = 0 and conditioned on {Xκ+1 = 0}.

The definition of the maximum level is Ξ(x) = max{xi : i ∈ {1, . . . , κ}} and we wish to
implement the AMS algorithm to compute small probabilities of the form P(Ξ(X) > z) for
some z > 0.

For this purpose, let us define Tz(x) = inf{i ∈ {1, . . . , κ} : xi > z}, and consider the
filtration filtz = σ(x1, . . . , xTz(x)).

Let us now define the resampling kernels πz(x, dx′). For a given x ∈ Rκ assuming
that Tz(x) < +∞, let us introduce a random variable X ′ ∈ Rκ such that X ′i = xi for
i ∈ {1, . . . ,Tz(x)} and (X ′Tz(x)+1, . . . , X

′
κ) ∼ Bκ−Tz(x)(xTz(x), 0) where for each m ≥ 1, and

x0, xm+1 ∈ R, Bm(x0, xm+1) denotes the Gaussian bridge distribution

Bm(x0, xm+1) =
1

Zm
e−

1
2((x0−x1)2+(x1−x2)2+...+(xm−1−xm)2+(xm−xm+1)2)dx1 . . . dxm.
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We then define
πz(x, dx

′) = Law(X ′).

This general setting enters into the GAMS framework, and satisfies in particular Assump-
tions 1 and 2 above. Assumption 2 is a consequence of the following Lemma, applied to
K = Tz(X) ∧ (κ− 1) (using the fact that σ(X1, . . . , XTz(X)) = filtXz ).

Lemma 3.11. Let (X1, . . . , Xκ) ∼ Bκ(x0, xκ+1) and let K be a stopping time with respect to
the natural filtration of (X1, . . . , Xκ) (i.e. for any l ∈ {1, . . . , κ}, {K ≤ l} ⊂ σ(X1, . . . , Xl))
such that K < κ. Then,

Law((XK+1, . . . , Xκ)|(X1, . . . , XK)) = Bκ−K(XK , xκ+1).

Proof. First, the lemma is easily checked for K a deterministic integer, using the the formula
for conditional densities. Then the result is proven by conditioning on each value of K and
using the fact that K is a stopping time.

This example can be generalized in various ways. First, it is possible to build resampling
kernels πz(x, dx′) such that only the components xi such that xi > k are resampled. Second,
the same kind of algorithms can be applied to discrete Gaussian Markov random fields.

4 The unbiasedness theorem

In the present section, the unbiasedness of the replicas weighted empirical distribution is
proven. This is the content of Theorem 4.1. We first provide in Section 4.1 a summary of the
notation used in the GAMS framework of Section 3. The latter will be helpful to follow the
statements and proofs of the present section. The main result is stated in Section 4.2 and the
last two sections 4.3 and 4.4 are devoted to the proof of this result.

4.1 Summary of GAMS notation

We follow the algorithmic order of the GAMS framework of Section 3. In the following,
ϕ : P → R denotes a bounded test function. We also introduce below a new notation for an
intermediate empirical distribution (see (32)).

The initialization step (q = 0) The system of weighted replicas is denoted by X (0) =
(X(n,0), G(n,0))n∈I(0) with constant weights G(n,0) = 1/ card I(0) for n ∈ I(0). The first level is
Z(0) with the associated σ-field F (0) = filtX

(0)

Z(0) .

Iterations Iterate on q ≥ 0 the following steps.

The stopping criterion If the stopping criterion is satisfied, the algorithm stops at this
stage, and we set q = Qiter. At the beginning of iteration q, the weighted empirical distribution
estimator (defined by (28)) is:

π̂(q)(ϕ) =
∑
n∈I(q)

G(n,q)ϕ(X(n,q)).
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The splitting (branching) step The random branching numbers are denoted by (B(n,q+1))n∈I(q) ,
the updated set of labels I(q+1) = (I(q) \ I(q+1)

killed ) t I(q+1)
new , the associated children-parent map

P (q+1) : I(q+1) → I(q) \ I(q+1)
killed , and the associated new weights (G(n′,q+1))n′∈I(q+1) . All the

latter variables are sampled conditionally on F (q), and are F (q) ∨ σ(P (q+1)) measurable. The
weighted empirical distribution at this stage is denoted by

π̂(q+1/2)(ϕ) =
∑

n′∈I(q+1)

G(n′,q+1)ϕ(X(P (q+1)(n′),q)). (32)

The resampling step The system of weighted replicas after resampling is denoted by
X (q+1) = (X(n′,q+1), G(n′,q+1))n′∈I(q+1) .

The level computation step The new level is denoted by Z(q+1), the associated σ-field is
defined as F (q+1) = F (q) ∨ σ(P (q+1)) ∨ filtX

(q+1)

Z(q+1) .

As already explained at the end of Section 3.2.1, we will use use in the following the whole
sequence (X (q))q≥0 of weighted replicas as well as the whole sequence of related filtrations,
which are simply obtained by considering the algorithm without stopping criterion.

4.2 Statement of the main result

The main theoretical result of this paper is the following.

Theorem 4.1. Let (X (q))0≤q≤Qiter be the sequence of random systems of weighted replicas
generated by an algorithm which enters into the GAMS framework of Section 3. In particular,
the Assumptions 1 and 2 on the general setting (see Section 3.1) as well as the Assumption 3
on the stopping criterion, branching numbers and level computations (see Section 3.2.2) are
supposed to hold.

Assume moreover that the number of iterations Qiter is almost surely finite (i.e. P(Qiter <
+∞) = 1) and that one of the following conditions is satisfied:

• Qiter is bounded from above by a deterministic constant,

• or the almost sure mass conservation (30) is satisfied.

Then, for any bounded measurable test function ϕ : P → R,

E
(
π̂(Qiter)(ϕ)

)
= π(ϕ).

Notice that a deterministic number of iterations Qiter = q0 ∈ N satisfy the assumptions2

of Theorem 4.1 so that in the above setting (namely under Assumptions 1-2-3):

∀q0 ≥ 0, E
(
π̂(q0)(ϕ)

)
= π(ϕ).

As a corollary of Theorem 4.1 and thanks to the discussion in Section 3.3 which shows
that the AMS algorithm of Section 2.5 enters into the GAMS framework, we also obtain that

2To obtain Qiter = q0, one simply has to choose S(q) =

{
0 if q < q0

1 if q ≥ q0

.
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the AMS estimator ϕ̂ = π̂(Qiter)(ϕ) defined by (19) in Section 2.6 is an unbiased estimator of
π(ϕ).

The strategy to prove this theorem is to introduce the sequence of random variables

M (q)(ϕ) = E
(
π̂(q)(ϕ)|F (q)

)
(33)

for a fixed bounded measurable test function ϕ : P → R and to show that the process(
M (q)(ϕ)

)
q∈N indexed by q is a martingale with respect to the filtration

(
F (q)

)
q∈N. Since,

by Proposition 3.4, Qiter is a stopping time for this filtration, Doob’s stopping theorem for
discrete-time martingales can then be applied to obtain Theorem 4.1. The next two sections
are devoted to the proof of Theorem 4.1.

4.3 Proof of Theorem 4.1

The following definition of conditionally independent replicas will be useful in the proof.

Definition 4.2. Let Z be a random level, I ⊂ N∗ a finite random set of indices and F a σ-
field of events. We assume that σ(I) ∨ σ(Z) ⊂ F . We say that the random system of replicas
(X(n))n∈I is independently distributed with distribution (πZ(X(n), . ))n∈I conditionally on F ,
if for any sequence of bounded measurable functions (ϕn)n∈I from P to R, we have

E

(∏
n∈I

ϕn(X(n))|F

)
=
∏
n∈I

πZ(ϕn)(X(n)).

Let us now state two intermediate propositions before proving Theorem 4.1. The first
proposition states that, in the sense of Definition 4.2, the set of replicas with indices in
I(q) (resp. I(q+1)) are F (q)-conditionally independent (resp. F (q) ∨ σ(P (q+1))-conditionally
independent) with explicit distributions.

