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Abstract—This paper presents a semi-autonomous navigation
strategy aimed at the control of assistive devices (e.g. an in-
telligent wheelchair) using low throughput interfaces. A mobile
robot proposes the most probable action, as analyzed from the
environment, to a human user who can either accept or reject
the proposition. In case of rejection, the robot will propose
another action, until both entities agree on what needs to be
done. In a known environment, the system infers the intended
goal destination based on the first executed actions. Furthermore,
we endowed the system with learning capabilities, so as to learn
the user habits depending on contextual information (e.g. time of
the day or if a phone rings). This additional knowledge allows the
robot to anticipate the user intention and propose appropriate
actions, or goal destinations.

Index Terms—Mobile Robot Control, Human-Robot Interac-
tion, Goal Inference, Habit Learning.

I. INTRODUCTION

There is a growing presence of robots in our lives, not
only in industrial applications, but also at home as toys and
service robots. A particular case focuses on mobile assistive
robots, either for user mobility (e.g. an intelligent wheelchair)
or telepresence [1]. However, typical input devices like joy-
sticks are still difficult to use by people suffering from a
lack of mobility (e.g. due to quadriplegia) or people unable
to perform fine movements (e.g. due to Parkinson disease).
In this context, dedicated specialized interfaces are required,
but they usually offer very limited bandwidth in comparison
to joysticks. Examples of such devices include sip-and-puff
systems, single switches, or even electroencephalogram-based
(EEG) brain-computer interfaces (BCI) [2].

We present a semi-autonomous navigation strategy targeted
for low throughput input devices. Instead of requiring the
user to send commands continuously, the control is based on
human-robot interactions at key locations along the travel. In
this approach, the robot evolves autonomously in the environ-
ment using sensory inputs. However, as it does not know where
the intended destination it queries the user for more informa-
tion at certain places in the environment. Propositions such as
local actions or possible goals are made to the user, who can
accept or reject them. Given human rejection, the robot makes
new propositions using this additional information. The human
workload is thus reduced to only binary inputs (yes/no). When
the system has knowledge about the environment, a topological
map combined with sensory information is used to identify the

places where a decision is required. Furthermore, contextual
information is used to propose either meaningful actions to be
performed or directly goal destinations.

We have previously shown how this approach can be used
to navigate in both unknown [3] and known environments
[4]. In this paper we further test the proposed framework for
learning user habits when navigating in known environments.
Furthermore, we assessed the performance of the system by
emulating a low-throughput, error-prone interface based on the
accuracies reported for BCI systems aimed at the detection of
brain signals related to error processing [5], [6].

II. RELATED WORKS

Most related works in goal, user, or activity recognition for
navigation rely on probabilistic reasoning techniques [7] to
represent the different beliefs during navigation. Two main as-
pect have been studied for intention recognition: local intention
recognition (immediate action or location in the vicinity of the
wheelchair) and global intention recognition (goal destination).
In the first case, robots base their inference on direct human
input (usually through a joystick), e.g. going left/right/forward,
passing through a door, or avoiding an obstacle. Among
these, dynamic Bayesian networks (DBNs) have been used to
distinguish between approaching or avoiding an obstacle, or to
control a wheelchair using either a joystick or brain-decoded
commands [2], [8]. Alternatively, Carlson and Demiris [9]
computed the probability of trajectories obtained from the
relative pose and orientation between a wheelchair and two
predefined possible goals.

The inference of global intentions requires the ability to
localize the robot within the environment. In a grid-world
environment, Partially Observable Markov Decision Process
(POMDP) can be enhanced to represent goal locations [10].
After a preliminary phase where reinforcement learning is
used to estimate the actions leading to a goal, the system
infers the most probable goal from a set of possibly noisy
observations. Similar results have been reported by fusing the
robot position and the possible goals as the new state definition
in a common POMDP [11]. These works aim at recognizing
the goal destination based on the actions made along the travel.
We want to go further by integrating contextual information
closely related to the user habits, such as the time of the day



or the last visited goal. Moreover, we also consider external
events, e.g. a ringing phone, that may trigger specific responses
from the user, independent from her usual habits.

