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Tracking a Depth Camera: Parameter Exploration for Fast ICP

François Pomerleau1 and Stéphane Magnenat1 and Francis Colas1 and Ming Liu1 and Roland Siegwart1

Abstract— The increasing number of ICP variants leads
to an explosion of algorithms and parameters. This renders
difficult the selection of the appropriate combination for a
given application. In this paper, we propose a state-of-the-art,
modular, and efficient implementation of an ICP library. We
take advantage of the recent availability of fast depth cameras
to demonstrate one application example: a 3D pose tracker
running at 30 Hz. For this application, we demonstrate the
modularity of our ICP library by optimizing the use of lean
and simple descriptors in order to ease the matching of 3D
point clouds. This tracker is then evaluated using datasets
recorded along a ground truth of millimeter accuracy. We
provide both source code and datasets to the community in
order to accelerate further comparisons in this field.

I. INTRODUCTION

Laser-range sensors were a cornerstone to the development
of mapping and navigation in the last two decades. Nowadays,
rotating laser scanners, stereo cameras or depth cameras (RGB-
D) can provide dense 3D point clouds at a high frequency.
Using the Iterative Closest Point (ICP) algorithm [1], [2], these
point clouds can be matched to deduce the transformation
between them and consequently the 6 degrees-of-freedom
motion of the sensor.

ICP is a popular algorithm due to its simplicity. This
leads to hundreds of variations around the original algorithm
that were demonstrated on various experimental scenarios.
Because of the lack of a common comparison framework,
the selection of an appropriate combination is difficult.

The chief assumption of ICP is that the association between
points is mainly correct using the closest point. If not,
the computed transformation may be irrelevant. There are
typically two ways to ensure that the association is correct:
attaching descriptors to the points to ease disambiguation, or
applying the ICP algorithm fast enough to limit the magnitude
of changes. Descriptors are widely used in the vision
community to match images and recently 3D descriptors
have been introduced to help the association step of ICP
(see [3] or [4] as recent examples). While this approach is
promising, most elaborate descriptors are still too costly to
compute for online processing.

The first contribution of this paper is an open-source mod-
ular ICP library, which allows to compare several “flavored”
ICP solutions within the same framework. This library is
released together with our implementation of nearest-neighbor
search with kd-tree, called libnabo1, which has comparable
to slightly superior performance to ANN2, thanks to more

(1) Autonomous Systems Lab. – ETH Zurich, Tannenstr 3, 8092 Zürich,
Switzerland firstname.lastname@mavt.ethz.ch

1http://github.com/ethz-asl/libnabo
2http://www.cs.umd.edu/˜mount/ANN/

Fig. 1. One path of depth camera, tracked at 30 Hz. Projection on the
xy-plane of the tracked position (red) versus the measured ground truth
(light green). Each grid square is half a meter.

compact data structures. Moreover, libnabo features a modern,
template-based interface.

Our second contribution is to optimize the use of lean
and simple descriptors to produce an ICP-based 3D pose
estimator at the frame rate of modern RGB-D sensors. This
pose estimator, or tracker, could in turn be used to feed more
precise algorithms requiring more time to model the word,
for instance SLAM. In this paper, we focus on improving the
speed of the tracker while keeping the pose estimation in a
usable range. This is done by exploiting the modularity of
our ICP library to adapt different filters.

We show statistical analysis of the tracker behavior in the
context of indoor navigation using a Microsoft Kinect. We
performed this evaluation using datasets recorded along a
ground truth of millimetric accuracy that we make available3.
Fig. 1 presents an example of one of the 27 paths recorded.

II. RELATED WORKS

Several recent works have focused on the speed of ICP
algorithms. The search for the closest point is one of the
bottlenecks of ICP. Using an approximate kd-tree decreases
computational time of ICP [5]. Approximate kd-trees employ
distance thresholds to limit the search at the risk of returning
sub-optimal neighbors [6]. This allows to increase the overall
speed of the algorithm while the redundancy between points
prevents a decrease in performance. Additionally, Zlot et al.
compare kd-tree, locality-sensitive hashing and spill-trees [7].
They conclude that kd-tree is better in terms of accuracy, query
time, build time, and memory usage. They also observe that
huge approximations can reduce the query time by two orders
of magnitude while keeping a sufficient accuracy.