Proposition 4.3. Let us consider the setting of Theorem 4.1. For any integer q ≥ 0,

(i)q The replicas (X(n,q))n∈I(q) are independent with distribution
(
πZ(q)(X(n,q), . )

)
n∈I(q) con-

ditionally on F (q).

(ii)q The replicas (X(n′,q+1))n′∈I(q+1) are independent with distribution
(
πZ(q)(X(n′,q+1), . )

)
n′∈I(q+1)

conditionally on F (q) ∨ σ(P (q+1)).

The second proposition states intermediate equalities between conditional averages of the
empirical distributions, required to obtain the desired martingale property of

(
M (q)(ϕ)

)
q≥0

,
and which are easily obtained from Proposition 4.3.

Proposition 4.4. Let us consider the setting of Theorem 4.1. For any integer q ≥ 0 and for
any bounded measurable test function ϕ : P → R,

(iii)q E
(
π̂(q+1/2)(ϕ)|F (q)

)
= E

(
π̂(q)(ϕ)|F (q)

)
.

(iv)q E
(
π̂(q+1)(ϕ)|F (q) ∨ σ(P (q+1))

)
= E

(
π̂(q+1/2)(ϕ)|F (q) ∨ σ(P (q+1))

)
.

The proofs of both Proposition 4.3 and Proposition 4.4 are postponed to Section 4.4. We
are now in position to prove Theorem 4.1.
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Proof of Theorem 4.1. The proof consists in first proving that
(
M (q)(ϕ)

)
q≥0

defined by (33)
is a

(
F (q)

)
q≥0

-martingale and then applying the Doob’s optional stopping theorem.
Notice that E

(
M (q+1)(ϕ)|F (q)

)
= E(π̂(q+1)(ϕ)|F (q)) and let us compute the right-hand

side. First, from point (iv)q of Proposition 4.4 and since F (q) ⊂ F (q) ∨ σ(P (q+1)), we get

E
(
π̂(q+1)(ϕ)|F (q)

)
= E

(
E
(
π̂(q+1)(ϕ)|F (q) ∨ σ(P (q+1))

)
|F (q)

)
= E

(
π̂(q+1/2)(ϕ)|F (q)

)
.

Second, from point (iii)q of Proposition 4.4 we have

E
(
π̂(q+1/2)(ϕ)|F (q)

)
= E

(
π̂(q)(ϕ)|F (q)

)
.

We thus have for any q ≥ 0,

E
(
π̂(q+1)(ϕ)|F (q)

)
= E

(
π̂(q)(ϕ)|F (q)

)
(34)

and
(
M (q)(ϕ)

)
q∈N is therefore a

(
F (q)

)
q∈N-martingale.

We now focus on stopping the latter martingale at the random index Qiter. By assumption,
either the almost sure mass conservation property (30) is satisfied, in which case

(
M (q)(ϕ)

)
q∈N

is a bounded martingale (since
∣∣M (q)(ϕ)

∣∣ ≤ ‖ϕ‖∞), or Qiter ≤ qmax for some deterministic
real number qmax ∈ R. In both cases, we apply the Doob’s optional stopping Theorem (see
for instance [21], Chapter 7, Section 2, Theorem 1 and Corollaries 1 and 2) to the martingale(
M (q)(ϕ)

)
q∈N and with the stopping time Qiter with respect to the filtration

(
F (q)

)
q∈N. We

obtain
E
(
π̂(Qiter)(ϕ)

)
= E

(
M (0)

)
= π(ϕ)

which concludes the proof of Theorem 4.1.

4.4 Proofs of Propositions 4.3 and 4.4

Proposition 4.3 requires an additional intermediate result, namely the propagation Lemma 4.5
below. This lemma gives rigorous conditions under which the property on a system of replicas
(X(n))n∈I of being independently distributed with distribution (πZ(X(n), . ))n∈I conditionally
on F can be transported from the σ-field F to a larger σ-field. It is based on Doob’s optional
stopping theorem for martingales indexed by the level variable z. Notice that it is the only
result where the right continuity stated in Assumption 1 is explicitly used.

Lemma 4.5. Let us assume that Assumptions 1 and 2 hold. Let Z ∈ R ∪ {−∞,+∞} be a
random level, G a σ-field, and I ⊂ N∗ a finite random set of labels. Assume that σ(I)∨σ(Z) ⊂
G. Consider a random system of replicas X = (X(n))n∈I , which is independently distributed
with distribution (πZ(X(n), . ))n∈I conditionally on G (in the sense of Definition 4.2). Set

∀z ∈ R, Gz = G ∨ filtXz , (35)

and assume that Z ′ ∈ R ∪ {−∞,+∞} is a stopping level for the filtration (Gz)z∈R such that,
almost surely, Z ′ ≥ Z.

Then the replicas (X(n))n∈I are independently distributed with distribution
(
πZ′(X

(n), . )
)
n∈I

conditionally on GZ′ .
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Proof of Lemma 4.5. Step 1. The first step consists in proving that for any fixed z ∈ R, the
system of replicas is independently distributed with distribution

(
πZ∨z(X

(n), . )
)
n∈I condi-

tionally on G ∨ filtXz . By a standard monotone class argument, it is sufficient to show that

E

(∏
n∈I

ϕn(X(n))ψn(X(n))Y

)
= E

(∏
n∈I

πZ∨z(ϕn)(X(n))ψn(X(n))Y

)
,

where (ϕn)n≥1 ranges over bounded measurable test functions from P to R, (ψn)n≥1 ranges
over filtz-measurable test functions from P to R, and Y over bounded G-measurable random
variables. Let us denote I = E

(∏
n∈I ϕn(X(n))ψn(X(n))Y

)
the left-hand side. Since Y is

G-measurable, by Definition 4.2 of the conditional independence we get that

I = E

(∏
n∈I

πZ(ϕnψn)(X(n))Y

)
.

The functions (ψn)n≥1 being filtz-measurable, they are a fortiori filtz∨z′-measurable for any
z′ ∈ R. Assumption 2 on the resampling family (πz)z∈R then yields

πz′(ϕnψn)(x) = πz′(πz′∨z(ψnϕn))(x) = πz′(ψnπz′∨z(ϕn))(x).

As a consequence, using again that the system of replicas (X(n))n∈I is independently dis-
tributed with distribution

(
πZ(X(n), . )

)
n∈I conditionally on G and that Y is G-measurable,

we get the following identity

I = E

(∏
n∈I

πZ (ψnπZ∨z(ϕn)) (X(n))Y

)
= E

(∏
n∈I

πZ∨z(ϕn)(X(n))ψn(X(n))Y

)
,

and this concludes the first step.

Step 2. We now prove the main claim of this lemma, namely the fact that the replicas (X(n))n∈I
are independent with distribution

(
πZ′(X

(n), . )
)
n∈I conditionally on GZ′ . Let us first assume

that the test functions (ϕn)n∈I are continuous from P to R.
In order to come back to a classical setting to apply Doob’s optional stopping theorem, let

us introduce a continuous, one-to-one and strictly increasing change of level parametrization
Z : [0, 1] → R ∪ {−∞,+∞}. Let us consider the following stochastic process indexed by
t ∈ [0, 1]:

Nt = E

(∏
n∈I

ϕn(X(n))
∣∣∣GZ(t)

)
.

It is a bounded (since I is GZ(t)-measurable for all t) and thus uniformly integrable martingale
with respect to the filtration (GZ(t))t∈[0,1]. In addition, N1 = E

(∏
n∈I ϕn(X(n))|G+∞

)
where

G+∞ = G ∨ filtχ+∞. Thanks to Step 1 above, we get: almost surely, for all t ∈ [0, 1],

Nt =
∏
n∈I

πZ∨Z(t)(ϕn)(X(n)).