III. SEMI-AUTONOMOUS NAVIGATION

In the proposed approach the robot navigates autonomously
until it reaches a particular location in the environment. At
this location, it queries the user to obtain more information
about the intended destination. These queries are in the form
of potential directions of movement or intended goal locations
that should be confirmed or refuted by the user. Assuming
that the robot has knowledge about the environment–encoded
in a topological map–, at any node in the map we can define
the probability distribution over the possible actions P (A).
Moreover, we can also infer the intended goal location (based
on the probability distribution over goals P (G)) based on the
first decisions made along the travel. This information can
be exploited to improve the system performance by directly
proposing to reach the most probable goal location. Further-
more, we can learn the stereotypical user movements–habits–
and exploit them in order to anticipate his next desired desti-
nation well ahead in order to decrease the human workload.

A. Human-Robot Dialog Management

We rely on a particular human-robot interaction, which
consists of robot propositions and related user answers [12].
Similar to early models for human-machine dialogs (e.g. [13])
this type of dialog, based on closed questions, allows the
use of low throughput interfaces with binary-like signals.
Moreover, we also allow the possibility of using error-prone
user interfaces (e.g. a brain-computer interface) by taking
into account their estimated reliability. In this case, the true
user intention has to be inferred during the whole dialog
process, possibly requiring multiple propositions and answers.
Inspired by previous work on spoken dialog systems relying
on probabilistic reasoning techniques [13], we used a dynamic
Bayesian network (DBN) in order to track the user’s intended
action or goal destination.

The DBN has three inputs: first, the proposed action or
goal; second, the user answer, as provided by the user in-
terface; finally, the known interface accuracy P (O | I) (i.e.
the probability of receiving a human input O given the true
intention I). The interface accuracy is taken into account
to infer the intended user answer which, together with the
proposition, allows the update of the probability distribution
over the intended actions P (A) or goals P (G). Initially,
uniform distributions are used if there is no prior knowledge.
However, as we will show in the next sections, the robot is
able to build such an initial distribution based on the local
topology of the environment.

Finally, a criterion is needed to select which proposition
will be made to the user as well as to stop the dialog and
proceed to the execution of a command. Based on preliminary
tests, we opt for proposing the most probable action or goal,
and to use a threshold in the probability difference between
the two most probable propositions
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Fig. 1. Dynamic Bayesian network. (a) topological navigation and (b) habit
learning. S States, A Actions, G Goals, R goal Reached, Glast last visited
goal, ToD Time of the Day, and Phone.

B. Navigating in known environments

We consider here environments for which the system has
a predefined representation, such as a map. In our context,
besides the use of a metrical map for robot localization, we
rely on a topological map, where nodes represent potential
goal locations or places where a navigational decision is
required; arcs represent the path between two nodes. In order
to achieve low-level control (e.g. left/right action proposition),
this topological map is grounded on the metrical map.

We design a second DBN aimed at achieving topological
navigation and basic goal inference. Accordingly, we describe
the motion in the environment as a Markov decision process
with Actions At, such as turning left, turning right, going
forward, or doing a U-Turn, and States St, a state being a robot
pose in the environment (see figure 1a for the relation between
variables). Note that the motion model P (St|St−1 At−1) is
deduced from the topological map with a graph-search-based
approach. In order to infer the desired goal destination, we
introduce a Goal variable Gt. Goals are specific locations in
the environment coinciding with existing states. Both the state
and the goal variables influence the action model P (At|Gt St),
which can also be deduced from the topological map. A
boolean variable Rt, corresponding to a goal reached status
(i.e. Rt = 1 if Gt = St), is added in order to trigger a specific
action distribution when reaching a goal destination (i.e. the
Stop action would be the most probable one), extending thus
the action model to P (At|Gt St Rt). It is also used for
P (Gt|Gt−1 Rt−1), defining the goal probabilities for the next
time step: if a goal is not reached (Rt−1 = 0), the probability
of having the same goal in mind is much higher than changing,
whereas when the user reaches a goal (Rt−1 = 1), the other
places become equally probable. We will refer later to this
relation as the goal persistence.

The DBN is shown in figure 1a as a graphical model.
It is able to infer the most probable actions to do at the
next topological node and the intended goal by computing
P (At|St−1 At−1), resp. P (Gt|St−1 At−1). Furthermore, this
model, similar to [10], allows us to incrementally infer goal
destinations based on the sequence of observed actions.