3Datasets used for this article can be downloaded at: http://www.asl.
ethz.ch/research/datasets



Another research direction explore multiple resolutions.
Jost et al. compute several times the ICP while varying the
resolution from coarse to fine [8]. At a coarse resolution,
i.e. with a limited number of points, ICP converges faster
but with less accuracy than at a fine resolution. However,
by initializing a finer-resolution ICP with the result of the
coarser one, the convergence of the fine-resolution ICP is
much faster than single-shot ICP as the initial alignment is
mostly correct. These authors also use a pre-computed list of
nearest neighbors to approximate the matching step. With both
of these techniques, they show a significant increase of the
speed of ICP while maintaining an adequate robustness. For
the same absolute performance as standard ICP, Li et al. [9]
obtain less iterations at higher resolution which decreases the
total time of a factor of 1.5 in 2D and 2.5 in 3D. The multi-
resolution approach can also increase the search speed for the
closest point by using a hierarchical-model point selection
with a stereo camera [10]. By subsampling the space and
with the help of the structure of the sensor, this solution
can achieve a speed gain of 3 with respect to standard ICP
with kd-tree search. In this case, the use of the structure
of the depth image increases the speed of matching. In the
same direction, the specificity of a 2D laser scanner can
help optimize search [11]. However, these optimizations are
oriented toward specific sensors, which makes them hard to
generalize and are not suitable for a multi-sensor setup.

III. MODULAR ICP

ICP is an iterative algorithm performing several sequential
processing steps, both inside and outside the main loop. For
each step, there exist several strategies, and each strategy
demands specific parameters.

To our knowledge, there is currently no easy way to
compare these strategies. To enable such a comparison, we
have developed a modular ICP chain (see Fig. 2), called
libpointmatcher, that we provide as open-source software4.
This chain takes as input two point clouds and estimates
the translation and the rotation that minimize the alignment
error. We call the first point cloud the reference and the
second the reading. The ICP algorithm tries to align the
reading onto the reference. To do so, it first applies some
filtering to the clouds, and then iterates. In each iteration, it
associates points in reading to points in reference and finds
a transformation of reading minimizing the alignment error.
The ICP chain consists of several steps. A data filter takes
a point cloud as input, transforms it, and produces another
cloud as output. The transformation might add informations,
for instance surface normals, or change the number of points
by randomly removing some of them for example. Data
filters can be chained. A matcher links points in the reading
to points in the reference. Currently, we provide a fast k-
nearest-neighbor matcher based on a kd-tree, using libnabo. A
feature outlier filter removes (hard rejection) and/or weights
(soft rejection) links between points in reading and their
matched points in reference. Criteria can be a fixed maximum

4http://github.com/ethz-asl/libpointmatcher
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Fig. 2. The modular ICP chain as implemented in libpointmatcher

authorized distance, a factor of the median distance, etc.
Points with zero weights are ignored in the subsequent
minimization step. Feature outlier filters can be chained. An
error minimizer computes a transformation matrix such as
to minimize the error between the reading and the reference.
There are different error functions available, such as point-to-
point or point-to-plane. A transformation checker can stop
the iteration depending on some conditions. For example, a
condition can be the number of times the loop was executed
or it can be related to the matching error. Transformation
checkers can be chained.

This chain provides standardized interfaces between each
step. This allows to add novel algorithms to some steps to
evaluate their impact on the global ICP behavior.

IV. TRACKER

A. From ICP to Tracking
Using libpointmatcher, we implement a fast tracker that

we also provide as open-source software5. This tracker takes
as input a stream of point clouds and produces as output
an estimation of the 6D pose of the sensor. To avoid drift,
the tracker holds a single reference and matches every
incoming point cloud against it. If the ratio of matching points
drops below a pre-defined threshold, the tracker creates a
new reference with the current cloud. This keyframe-based
mechanism allows a higher frame rate by reducing the number
of kd-tree creation and limits drift if the sensor stay at the
same position. To easily explore the different parameters that
affect the performance of the ICP algorithm, the ICP chain is
completely configurable at run time.

We provide two versions of the tracker, an online one
integrated with ROS and an offline one. The ROS version
provides real-time tracking of the sensor pose, and publishes
the latter as tf, the standard way to describe transformations
between reference frames in ROS. The offline version ensures
that no cloud would be dropped and therefore improves the
consistency of the measurements. This also allows us to run
experiments in batch without being limited by the frame
rate of the sensor. This version takes as input a dataset file
and a text-based list of configurations and parameters. The
offline tracker uses these to reconfigure the ICP chain for
each experiment. We use the offline version to produce the
results shown in this paper.