Therefore, Nt is almost surely a right-continuous bounded martingale from Assumption 1
on (πz)z∈R. By assumption, T ′ = Z−1(Z ′) is a

(
GZ(t)

)
t∈[0,1]

-stopping level, and we can

33



use a Doob’s optional stopping argument for right continuous bounded martingales (see for
instance [17, Theorem 3.22]) to get

E
(
N1|GZ(T ′)

)
= NT ′

which can be rewritten as (since Z ′ ≥ Z a.s.)

E

(∏
n∈I

ϕn(X(n))|GZ′
)

=
∏
n∈I

πZ′(ϕn)(X(n)).

This equality actually holds for any sequence of bounded measurable functions (ϕn)n∈I since
continuous bounded functions are separating. This concludes the proof of Lemma 4.5.

Thanks to Lemma 4.5, we can now prove Proposition 4.3.

Proof of Proposition 4.3. We proceed by induction on the iteration index q ≥ 0. We first
prove directly the statement (i)q ⇒ (ii)q and then (ii)q ⇒ (i)q+1 using Lemma 4.5. The
initialization step consists in proving (i)0 using Lemma 4.5. In this proof, (ϕn)n≥1 denotes a
sequence of bounded measurable test functions from P to R.
Proof of (i)0. The statement (i)0 reads

E

 ∏
n∈I(0)

ϕn

(
X(n,0)

)
|F (0)

 =
∏
n∈I(0)

πZ(0)(ϕn)(X(n,0)),

where F (0) = filtX
(0)

Z(0) . This is exactly the result of Lemma 4.5, taking Z = −∞, Z ′ = Z(0),
G = σ(I(0)), and recalling that the replicas are initially independent and distributed according
to π.

Proof of (i)q ⇒ (ii)q. Assume that (i)q holds. We rewrite property (ii)q as follows

E

 ∏
n′∈I(q+1)

ϕn′
(
X(n′,q+1)

)
|F (q) ∨ σ(P (q+1))

 =
∏

n′∈I(q+1)

πZ(q)(ϕn′)(X
(n′,q+1)), (36)

and we now prove this identity.
Let us recall that in the resampling step, the replicas with labels in I(q) are not resampled

and the replicas (X(n′,q+1))
n′∈I(q+1)

new
are sampled in such a way that they are independently dis-

tributed with distribution (πZ(q)(X(P (q+1)(n′),q), . ))
n′∈I(q+1)

new
conditionally on F (q) ∨ σ(P (q+1)).

Therefore, by definition of the total set of labels I(q+1) given in (25), one obtains

E

 ∏
n′∈I(q+1)

ϕn′
(
X(n′,q+1)

)
|F (q) ∨ σ(P (q+1))


= E

 ∏
n∈I(q)\I(q+1)

killed

ϕn

(
X(n,q)

) ∏
n′∈I(q+1)

new

ϕn′
(
X(n′,q+1)

)
|F (q) ∨ σ(P (q+1))


=

∏
n′∈I(q+1)

new

πZ(q)(ϕn′)(X
(P (q+1)(n′),q))E

 ∏
n∈I(q)\I(q+1)

killed

ϕn

(
X(n,q)

)
|F (q) ∨ σ(P (q+1))

 .
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Next, from the induction hypothesis (i)q, the replicas (X(n,q))n∈I(q) are independent with dis-
tribution

(
πZ(q)(X(n,q), . )

)
n∈I(q) conditionally on F (q). Since P (q+1) is sampled conditionally

on F (q), the replicas (X(n,q))n∈I(q) are also independent conditionally on F (q)∨σ(P (q+1)), with
the same distributions. Therefore (notice that I(q) and I(q+1)

killed are F (q)∨σ(P (q+1))-measurable)

E

 ∏
n∈I(q)\I(q+1)

killed

ϕn

(
X(n,q)

)
|F (q) ∨ σ(P (q+1))

 =
∏

n∈I(q)\I(q+1)
killed

πZ(q)(ϕn)(X(n,q))

=
∏

n′∈I(q)\I(q+1)
killed

πZ(q)(ϕn′)(X
(P (q+1)(n′),q)).

Gathering the results leads to

E

 ∏
n′∈I(q+1)

ϕn′
(
X(n′,q+1)

)
|F (q) ∨ σ(P (q+1))

 =
∏

n′∈I(q+1)

πZ(q)(ϕn′)(X
(P (q+1)(n′),q)).

From the resampling step and Assumption 2, the following identity holds:

∀q ≥ 0, ∀n′ ∈ I(q+1), πZ(q)(X(n′,q+1), . ) = πZ(q)(X(P (q+1)(n′),q), . ). (37)

This concludes the proof of (36).
Proof of (ii)q ⇒ (i)q+1. Let us now assume that (ii)q holds. To prove that (i)q+1 holds, it is
sufficient to check that

E

 ∏
n∈I(q+1)

ϕn

(
X(n,q+1)

)
|F (q+1)

 =
∏

n∈I(q+1)

πZ(q+1)(ϕn)(X(n,q+1)).

This is again exactly the result of Lemma 4.5 applied to X (q+1), taking Z = Z(q), Z ′ =

Z(q+1) and G = F (q) ∨ σ(P (q+1)) so that Gz = F (q+1)
z (where, we recall, F (q+1)

z is defined by
Equation (27)).

Finally, let us prove Proposition 4.4.

Proof of Proposition 4.4. The first equality (iii)q is a direct consequence of the definition of the
branching numbers. The second equality (iv)q is obtained as a consequence of Proposition 4.3
by combining (i)q and (ii)q.

Proof of (iii)q. The proof of this assertion is a direct application of the branching rule. Indeed,
by definition of the weights G(n′,q+1) given in (26), by definition of the branching numbers
(B(n,q+1))n∈I(q) as the number of offsprings of the n-th replica, and because these branching
numbers are independent of (G(n,q), X(n,q))n∈I(q) conditionally on F (q), we get

E
(
π̂(q+1/2)(ϕ)|F (q)

)
= E

 ∑
n′∈I(q+1)

G(P (q+1)(n′),q)

E
(
B(P (q+1)(n′),q+1)|F (q)

)ϕ(X(P (q+1)(n′),q))|F (q)


= E

 ∑
n∈I(q)

G(n,q)

E
(
B(n,q+1)|F (q)

)B(n,q+1)ϕ(X(n,q))|F (q)


= E

(
π̂(q)(ϕ)|F (q)

)
.
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Proof of (i)q + (ii)q ⇒ (iv)q. Using successively (i)q, the identity (37) and (ii)q, we have:

E
(
π̂(q+1/2)(ϕ)|F (q) ∨ σ(P (q+1))

)
=

∑
n′∈I(q+1)

G(n′,q+1)πZ(q)(ϕ)(X(P (q+1)(n′),q))

=
∑

n′∈I(q+1)

G(n′,q+1)πZ(q)(ϕ)(X(n′,q+1))

= E
(
π̂(q+1)(ϕ)|F (q) ∨ σ(P (q+1))

)

5 Numerical illustration

The aim of this section is to illustrate the behavior of the AMS algorithm as defined in Sec-
tion 2, in various situations involving discrete-time approximations of overdamped Langevin
dynamics (1) in dimension 1 and 2.

We would like to discuss in particular the unbiasedness of the AMS estimator p̂ of p =
P(τB < τA) (see the formula (20)) whatever the choice of the reaction coordinate ξ, the number
of replicas nrep and the minimal number k of replicas which are declared retired and resampled
at each iteration of the AMS algorithm. Indeed, from Theorem 4.1, we know that

∀ ξ, nrep, k, E (p̂) = p = P(τB < τA).