In order to represent user habits, the model is extended to



include contextual information (figure 1b). As an example, we
present context variables representing the last visited goal, as
well as the time of the day and an external event (i.e. phone
ringing). The variable Glast stores the last visited goal and
models the succession of goal visits. Then, the discretization of
the day in several time intervals, such as “waking up”, “lunch”,
or “evening”, is done by the variable ToD (Time of Day).
Finally, the binary variable Phone is an example of an external
event taken into account by our DBN: hearing a phone ringing
is correlated with the user going to answer the phone, thus
breaking up the current sequence execution.

As can be seen in figure 1b, these addi-
tional variables influence the goal distribution
P (Gt|Gt−1 Rt−1 Glast ToD Phone). However, this
complex probability distribution is difficult to express in
such a form. Building upon our previous P (Gt|Gt−1 Rt−1)
distribution, we will rely on a Bayesian sub-model in order to
model the relation between all the variables:
P (Gt Gt−1 Rt−1 Glast ToD Phone) =
P (Gt−1 Rt−1) P (Gt|Gt−1 Rt−1) P (Glast ToD Phone|Gt)
P (Gt−1 Rt−1) is a uniform distribution. P (Gt|Gt−1 Rt−1)

corresponds to the goal persistence term exposed previously.
Finally, the term P (Glast ToD Phone|Gt), regrouping all the
newly introduced variables, represents the user habits, i.e. the
dependence of the goals from the contextual information. It
is a Laplace distribution, storing evidences of the user habits
in a probability table. For the use of this sub-model in the
main DBN, we compute at each time step the distribution
P (Gt|Gt−1 Rt−1 Glast ToD Phone).

The extended DBN is able to infer the user intended
goal destination, and consequently the most probable actions
leading to it, given the current robot situation and the con-
textual information. The related distributions calculated from
the known variables are P (Gt|St−1 At−1 Glast ToD Phone)
and P (At|St−1 At−1 Glast ToD Phone). When reaching
a goal location, i.e. when Rt = 1, the system will update
the distribution on P (Glast ToD Phone|Gt) by adding the
current observation. The robot is thus learning the habit of its
user in order to improve the accuracy of the future inference
processes. We will now present experiments for testing the
performance of our model.

IV. EXPERIMENTAL RESULTS

A. System performance

We perform simulations in order to assess the performance
of the model considering several cases including normal user
behavior, as well as unusual user trajectories and its reactions
to external events (i.e. phone events). To that purpose, the
simulated robot evolves in the environment shown in figure 2,
containing five goals and a small loop simulating a wide space.
It represents a realistic environment, where ‘A’ could be the
bedroom, ‘B’ the bathroom, ‘C’ the kitchen, ‘D’ the main
entrance, and ‘P’ the place where a phone is. In order to
evaluate the system behavior with error-prone interfaces, in
all the experiments we define the interface accuracy P (O|I)
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Fig. 2. Topological map of a small indoor environment, with four goals
(A-D) and a phone (P).

according to the reported accuracy of BCI system decoding
EEG error-related potentials (Table I).

Two scenarios are run, one representing a user habit in the
morning and one in the evening. In the morning, the user wakes
up in the bedroom, goes to the bathroom, has breakfast, brushes
her teeth, and leaves the apartment for work. We thus have the
sequence ABCBD. In the evening, she comes back from work,
has dinner, watches TV in the bedroom, goes to the bathroom,
and finally goes to sleep. We thus have the sequence DCABA.
At random across the two scenarios (20%), the phone will be
ringing and the user will go to ‘P’ to answer. Also at random,
the user will execute an unusual sequence in the environment
in 10% of the time.

We run each scenario 100 times, (i.e. representing 100
consecutive days). A second experiment with 1’000 runs of the
two scenarios was performed. This allows to compare with the
performance when the system has learned the user habits. Two
measures µmax and µP are introduced, being respectively the
average number of times the most probable goal matches the
real one, and the geometrical mean of the probability values
of the intended goal1,

µmax =
1

N

N∑
t=1

δ(Ĝt, argmax
Gt

P (Gt|St−1 At−1 ToD Glast Phone)

µP = N

√√√√ N∏
t=1

P ([Gt = Ĝt] | St−1 At−1 ToD Glast Phone)

where N is the number of timesteps, Ĝt is the intended
goal, and δ(a, b) is the Kronecker function. The measure
µmax, evaluates the efficiency of the model in making a first
correct proposition to the user. As propositions get better, less
involvement is required from the user. In turn, µP measures the
certainty of the model on the user habits. Ideally µmax → 1,
while µP would be lower due to the inherent uncertainty.