B. Experimental Setup
We want to quantify parameters that affect the tracking

speed and accuracy. To do so, we employ the Kinect sensor.

5http://www.ros.org/wiki/modular_cloud_matcher



(a) (b) (c)
Fig. 3. Experimental environments of (a) low complexity, (b) medium
complexity, and (c) high complexity

We acquire several datasets in a ROS environment, using the
Kinect OpenNI driver6 and rosbag to record the data. We
run the experiment in a room equiped with a Vicon tracking
system7 [12]. The later provides ground-truth position in the
order of millimeter. We thank Prof. Raffaello D’Andrea who
has given us access to this tracker-equiped room.

In their comparison of ICP performance, Rusinkiewicz and
Levoy used three synthetic environments composed of low-
frequencies, all-frequencies, and high-frequencies surfaces
with some added noise [13]. We reuse this concept and
transpose it in a real indoor experimental setup. We assemble 3
different static environments of increasing complexity (Fig. 3).
For each complexity, an operator performs 3 types of motions:
translations on the three axes (for about 10 s per axis),
rotations on the three axes (for about 10 s per axis), a free
fly motion over the scene (for about 15 s). We perform each
type of motions, for all environments, at 3 different speeds:
slow motion with speed in the range of indoor ground robots
(around 0.3 m/s), medium motion with speed in the range of
agile robots (around 0.5 m/s), fast motion with a challenging
speed (around 1.3 m/s).

This gives us 27 datasets with point clouds produced by the
Kinect at 30 Hz and its pose tracked by the Vicon at 100 Hz.
We use a resolution of 160×120 depth pixels to generate the
point clouds, which creates clouds containing at most 19200
points, as some points from the sensor are invalid.

C. Measurement Method

To compare the various parameters affecting the quality
of the registration, we define an error metric. To provide
robustness against noise, we cumulate the path over 30
registrations and then compute the error in translation et
and in rotation er. The error in translation corresponds to the
Euclidean distance between the pose estimated through ICP
and the Vicon pose. The error in rotation corresponds to the
absolute angular difference.

The tracker only relies on environmental information
without any prior. Thus, the registration might fail depending
on what the sensor sees. The modular ICP detects such cases
and outputs an identity transform. We keep track of those
failures Nfail over a dataset having a number of registrations
Nicp. In the case of free-fly–motion datasets, Nicp = 447. In
the case of translation and rotation datasets, Nicp = 838. We
define an ICP performance metric for a given dataset:

6http://www.ros.org/wiki/ni
7http://www.vicon.com/

perf =
Nicp −Nfail

Nicp

1

median(et)
(1)

The first fraction gives the success ratio while the second
one is the inverse of the median error of the dataset. The
intuition behind the use of this performance metric, instead
of directly using the error, is that we expect time and
performance curves to have similar trends. If the evolution of
the curves follow the same tendency, it is difficult to devise
a clear parameter optimum. The success ratio compensates
the fact that the library returns an identity transformation
if a failure happens, which could be close to the ground-
truth value when the movement is slow. With this ratio, the
performance will be 0 if all registrations fail and equal to
the inverse of the translation error if all registrations succeed.
We can define a similar metric using the rotation error er;
experiments show similar results as with et.

Along the performance, we also measure the time. We
divide the time to register the whole dataset by Nicp to
compute the average time by ICP call. This provides a better
accuracy than measuring time at every ICP call individually.

V. EXPERIMENTS

The modular ICP allows many possible combinations of
algorithms and parameters. In this paper, our aim is to enable
a fast registration while keeping a reasonably precise pose
estimation. Thus, we focus on simple solutions regarding
sensor-noise modeling, point selection, and matching.

A typical experiment on a dataset implies a single value of
time and performance over Nicp for a given parameter. Then,
we repeat the computation Ntest times to increase statistical
significance, as some filters introduce randomness. We again
repeat these over a range of parameters Npar for different
datasets. Such experimentation gives us a graph like Fig. 4a.
Then, to ease interpretation of results, we use robust estimators
(i.e. median or quantiles as opposed to mean or variance) to
extract the mode and the dispersion of the distribution for a
given parameter. Fig. 4b shows the extraction of the median
in blue with the 10% and 90% quantiles in dashed red. We
observed that, in our experiments, quantiles follow the same
tendency as the median so in further graphs, we only present
the median for the sake of readability.