In the following, (p̂m)16m6N refers to independent realizations of the estimator p̂ obtained
by N independent runs of the algorithm and the associated empirical mean is denoted by

pN =
1

N

N∑
m=1

p̂m. (38)

The variance of the estimator p̂ is also investigated numerically, and it is shown in some
two-dimensional situations that the variance heavily depends in particular on the choice of
the reaction coordinate. In the following, we will denote by

δN = 2× 1.96√
N
×

√√√√ 1

N

N∑
m=1

(p̂m)2 − (pN )2 (39)

the size of the 95% empirical confidence interval computed using the empirical variance ob-
tained over N independent runs of the algorithm.

The section is organized as follows. In Section 5.1, we illustrate on a simple one-dimensional
test case the importance of a proper implementation of the branching and splitting steps in
order to obtain an unbiased estimator of (9). Then, in Sections 5.2 and 5.3, we discuss more
precisely on two examples in dimension 2 the efficiency of the AMS algorithm by studying
how the convergence of the estimator depends on the parameters ξ, nrep and k. Finally, in
Section 5.4, we draw some conclusions and practical recommendations from these numerical
experiments.

36



5.1 One-dimensional example: Brownian-drift dynamics

Let us first consider a one-dimensional example, with a reaction coordinate ξ : R→ R which
is an increasing function. Of course, in this situation, the AMS algorithm does not depend
on ξ. The aim is thus here to show the unbiasedness of the estimator whatever nrep and k.
Moreover, we would like to illustrate the fact that incorrect implementations of the branching
and splitting steps may lead to strongly biased results.

The model Let (Xt)t>0 ∈ R be a drifted Brownian motion, starting at x0, with drift
−µ < 0 and inverse temperature β: for any t ≥ 0, Xt = x0−µt+

√
2β−1Wt, where (Wt)t>0 is

a standard Brownian motion. We use the explicit Euler-Maruyama method with a time-step
size ∆t > 0: for any i ∈ N

Xi+1 = Xi − µ∆t+
√

2β−1∆tGi, X0 = x0,

where the random variables (Gi)i∈N are independent standard Gaussian random variables.
Given a < x0 < b, we consider the estimation of

p = P(τb < τa)

where τb ∈ N and τa ∈ N are the first hitting times of ]b,+∞[ and ]−∞, a[ respectively.
In the sequel, we choose the initial condition x0 = 1, as well as the two barriers a = 0.1 and

b = zmax = 1.9. We choose µ = 1 and we use the following values for the inverse temperature
β ∈ {8, 24} in order to have a range of estimated probabilities over several orders of magnitude.
Moreover the time-step size is ∆t = 0.1. The number of independent runs is N = 6.106.

Biased algorithms In order to highlight the importance of a proper implementation of the
splitting and resampling steps when many replicas have Z(q) as a maximum level, we perform
tests with slightly modified versions of the AMS algorithm, which happen to yield biased
estimators. Two biased versions are considered.

• Version 1: We first consider the algorithm where the number of resampled replicas is
exactly k even if K(q+1) > k, namely if more than k replicas have a maximum level
smaller than the current level Z(q) of the algorithm.

• Version 2: We then consider a situation where the replicas are possibly resampled from
a state with a reaction coordinate equal to the current level Z(q).

More precisely, the first version (Version 1) of a biased algorithm is obtained by modifying
the AMS algorithm of Section 2.5 as follows:

(i) At iteration q, the working replicas are ordered according to their maximum level (possi-
bly with equalities) and the k working replicas with smallest maximum level are declared
retired, and the others remain working replicas. The level Z(q) is still defined as the max-
imum level of the k-th newly retired replica. As explained in Remark 2.4, some of the
remaining working replicas may have their maximum levels equal to Z(q). Then, as in
the classical AMS algorithm, k new replicas are resampled by picking (randomly) an
initial condition among the current working replicas with maximum level strictly larger
than Z(q) (namely with labels in I(q)

on,>Z(q)). Replicas with maximum equal to Z(q) are
not split. The resampling kernel πz is the same as in the AMS algorithm, see Section 2.4.
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(ii) At the end of the algorithm, the probability p is estimated by(
nrep − k
nrep

)Qiter

 1

nrep

∑
n∈I(Qiter)

on

1TB(X(n,Qiter))<TA(X(n,Qiter))

 , (40)

which is consistent with the general updating formula (26) for the weights in the GAMS
framework.

The second version (Version 2) of a biased algorithm is obtained by modifying the AMS
algorithm of Section 2.5 exactly as for Version 1, except for the resampling step. Item (i) is
modified as:

(i-bis) At iteration q, the k working replicas with smallest maximum are declared “retired”.
Then, k new replicas are resampled by picking (randomly) an initial condition among
the states of all the current replicas with maximum levels larger than Z(q), including
those with maximum levels equal to Z(q). The resampling kernel πz (defined by (14)–
(15)) is modified accordingly: the parent trajectory x is copied up to the time T̃z(x) =
inf {t ≥ 0 : ξ(xt) ≥ z} (with a large inequality) instead of Tz(x) (which involves a strict
inequality, see (12)) and then completed using the Markov dynamics.

These biased versions do not enter into the GAMS framework. Note that for both modi-
fied versions and contrary to the classical AMS algorithm, the sequence of levels Z(q) is not
necessarily strictly increasing. These modifications will increase the number of iterations of
the algorithm, which in view of (40) explains the bias towards lower probability (see results
below).

Results In Table 1 and Table 2, estimations with the AMS algorithm are given. We observe
that the estimated probability is stable under changes of nrep and k, with a small confidence
interval. This yields the reference values p = 3.60e-4 for β = 8, and p = 1.2e-10 for β = 24
(where e-n stands for 10−n). For β = 8, we have checked that these results are in agreement
with those obtained by a standard direct Monte-Carlo estimation with 6.108 realizations.

In Table 3, estimations with the two biased versions of the AMS algorithm with k = 1
are given. Even for β = 8 (for which the target probability is p = 3.60e-4), the bias is non-
negligible. For β = 24, the probability can be underestimated by a multiplicative factor 100
with Version 1. The bias induced by using incorrect implementations of the AMS algorithm
can thus be very large.

Notice that we have chosen a relatively large timestep (∆t = 0.1) in order to easily extract
the bias introduced by inappropriate modifications of the AMS algorithm. When the timestep
size ∆t goes to 0, the two variants we discussed above get close to the classical AMS algorithm
and the bias disappears, since the probability to observe two replicas with the same maximum
level goes to zero (see Remark 2.4) and the probability that T̃z(x) is different of Tz(x) for a
parent trajectory also goes to zero. Finally, we recall that an unbiased variant where exactly
k replicas are resampled at each iteration has been presented in Section 3.5.1.

5.2 The first two-dimensional example: the bi-channel problem

The aim of this two-dimensional example is to investigate the importance of the choice of the
reaction coordinate on the efficiency of the algorithm, on a typical example which has been
used in previous numerical studies, see [19, 18, 10].
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nrep 10 50 50 50 100 200
k 1 1 10 20 1 1
pN 3.60e-4 3.596e-4 3.596e-4 3.597e-4 3.597e-4 3.597e-4
δN 0.01e-4 0.004e-4 0.004e-4 0.006e-4 0.003e-4 0.002e-4

Table 1: Results obtained on the 1d test case with the classical AMS algorithm and β = 8.

nrep 10 50 50 50 100 200
k 1 1 10 20 1 1
pN 1.20e-10 1.21e-10 1.21e-10 1.21e-10 1.205e-10 1.203e-10
δN 0.3e-10 0.03e-10 0.03e-10 0.03e-10 0.01e-10 0.005e-10

Table 2: Results obtained on the 1d test case with the classical AMS algorithm and β = 24.

5.2.1 The model

We consider the following two-dimensional overdamped Langevin dynamics:

dX(t) = −∇E(X(t))dt+
√

2β−1dWt, (41)

where W is a two-dimensional Wiener process and β > 0 is the inverse temperature.
We use again the Euler-Maruyama method for the time-discretization of the process X.