1When comparing several models, the common way is to compare their
likelihood, which is the product of the probability values. However the
likelihood depends on the number of observation which prevents a comparison
between datasets of different sizes. The geometrical mean allows to overcome
this by normalizing the likelihood per trial.

P (O|I) O = no ErrP O = ErrP
I = no ErrP 92.0% 8.0%
I = ErrP 26.5% 73.5%

TABLE I
CONFUSION MATRIX OF THE ERRP CLASSIFIER [5]. I ≡ USER INTENDED

RESPONSE. O ≡ OBSERVED SIGNAL (I.E. EEG DECODED RESPONSE).



Situation Global Usual habit Phone events Unusual habit
Uniform 0.20 0.20 0.20 0.25
A, µmax 0.85 0.89 0.65 0.55
A, µP 0.71 0.77 0.45 0.32
B, µmax 0.85 0.90 0.82 0.48
B, µP 0.73 0.83 0.66 0.26

TABLE II
EVALUATION OF THE DBN FOR GOAL INFERENCE. (A) TESTS ON 100

TRIALS. (B) 1’000 TRIALS.

Situation Global Usual habit Phone events Unusual habit
Uniform 0.20 0.20 0.20 0.20
A, µmax 0.87 0.88 0.70 0.74
A, µP 0.74 0.76 0.57 0.56
B, µmax 0.90 0.92 0.69 0.76
B, µP 0.74 0.78 0.60 0.51

TABLE III
EVALUATION OF THE DBN FOR ACTION INFERENCE. (A) TESTS ON 100

TRIALS. (B) 1’000 TRIALS.

The system performs better than a random model in all
situations (c.f. table II). When the test consisted in 100 trials
(upper part of the table), the goals were correctly predicted
(µmax, column Global) in 85% of the time, or even in 89%
if we consider only the usual sequences without any phone
events (Usual habit). When the phone is ringing, the DBN
is more than three times better than chance for inferring the
correct goal destination (Phone events). The values for µP

are slightly lower, but also outperform the uniform model.
They indicate that the probability distributions are well shaped
(rather peaked than uniform), meaning that the system acquired
a precise representation of the user habits. Unsurprisingly, the
system performance decreases when the user executes unusual
sequences (Unusual habit). When we run the system for 1000
trials, the performance increases mainly for the µP measure
indicating that the system has a more precise representation of
the user habits. This is particularly true for the phone events,
as now the P (ToD Glast Phone|Gt) term has overcome
the ToD and Glast dependency. When unusual sequences are
executed the system performs close to random.

When considering the action inference (table III, similar
µmax and µP computed using A instead of G) the results
are similar. We can see that the DBN allows to have a proper
initial probability distribution P (A) for engaging a dialog with
the human user in order to select an action. Interestingly, the
action inference in the case of unusual sequences (Unusual
habit column) is much better than the corresponding goal
inference. This may be explained by the fact that paths towards
two different goals share some of the initial actions. Then,
at the node where the paths diverge, the selected action will
differ from the inferred one, allowing the system to update its
inference over goals. Hence, there is only one wrongly inferred
action along the path, while there were several steps where the
goal was wrongly inferred.

Fig. 3. Influence of unusual events on (Top) action and (Bottom) goal
inference. X-axis: level of unusual sequences. Y-axis: frequency of external
events (i.e. phone rings). Plotted values correspond to the geometrical mean
of the probability values (µP ).

B. Influence of unusual events

In order to test the influence of unusual events on the
performance of the DBN, we ran experiments where the two
parameters controlling the unusual sequences percentage and
the frequency of the phone events were varied between 0%
and 50%. 1’000 trials were run for each condition. Figure 3
shows the value of µP , corresponding to the system confidence
about the user habit, for the different cases. It can be observed
that external events, i.e. the phone ringing, have little influence
(i.e. small variation column-wise). When there is no unusual
sequence executed (first column in the graphs), both goal and
action inference perform well above random levels. Notice that
performance is always below 100% due to the goal persistence
term (small probability to change goal). As expected, as the
percentage of unusual sequences increases the performance
drops, although it remains above random even for the worst-
case (i.e. upper right corner of each plot).