The time step is denoted by ∆t. For our numerical simulations we take ∆t = 0.05. For an
initial condition X0 = x0 ∈ R2 and for m ∈ N, the numerical scheme reads

Xm+1 = Xm −∆t∇E(Xm) +
√

2β−1 (W(m+1)∆t −Wm∆t),

whereW(m+1)∆t−Wm∆t =
√

∆tGm and (Gm)n∈N are independent Gaussian random variables
in R2 with zero mean and covariance Id.

In the simulations below, the initial condition is X0 = x0 = (−0.9, 0). The potential
E : R2 → R is given by

E(x, y) = 0.2x4 + 0.2

(
y − 1

3

)4

+ 3e−x
2−(y− 1

3)
2

− 3e−x
2−(y− 5

3)
2

− 5e−(x−1)2−y2 − 5e−(x+1)2−y2
.

This potential is plotted on Figure 3. This potential has two global minima connected
one to another by two channels: the upper channel (which goes through the shallow minimum
around (0, 1.5)) and the lower channel (which goes through the saddle point around (0,−0.5)).

Version 1 2 2 1 2 2
nrep 100 100 10 100 100 10
β 8 8 8 24 24 24
p 3.60e-4 3.60e-4 3.60e-4 1.2e-10 1.2e-10 1.2e-10
pN 1.74e-4 3.257e-4 2.96e-4 1.40e-12 6.05e-11 5e-11
δN 0.03e-4 0.003e-4 0.01e-4 0.1e-12 0.07e-11 1.5e-11

Table 3: Results obtained on the 1d test case with biased versions of AMS.
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The two global minima are close to mA = (xA, yA) = (−1, 0) and mB = (xB, yB) = (1, 0).
For some ρ ∈]0, 1[, we consider the sets A and B defined as the Euclidean open balls of radius
ρ around the two minima mA and mB, namelyA = B(mA, ρ) =

{
(x, y) ∈ R2 :

√
(x− xA)2 + (y − yA)2 < ρ

}
B = B(mB, ρ) =

{
(x, y) ∈ R2 :

√
(x− xB)2 + (y − yB)2 < ρ

}
.

In the numerical applications, we take ρ = 0.05. Most of the trajectories starting from x0

hit A before B. Moreover, A and B are metastable states: in the small temperature regime,
starting from A (resp. B), it takes a lot of time to leave A (resp. B).

We are interested in the estimation of the probability p = P(τB < τA), where the first
hitting times τA and τB are defined by

τA = inf {m ∈ N : Xm ∈ A} and τB = inf {m ∈ N : Xm ∈ B} .
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Figure 3: Plot of the potential function for the bi-channel problem.

We will consider the results of the AMS algorithm for the three reaction coordinates ξi

with i ∈ {1, 2, 3}:

1. the norm to the initial point mA: ξ1(x, y) =
√

(x− xA)2 + (y − yA)2,

2. the norm to the final point mB: ξ2(x, y) = ξ1(xB, yB)−
√

(x− xB)2 + (y − yB)2,

3. the abscissa: ξ3(x, y) = x.

The maximum levels used in the stopping criterion of the algorithm are z1
max = z2

max = 1.9
and z3

max = 0.9. Notice that for i ∈ {1, 2, 3}, we have B ⊂ (ξi)−1(]zimax,+∞[) (see (10)).
In Section 5.2, we take k = 1 and the number of replicas is nrep = 100. The values of β be-

long to the set {8.67, 9.33, 10} which are associated with probabilities p ranging approximately
from 2e-9 to 1e-10.
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5.2.2 Evolution of the empirical mean

Let us first perform simulations with N independent runs of the algorithm, N varying between
1 and 6.106. We represent on Figure 4 the evolution as a function of N of the empirical mean
pN (defined by (38)) and of the associated 95% confidence intervals [pn − δN/2, pn + δN/2]
computed using the empirical variance, see (39).

The colors in the figures are as follows: green (solid line) for ξ1, red (line with crosses)
for ξ2 and blue (line with circles) for ξ3. The full lines represent the evolution of the upper
and lower bounds of the confidence intervals, while dotted lines represent the evolution of the
empirical means.

From these simulations, we observe that:

• When N is sufficiently large, the confidence intervals overlap. This is in agreement
with the fact that p̂ is an unbiased estimator of p whatever the choice of the reaction
coordinate.

• The statistical fluctuations depend a lot on the reaction coordinate. In particular, the
results obtained with ξ1 seem much better than with ξ2 or ξ3. We will come back to
this in Section 5.2.4.

• The confidence interval being computed empirically, one may conclude that the algo-
rithm is biased by considering the results for N too small (see for example the graphs
in the right column in Figure 4). This is due to the fact that the empirical variance
dramatically underestimates the real variance if N is too small. This is a well-known
phenomenon for splitting algorithms in general called “apparent bias”, see [14]. As β
gets larger (namely as the temperature gets smaller), the number of independent runs
N required to observe overlapping confidence intervals gets larger. For example, for
β = 13, and N = 6.106, we were not able to get overlapping confidence intervals for
the three reaction coordinates: this is actually an indication of the fact that one should
pursue computations with larger N in order to get reliable estimates.

We observe that there are some realizations for which the estimator of the probability
is very large. These realizations have small probability but they dramatically increase the
value of the empirical mean and of the empirical variance. This explains the jumps which
are observed on the empirical average and confidence interval as a function of the number of
realizations, see Figure 4. In the next section, we illustrate this aspect. As is usually the case
with Monte Carlo simulations for rare event simulations, it is impossible to decide a priori if
the sample size N is sufficiently large to give an accurate estimation.

5.2.3 Heavy tails

In this section, we give a more quantitative interpretation of the above observations on the
evolution of the empirical mean. For a given inverse temperature β, and a given reaction
coordinate, we sample N independent realizations of the algorithm denoted by (p̂m)1≤m≤N .

To illuminate the importance of the largest values of the estimator in the empirical average,
we compute partial empirical averages over the largest values or over the smallest values among
the N realizations. More precisely, for a fixed N0, we compute

pN0,large
N =

1

N0

N∑
`=N−N0+1

p̂(`) and pN0,small
N =

1

N −N0

N−N0∑
`=1

p̂(`),
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Figure 4: Evolution as a function of N of the empirical mean pN and of the associated 95%
confidence intervals [pn − δN/2, pn + δN/2]. Upper to lower β = 8.67, 9.33, 10. The right
inserts are zooms of the left graphs on smaller values of N , in order to illustrate the “apparent
bias” phenomenon.
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where
(
p̂(`)

)
1≤`≤N denotes the order statistics of (p̂m)1≤m≤N . In other words, pN0,large

N is the

average over the N0 largest realizations of p̂m, while p
N0,small
N is the average over all the other

values. In particular,

pN =
N0

N
pN0,large
N +

(
1− N0

N

)
pN0,small
N .

In Table 4, we use N = 6.106, and N0 = 100 or N0 = 1000. The results are obtained with
the same realizations as those used in the previous sections. We observe that the largest values
contribute a lot to the empirical average over all the runs whatever the reaction coordinate.
This is characteristic of a heavy tailed distribution. Indeed, for β = 10 for example, the value
of pN0,small

N differs a lot from the value of pN . In addition, notice that this difference is more
important when using ξ2 and ξ3, while when using ξ1. This is in agreement with the fact that
we observed better results (in terms of statistical fluctuations) with ξ1 than with ξ2 and ξ3 in
Figure 4. Indeed, distributions with heavier tails typically lead to larger fluctuations.