We also test the system’s adaptation to changes in the user
habit. We ran a similar scenario as previously over 100 days,
but after 50 days the morning sequence is changed: instead
of “having breakfast at home”, the user directly goes to work
after a stop in the bathroom (i.e. a shorter ABD sequence,
instead of ABCBD). The result is displayed in figure 4, where
we separated the (a) morning and (b) evening sequence. It
represents the variation of µP over the different simulation
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Fig. 4. Model performance (µP ) when there is a change in the user habits. (a) morning and (b) evening scenarios. The performance, computed with a sliding
window, is shown as a function of the simulation steps. The dashed vertical line indicates the moment of the change. On the upper part of each plot, a vertical
bar indicates that the phone rings, a gray rectangle indicating the days where the user did not follow her usual routine.

steps, with an exponential window filter2 applied for better
clarity.3 As can be seen, when the morning habit changes
(vertical dotted line), there is at first a drop in performance.
However, it does not reach the random level (horizontal dotted
line) as might be expected if the sequence would be completely
different. But in this particular case, we did not change the
whole sequence and kept an already learned part of it. After
the habit change, the inference quickly improves again. The
evening sequence is not at all influenced by the morning
habit’s change, as the ToD variable successfully separates the
two situations. Figure 4 also illustrates the influence of phone
events and the changes in the daily habits. The longer the habit
change lasts, the greater the impact on the performance is. Of
course, the DBN has some difficulties to infer the correct goal
destination during these unusual situations, but the time needed
to recover from the negative peaks is also due to the filtering
technique we applied to the results.

C. Proposing goal destinations

In the previous experiments navigation was achieved
through action selection, thus allowing to assess the accuracy
of the DBN and its robustness to unusual situations. In order
to reduce the user involvement, besides proposing the inferred
most probable action, the robot can propose directly a goal
destination. In order to decide whether a goal is proposed, we
developed a simple heuristic based on a threshold tG on the
goal probability: if the probability of a particular goal exceeds
tG, it will be proposed to the user; if no goal is probable
enough, the dialog will be based on actions. When a goal is
selected, the robot can autonomously drive to this destination,
the user having no more input to provide.

We tested 30 simulated days on a larger scenario (c.f.
Figure 5) where the user went to several places (E-D3-D4-P-
C-B-D3-D2-D3) with an additional random variation of 20%.
We compare different values for the tG threshold. Figure 6

2µP (T ) =
∏
t

P ([Gt = Ĝt] | St−1 At−1 ToD Glast Phone)
κ(1−κ)(T−t)

, κ =
1

20

(recursively µP (T ) = P ([Gt = Ĝt] | St−1 At−1 ToD Glast Phone)
κµP (T − 1)1−κ)

3If we would have shown the raw data, the variations among one sequence
would be dominant on the graph. These variations come from the normal
evolution of our DBN, as e.g. all goals are equally probable when we leave a
previously reached goal, which leads to a drop in the µP measure.

shows the number of questions asked to the user and their
nature (i.e. action or goal proposition). It shows that allowing
goal propositions decreases the number of user interactions.
There is more than a two-fold decrease when tG < 0.4. When
tG = 0.2, the numbers of action and goal propositions are
similar. This is due to the fact that when leaving the actual
goal, the user is first asked whether she wants to do a U-turn
(or stay where she is), representing thus one action proposition,
before possibly getting a goal proposition.

This approach can be extended to have a hierarchical de-
composition of the environment, where goals could be grouped
in sub-regions (i.e. meta-goals). We tested this using a simple
approach consisting of summing together the goal probabil-
ities of each goal in each region, without any normalization
on the region size. We thus do not have any a-priori on
the meta-goals but focus on the goals. When only a little
evidence of the human habits has been accumulated, such
a solution is adequate as it favors meta-goals with a higher
goal density and reflects the higher probability that the user
may go to such regions. A variable MG (with a dependency
from the goal Gt) representing the meta-goals is added to
the model in Fig. 1b. It allows a new inference process,
P (MGt|Gt−1 Rt−1 Glast ToD Phone), representing the
probability over the meta-goals.