β pN N0 pN0,large
N pN0,small

N N0 pN0,large
N pN0,small

N

ξ1 8.67 1.7e-09 1000 1.3e-e-06 1.5e-09 100 4.0e-06 1.6e-09
ξ2 8.67 1.3e-09 1000 5.7e-06 4.2e-10 100 5.2e-05 5.1e-10
ξ3 8.67 1.8e-09 1000 8.0e-06 4.8e-10 100 6.5e-05 7.3e-10
ξ1 9.33 3.2e-10 1000 3.0e-07 2.7e-10 100 1.0e-06 3.0e-10
ξ2 9.33 3.8e-10 1000 1.9e-06 6.4e-11 100 1.8e-05 8.2e-11
ξ3 9.33 5.2e-10 1000 2.7e-06 7.2e-11 100 2.5e-05 1.0e-10
ξ1 10 6.2e-11 1000 8.9e-08 4.8e-11 100 4.0e-07 5.6e-11
ξ2 10 1.3e-10 1000 7.0e-07 9.1e-12 100 7.2e-06 1.3e-11
ξ3 10 6.5e-11 1000 3.0e-07 1.0e-11 100 3.0e-06 1.5e-11

Table 4: Comparisons of the empirical averages pN with partial empirical averages obtained
over the N0 largest and N −N0 smallest values among N realizations.

Remark 5.1 (On heavy tails in the idealized setting). Let us mention another setting where
it can be analytically checked that the distribution of the estimator p̂ has heavy tails in some
regime. In a one-dimensional case (or when the committor function is used as a reaction
coordinate), one can show that the AMS algorithm can be related to the so-called exponential
case, namely when Ξ(X) is distributed with exponential law with parameter one (see for
example [5]). It is then easy to show that for k = 1, and in the regime where nrep → +∞
and the target probability is p = exp(−σ2nrep) for some fixed σ > 0, then p̂

p converges in
distribution to the log-normal distribution exp(σZ − σ2/2) where Z ∼ N (0, 1) is a standard
Gaussian random variable (see [2, Proposition 3.4]). In particular, p̂ has heavy tails (the
median exp(−σ2/2) of this distribution is smaller than its expectation 1, so that for a large σ
the empirical mean under-estimates the expectation).

5.2.4 Fluctuations induced by the two channels

In this section, we compare the results when using two reaction coordinates: ξ1 (norm to mA)
and ξ3 (abscissa). Since the typical behavior we observe in Figure 4 and in Table 5 is the
same for ξ2 and ξ3, we do not repeat the analysis for ξ2.
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As explained above, there are two possible channels for the reactive trajectories going from
A to B: the upper channel and the lower channel. For each realization m, one can distinguish
the contributions to the estimator p̂m of the replicas going through the upper channel and
the ones going through the lower channel. In the following, for a given path, the trajectory is
associated to the upper (resp. lower) channel if the first hitting point of the y-axis is such that
y > 0.5 (resp. such that y ≤ 0.5). More precisely, let us define Π1(x, y) = x and Π2(x, y) = y
for any (x, y) ∈ R2. For a replica X = (Xt)t∈N such that τ = inf {t ∈ N : Π1 (Xt) > 0} < ∞,
X ∈ Upper if Π2 (Xτ ) > 0.5 and X ∈ Lower if Π2 (Xτ ) ≤ 0.5.

For each run of the algorithm, we compute the three following quantities:

• the number of replicas which reach B before A:

MB =
∑

n∈I(Qiter)
on

1TB(X(n,Qiter))<TA(X(n,Qiter))

• the number of replicas which reach B before A and go through the upper channel:

MB,upper =
∑

n∈I(Qiter)
on

1TB(X(n,Qiter))<TA(X(n,Qiter))1X(n,Qiter)∈Upper

• the number of replicas which reach B before A and go through the lower channel:

MB,lower =
∑

n∈I(Qiter)
on

1TB(X(n,Qiter))<TA(X(n,Qiter))1X(n,Qiter)∈Lower

Notice that MB = MB,upper +MB,lower and that MB 6= 0 is equivalent to p̂ 6= 0. When needed,
we explicitly indicate the dependence of these quantities on the realization by a lowerscript
m: for m ∈ {1, . . . , N}, we thus denote MB

m, M
B,upper
m and MB,lower

m the m-th realization of
MB, MB,upper and MB,lower.

Let us introduce the set EN = {m : p̂m 6= 0} of realizations which lead to a non zero p̂ and
the proportion RN = card EN/N of such realizations. We now divide the realizations in EN
into three disjoint subsets, with associated proportions.

• All replicas reaching B before A go through the upper channel:

Eupper
N =

{
m ∈ EN : MB,lower

m = 0
}

and ρupper
N =

card Eupper
N

card EN
.

• All replicas reaching B before A go through the lower channel:

E lower
N =

{
m ∈ EN : MB,upper

m = 0
}

and ρlower
N =

card E lower
N

card EN
.

• Both channels are used by the replicas reaching B before A :

Emix
N = EN \

(
Eupper
N ∪ E lower

N

)
and ρmix

N =
card Emix

N

card EN
.
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Obviously, ρmix
N = 1−ρupper

N −ρlower
N . Finally, we define conditional estimators for p̂ associated

with the partition of EN defined above:

p̃upper
N =

∑
m∈Eupper

N
p̂m

card Eupper
N

, p̃lower
N =

∑
m∈E lower

N
p̂m

card E lower
N

and p̃mix
N =

∑
m∈Emix

N
p̂m

card Emix
N

.

Notice that
pN = RN

(
ρupper
N p̃upper

N + ρlower
N p̃lower

N + ρmix
N p̃mix

N

)
.

In other words, we have separated the non-zero contributions to pN into (i) realizations for
which all the replicas go through the upper channel (first term in the parenthesis), (ii) realiza-
tions for which all the replicas go through the lower channel (second term in the parenthesis),
and finally (iii) realizations for which the two channels are used by the replicas (third term in
the parenthesis).

Contrary to pN , the limit when N →∞ of the estimators RN , ρ
upper
N , ρlower

N , ρmix
N , p̃upper

N ,
p̃mix
N or p̃lower

N (for a given value of nrep) depends on the choice of the reaction coordinate ξ.
From Table 5, we observe that for ξ1, approximately half of the realizations use exclusively

the upper channel and the other half use the lower channel. The associated conditional
estimators p̃upper

N and p̃lower
N are very close. This is not the case for ξ3: only very few realizations

go through the upper channel while the associated probability p̃upper
N is much larger than the

two other ones p̃lower
N and p̃mix

N . This means that a few realizations contribute a lot to the
empirical average pN . This explains the very large confidence intervals observed with ξ3 (in
comparison with those observed for ξ1) on Figure 4.

β N RN ρupper
N ρmix

N ρlower
N p̃upper

N p̃mix
N p̃lower

N pN
ξ1 8.67 2.106 0.81 0.45 0.03 0.52 2.7e-09 3.0e-09 2.3e-09 1.7e-09
ξ3 8.67 2.106 0.99 0.0008 0.02 0.98 2.3e-06 5.9e-10 5.5e-10 2.4e-09
ξ1 9.33 4.106 0.72 0.51 0.02 0.47 6.2e-10 6.3e-10 2.5e-10 3.2e-10
ξ3 9.33 4.106 0.97 0.0005 0.02 0.98 1.0e-06 5.6e-11 9.7e-11 6.0e-10
ξ1 10 6.106 0.62 0.51 0.01 0.48 1.5e-10 1.4e-10 5.2e-11 6.2e-11
ξ3 10 6.106 0.92 0.0004 0.01 0.99 1.4e-07 1.5e-11 1.8e-11 6.8e-11

Table 5: The bi-channel case. Proportion and conditional probabilities for two reaction coor-
dinates: the norm to the initial point (ξ1) and the abscissa (ξ3).

Remark 5.2 (On ρmix
N ). We observe that for both reaction coordinates the value of ρmix

N is
very small: on most realizations, if at least one replica reaches B before A then all replicas
reaching B go through the same channel. This effect is due to the rather small number of
replicas (namely nrep = 100). When nrep increases, we observe both upper and lower paths
on each realization, see for instance [10] for such experiments.

Remark 5.3 (On the efficiency of ξ1). We see in Table 5 that RN is smaller for the best
reaction coordinate ξ1 (in terms of fluctuations) than for ξ3. Indeed, the potential V admits
a local minimum at x∗ ' (0, 1.54) with ξ1(x∗) ' 1.83, which is very close to z1

max = 1.9.
Notice that the influence of the local minimum is much weaker when using the abscissa since
ξ3(x∗) = 0 which is far from z3

max = 0.9 and since most of the trajectories go through the
lower channel for this reaction coordinate.
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Using ξ1 as a reaction coordinate, replica X going though the upper channel is likely to get
trapped around the upper local minimum, and the resampling procedure may produce trajec-
tories which go back to A without increasing the level of the parent replica: as a consequence
a higher rate of extinction is observed for ξ1 than for ξ3.

Moreover, it may happen that a replica satisfies Tzmax(X) < TA(X) without hitting B
before A; it has then no contribution in the estimator of the probability P(τB < τA). On the
left plot on Figure 5, we represent the nrep = 20 replicas obtained at the end of one realization
of the algorithm where β = 6.33, and using ξ1: only 6 replicas out of 20 reach B even if all of
them have a maximum level larger than the stopping level zmax. In such a case, Pcorr = 6/20
(see (21)).

Remark 5.4 (On the degeneracy of the branching tree). On the right plot of Figure 5,
another phenomenon is illustrated: for a small number of replicas, we typically observe that
the working replicas at the final iteration of the algorithm have only a few common ancestors.
For example, for the realization of the algorithm represented on the right plot of Figure 5 with
β = 6.33 and using ξ3 (abscissa) as the reaction coordinate, the nrep = 20 working replicas
are all issued from only two ancestors, at the end of the algorithm. Of course, the number of
common ancestors increases when nrep is larger (see for example [10]).
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Figure 5: Trajectories obtained at the end of a realization of the algorithm for which β = 6.33,
nrep = 20. Left: the reaction coordinate is ξ1 and only 6 of the working replicas have reached
B (Pcorr = 6/20), see Remark 5.3. Right: the reaction coordinate is ξ3 and the 20 replicas are
all issued from only two ancestors, see Remark 5.4.

Remark 5.5 (On the limit of RN , ρ
upper
N , ρlower

N , ρmix
N when N → ∞). The fact that the

limits when N goes to infinity of the proportions RN , ρ
upper
N , ρlower

N , ρmix
N or the conditional

probabilities p̃upper
N , p̃mix

N or p̃lower
N depend on ξ is not in contradiction with the unbiasedness

result of Theorem 4.1. Indeed these quantities are not estimators of the form (19). In partic-
ular, there are not associated with a functional of the dynamics of the form (9). For example,
p̃upper
N should not be confused with the empirical estimator pupper

N = 1
N

∑N
m=1 p̂

upper
m , where
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(for a fixed realization m)

p̂upper =
∑

n∈I(Qiter)
on

G(n,Qiter)1TB(X(n,Qiter))<TA(X(n,Qiter))1X(n,Qiter)∈Upper

=
nrep −K(Qiter)

nrep
. . .

nrep −K(1)

nrep

(
1

nrep

∑
n∈I(Qiter)

on

1TB(X(n,Qiter))<TA(X(n,Qiter))1X(n,Qiter)∈Upper

)

which is an unbiased estimator of P (TB(X) < TA(X) and X ∈ Upper). The (unbiased) esti-
mator p̂lower of P (TB(X) < TA(X) and X ∈ Lower) is defined similarly, as well as the empir-
ical average plower

N = 1
N

∑N
m=1 p̂

lower
m .

Table 6 contains the values of pupper
N and plower

N computing using the same realizations
as above. We include the values of the width δupper

N and δlower
N of the confidence intervals

associated with the Monte-Carlo procedure (see (39)).

β N plower
N δlower

N pupper
N δupper

N pN
ξ1 8.67 2.106 5.2e-10 5.1e-11 1.2e-09 4.4e-11 1.7e-09
ξ3 8.67 2.106 5.4e-10 5.0e-11 1.9e-09 3.5e-09 2.4e-09
ξ1 9.33 4.106 9.1e-11 9.4e-12 2.3e-10 7.5e-12 3.2e-10
ξ3 9.33 4.106 8.3e-11 7.9e-12 5.2e-10 7.7e-10 6.0e-10
ξ1 10 6.106 1.6e-11 3.0e-12 4.6e-11 1.8e-12 6.2e-11
ξ3 10 6.106 1.8e-11 2.2e-12 5.0e-11 7.0e-11 6.8e-11

Table 6: The bi-channel case. Estimation of upper and lower channels probabilities for two
reaction coordinates: the norm to the initial point (ξ1) and the abscissa (ξ3).

We observe good agreement between the values computed with the two reaction coordi-
nates, as predicted by the unbiasedness result of Theorem 4.1. The estimates of the probability
P (TB(X) < TA(X) and X ∈ Lower) and the corresponding empirical variances obtained with
both reaction coordinates are very close. However, when using the abscissa ξ3 we see that
the confidence interval [pupper

N − δupper
N /2; pupper

N + δupper
N /2] is much larger than the one when

using ξ1; the variance is larger because taking the upper channel is less likely when using ξ3.
Moreover, if we plot the equivalent of Figure 4 for pupper

N , we observe the same kind of behavior
for the evolution of the confidence interval related with pupper

N as function of the number of
realizations N : pN and pupper

N jump at the same values of N .

5.3 The second two-dimensional example

Let us finally consider another example in dimension two, already used in [3]. Our aim is
to show that the very large fluctuations observed with some reaction coordinates in the first
two-dimensional example are related to the existence of multiple pathways from A to B. This
is actually very much related to some discussions in the paper [14] about the origins of the
so-called “apparent bias” which is observed with splitting algorithms.

In the example considered in this section, we will indeed observe that as a parameter is
changed in the model, one goes from a situation where the estimator has the same statistical
behavior whatever the reaction coordinates (when there is only one pathway from A to B)
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to a situation where the estimation using one of the reaction coordinate deteriorates for too
small Monte-Carlo sample sizes (when two pathways link A to B), even though the estimated
probability is approximately the same in both situations.

5.3.1 The model

The second example is inspired by the space discretization of the Allen-Cahn equation (see [3]).
The dynamics is again the overdamped Langevin equation (41) discretized using the Euler-
Maruyama method. The potential function Eγ depends on a parameter γ > 0 and is given
by

Eγ(x, y) = γ(x− y)2 +
1

2
(V (x) + V (y)) ,

where V (z) = z4

4 −
z2

2 is a double-well potential.

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 6: Plot of the potential function for the discretized Allen-Cahn problem. Left: γ = 1;
right: γ = 0.1.

For any value of γ > 0, there are two global minima mA = (xA, yA) = (−1,−1) and
mB = (xB, yB) = (1, 1). Moreover, this model exhibits bifurcations with respect to the
parameter γ. When γ > 1/8, (0, 0) is the only saddle point, whereas for γ < 1/8 the latter
point degenerates into a local maximum and additional saddle points appear (as well as local
minima if γ is further decreased).

The AMS algorithm is tested with four reaction coordinates (the first three ones being the
same as in Section 5.2):

1. the norm to the initial point mA: ξ1(x, y) =
√

(x− xA)2 + (y − yA)2,

2. the norm to the final point mB: ξ2(x, y) = ξ1(xB, yB)−
√

(x− xB)2 + (y − yB)2,

3. the abscissa: ξ3(x, y) = x,

4. the magnetization: ξ4(x, y) = (x+ y)/2.