During navigation, if no goal is probable enough, the system
proposes a meta-goal that exceed a threshold tMG. If there is
none, the most probable action is proposed. When a meta-goal
is selected the robot goes to the first node in the meta-goal
region and from then on it proposes either actions or goals as
described above. Fig. 6b shows the results using this approach.
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Fig. 5. Topological map of the environment used for the action and goal
proposition comparison, with an entrance (E), desks (D1-D6), a printer room
(P), a cafeteria (C), a robot lab (RL), and the bathroom (B).



Fig. 6. Propositions made to the user. (Top) Action and goal propositions.
(Bottom) Action, goal, and meta-goal (hierarchy) propositions. tG and tMG:
thresholds on the goal, resp. the meta-goal, probabilities.

V. CONCLUSION

We described a semi-autonomous navigation system com-
patible with low throughput, error-prone interfaces (e.g. brain-
machine interfaces). Relying on a human-robot interaction
where propositions are made to the user, this system requires
low user involvement, as meaningful propositions are made at
key locations during the travel. In known environments, exper-
iments showed that the learning of the user habits allows goal
directed navigation after just a few interactions. In unknown
environments, meaningful action propositions are made thanks
to the analysis of the local topology [3].

The proposed approach implies less user effort when com-
pared with other approaches to semi-autonomous navigation.
Shared-control systems normally require constant user involve-
ment in order to provide navigational commands [8], [14];
while standard semi-autonomous systems also rely on several
input signals for selecting a command through some user
interface (such as going up or down in a predefined menu
or selecting an item, [15]) or for providing directions to the
system (left, right, forward) at a given point in the travel [16].

The human-robot interaction we use, consisting of context-
based propositions, requires only a single binary signal and
requires needs globally less information from the user. This
may be of importance when dealing with low throughput
interfaces such as BCIs or alternative specialized interfaces.
Other BCI navigation systems have been proposed, either
based on a continuous shared control [2], or the P300 paradigm
[17]. Compared to the proposed approach, the former case

requires constant involvement from the user, thus requiring a
large effort on her part. In turn, the P300 paradigm requires
the averaging over several iterations, slowing down the goal
selection process.

Previous work using this approach for navigation of a real
robot yielded encouraging results using speech or emulated
BCI user interfaces [4], [3]. We plan to further test the pro-
posed approach using similar setups. Moreover, the inference
system could also be combined with other frameworks of
shared control in order to offer different levels of assistance,
according to the particular context and the user preferences.

ACKNOWLEDGMENT

Work supported by the Swiss National Science Foundation
NCCR-IM2 and by the EC project BACS FP6-IST-027140.

REFERENCES

[1] L. Tonin, R. Leeb, M. Tavella, S. Perdikis, and J. del R. Millán, “The role
of shared-control in BCI-based telepresence,” in IEEE Int Conf Systems
Man and Cybernetics, 2010.

[2] G. Vanacker, J. Millán, E. Lew, P. W. Ferrez, F. Galán, J. Philips,
H. V. Brussel, and M. Nuttin, “Context-Based Filtering for Assisted
Brain-Actuated Wheelchair Driving,” Computational Intelligence and
Neuroscience, 2007.

[3] X. Perrin, R. Chavarriaga, F. Colas, R. Siegwart, and J. Millán, “Brain-
coupled interaction for semi-autonomous navigation of an assistive
robot.” Robotics and Autonomous Systems, vol. 58, pp. 1246–1255, 2010.

[4] X. Perrin, F. Colas, C. Pradalier, and R. Siegwart, “Learning to Identify
Users and Predict their Destination in a Robotic Guidance Application,”
in Field and Service Robotics (FSR), 2009.

[5] R. Chavarriaga, P. Ferrez, and J. Millán, “To Err Is Human: Learning
from Error Potentials in Brain-Computer Interfaces,” in Int Conf Cogni-
tive Neurodynamics (ICCN 2007), Shanghai, China, 2007.

[6] R. Chavarriaga and J. Millán, “Learning from EEG error-related poten-
tials in noninvasive brain-computer interfaces.” IEEE Trans Neural Syst
Rehabil Eng, vol. 18, no. 4, pp. 381–388, Aug 2010.

[7] S. Carberry, “Techniques for Plan Recognition,” User Modeling and
User-Adapted Interaction, vol. 11, no. 1-2, pp. 31–48, 2001.
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