The fourth reaction coordinate is called the magnetization because of its interpretation in
the original Allen-Cahn problem. In the figures below, we associate a color to each reaction
coordinate: green for ξ1, red for ξ2, blue for ξ3 and cyan for ξ4.
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For the reaction coordinate ξi, the maximum level used in the stopping criterion of the
algorithm is denoted by zimax. In the simulations, the following values are used: z1

max = z2
max =√

7.6 and z3
max = z4

max = 0.9.
As above,A = B(mA, ρ) =

{
(x, y) ∈ R2 :

√
(x− xA)2 + (y − yA)2 < ρ

}
B = B(mB, ρ) =

{
(x, y) ∈ R2 :

√
(x− xB)2 + (y − yB)2 < ρ

}
,

with ρ = 0.05. Notice that for i ∈ {1, 2, 3, 4}, we have B ⊂ (ξi)−1(]zimax,+∞[) (see (10)).
The deterministic initial condition is X0 = x0 = (−0.9,−0.9), and we always take k = 1.

By default, the number of replicas is taken equal to nrep = 100, and the empirical averages
are computed with N = 106 independent realizations. When γ = 0.1, we also take nrep = 10
(with N = 6.106) and nrep = 1000 (with N = 105). Notice that we have also tested the
algorithm in the latter case when k > 1: since we observe the same kind of behavior as for
k = 1, we do not present the results of these numerical simulations.

5.3.2 Simulations for γ = 1 and β ∈ {10, 20, 40, 80}

Let us first consider the case γ = 1. In this situation there is only one reactive path to
go from A to B, going through the saddle point (0, 0). Let us consider the following values
for the inverse temperature β ∈ {10, 20, 40, 80}. We plot on Figure 7 the evolution of the
confidence interval for the estimator p̂ as a function of the number of independent realizations,
for nrep = 100. We observe that the confidence intervals overlap, and that the statistical
fluctuations are very similar whatever the reaction coordinate.

For comparison, the results obtained with a standard direct Monte-Carlo estimation are
given in Table 7 for β ∈ {10, 20, 40} with N = 6.108 realizations. The results are consistent
with those obtained by the AMS algorithm. For β = 80, the probability is very small and
we were not able to get a reliable result by standard direct Monte-Carlo simulations with a
reasonable number of realizations.

β 10 20 40
pMC
N 2.755e-2 2.062e-3 1.582e-5
δN 0.003e-2 0.007e-3 0.063e-5

Table 7: Standard direct Monte-Carlo estimation with N = 6.108 realizations.

5.3.3 Simulations for γ = 0.1 and β = 80

When the parameter γ is smaller than 1/8, the point (0, 0) is no longer a saddle point (but
instead a local maximum). In this case, there are two saddle points on the line ξ4 = 0 (they
are symmetric with respect to (0, 0)). We take γ = 0.1 and represent on Figure 8 the evolution
of the confidence interval for the estimator p̂ as a function of the number N of independent
runs of the algorithm and for different values of nrep: nrep = 10 (with up to N = 6.106

realizations), nrep = 100 (with up to N = 106 realizations) and nrep = 1000 (with up to
N = 105 realizations). The inverse temperature is fixed to β = 80.

We observe that the statistical fluctuations of the estimator for the reaction coordinate ξ3

(abscissa) are much larger than for the three other ones. The estimator is unbiased, but a large

49



1 2 3 4 5 6 7 8 9 10

x 10
5

0.0275

0.0275

0.0275

0.0275

0.0275

0.0276

0.0276

0.0276

0.0276

0.0276

 

 

Abscissa
Norm to final point
Norm to initial point
Magnetisation

1 2 3 4 5 6 7 8 9 10

x 10
5

2.054

2.056

2.058

2.06

2.062

2.064

2.066

2.068

2.07

2.072

x 10
−3

 

 

Abscissa
Norm to final point
Norm to initial point
Magnetisation

1 2 3 4 5 6 7 8 9 10

x 10
5

1.58

1.585

1.59

1.595

1.6

1.605

x 10
−5

 

 

Abscissa
Norm to final point
Norm to initial point
Magnetisation

1 2 3 4 5 6 7 8 9 10

x 10
5

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

x 10
−9

 

 

Abscissa
Norm to final point
Norm to initial point
Magnetisation

Figure 7: Evolution as a function of N of the empirical mean pN and of the associated 95%
confidence intervals [pn − δN/2, pn + δN/2] with γ = 1. Upper left: β = 10, upper right:
β = 20, lower left: β = 40, lower right β = 80.
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number of realizations is required to get a significant confidence interval. By comparing with
the results obtained in the Section 5.2, we thus conclude that the origin of these fluctuations
is related to the existence of two pathways from A to B, rather than to the smallness of
the estimated probability for example. This is in agreement with some discussions in the
paper [14] about the origins of the so-called “apparent bias” which is observed with splitting
algorithms.
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Figure 8: Evolution as a function of N of the empirical mean pN and of the associated 95%
confidence intervals [pn − δN/2, pn + δN/2] with γ = 0.1 and β = 80. Upper left nrep = 10,
upper right nrep = 100, lower nrep = 1000.

5.4 Conclusions and practical recommendations

Let us summarize our findings on these numerical simulations.

• We always observe that for sufficiently large values of N (number of independent Monte
Carlo simulations), the confidence intervals of the estimator p̂ overlap, whatever nrep,
k or ξ. This is in accordance with our theoretical result on the unbiasedness of this
estimator.

• We observe numerically in our two-dimensional simulations that the estimator p̂ has a
heavy tail so that very few realizations contribute a lot to the empirical average. This
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explains why for some choices of the reaction coordinate the efficiency of the estima-
tion may be very poor since the empirical average converges very slowly to its limit
(namely N should be taken sufficiently large to obtain significant results). Actually, as
explained in Remark 5.1, even in some idealized setting where the reaction coordinate is
the committor function, in some small probability regime, the estimator has a log-normal
distribution, and thus has heavy tails.

• In multiple channel cases (namely when multiple pathways exist from A to B), one may
observe non-overlapping empirical confidence intervals of the estimator for different reac-
tion coordinates if the number of independent realizations N is too small. This is related
to the fact that very large contributions to the average of the estimator are associated
with trajectories going through very unlikely (for the considered reaction coordinate and
value of nrep) channels. This is a known phenomenon for splitting algorithms in general,
see [14], where it is referred to as “apparent bias”. In particular, a good reaction coordi-
nate in a multiple channel case is such that, conditionally to reach a certain maximum
level z, the relative likelihood of the channels used by the paths to reach this maximum
level does not depend too much on z. For example, a reaction coordinate close to the
committor function is a good candidate to achieve this purpose. This opens the route
to adaptive algorithms, where the reaction coordinate would be updated in order to get
closer and closer to the committor function as long as successive AMS algorithms are
launched (see [10]). We intend to investigate this direction in future works.

As a conclusion to these numerical results, we thus recommend the following in order to
get reliable estimates of the probability P(τB < τA) with the AMS algorithm.

• One should be careful in the implementation of the splitting and branching steps, in
particular in the treatment of replicas which have the same maximum level and in the
definition of the branching point in the resampling procedure. For correct implementa-
tions, unbiased estimators can be built, and the general framework of Section 3 yields
many variants for the algorithm.

• Thanks to the unbiasedness property, one should check the independence of the com-
puted probability on the choice of the parameters: the number of replicas nrep, the
minimum number of resampled replicas k and the reaction coordinates ξ. In particular,
we recommend to perform simulations with various reaction coordinates and to set the
minimal number of independent realizations such that the empirical confidence intervals
overlap.

• Thanks to the unbiasedness property, one can perform many independent realizations of
the algorithm with a relatively small number of replicas, instead of using a few indepen-
dent realizations with a large number of replicas. Indeed, assume that we are in a regime
where the variance scales like 1

nrep×N ; this is the case for instance in the so-called ideal
case for sufficiently large nrep and N , see [5]. Since the parallelization of independent
runs of the algorithm is trivial, for a fixed product nrep × N (namely for a fixed CPU
cost), the strategy with less replicas is thus much more interesting in terms of wall-clock
time (which scales like nrep) than the strategy with more replicas.
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