We first explore parameters related to sensor noise (Sec-
tion V-A), subsampling (Section V-B), and nearest-neighbor
(NN) approximation (Section V-C). We use the datasets with
the free-fly motion at low speed within the three types of
environments. Given the resulting optimized parameters, we
evaluate the robustness against all 27 datasets and also look at
the effect of the hardware on the processing speed (Section V-
D). All these experiments use a different number of tests
and parameters. Table I summarizes the configuration of
each experiment, with the final column representing the total
number of ICP computed per experiment expressed as a factor
of 1’000’000. The total number of registration required for
the experimental section of this article is around 11 millions.
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Fig. 4. Example of result processing (see Section V-A). a) raw results and
b) median of the results in solid blue, 10% and 90% quantiles in dashed red.

TABLE I
NUMBER OF ICP PER EXPERIMENT

Experiment Names Nicp Npar Ntest Total (M)

Sensor noise (fixed) 3× 447 20 45 1.2
Sensor noise (ratio) 3× 447 19 45 1.2
Subsampling (ratio) 3× 447 39 30 1.6
Subsampling (step) 3× 447 39 30 1.6
NN approximation 3× 447 20 60 1.6
Robustness 9× 447 1 20 3.8

+18× 838
Hardware speed 1× 447 39 20 0.4

Additionally, we fix the error minimization solution being
the point-to-plane error [2] and the outlier filter being the
median distance [14] for all experiments.

A. Sensor Noise

The first experiment tackles how to handle the sensor
noise in the registration. Based on parallax, the Kinect has an
accuracy on the depth inversely proportional to the distance.
Moreover, it has a dead zone of 0.4 m close to the sensor. We
explore 2 techniques: a fixed threshold to prune points over a
certain depth, a ratio of points to keep with the smallest depths.
Both these techniques eliminate points farther then a certain
distance. One could also employ weighted minimization to
handle sensor noise, but as we wish to optimize processing
time, dropping points is more efficient.

The results for the fixed threshold (Fig. 5a) show that below
1.5 m, this method does not yield enough points to ensure
registration. As the threshold increases from 1.5 m to 5 m, the
performance and the time follow a similar curve, essentially
monotonic. The reason is that the average depth of what is
being seen changes, and setting a fixed threshold leads to
a lack of points in some situations. On the contrary, using
a percentage of points has a different behavior. As Fig. 5b
shows, between a ratio of 0.4 and 0.6, the performance is
higher than using all the points (i.e. with a ratio of 1) while
the time is divided by half. Indeed, keeping less than 40 %
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Fig. 5. Performance and time for sensor-noise thresholds with a) parameters
based on fixed distances, and b) parameters using quantiles. Solid blue
represents ICP performance and dashed green represents time for convergence.

of the points reduces chances to take advantage of important
constraints and using all the points does not cut off any
noise. Therefore, for further experiments we select the second
technique with a ratio of 0.4.

B. Subsampling

The second experiment evaluates how much we can
subsample the cloud without loosing too much performance.
Again, we compare two techniques: randomly selecting points
using a uniform distribution, and keeping only one point
every n points. More complex subsampling techniques exist,
to compensate the radial distribution of 3D scanners [15] or
to select points leading to more constrained environments
[16], but these are too slow to fit in the scope of this work.

From Fig. 6a, we observe that the time follows linearly
the ratio of points used while the performance follows an
exponential convergence. The step technique results (Fig. 6b)
show an exponential reduction of the time while the general
tendency of the performance is to reduce linearly. It is worth
noting that parameters of the step technique are discrete
which is shown using the filled dots on the time curve. The
performance of the step subsampling shows more jitters than
the one of the random selection. We attribute this to artificial
patterns in scans due to the fixed-step nature of this technique.

We conclude that the random-subsampling technique gives
us more control on the desired computation time and is less
likely to produce artifacts in the resulting scans than the
fixed-step technique. Moreover, we compare time for both
techniques in relation with the number of points kept: the
extra computation required for the random sampling does not
augment the computational time significantly. Since there is
no optimum for that parameter we accept the fact that going
fast increases error and we select a subsampling ratio of 0.3.
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Fig. 6. Performance and time for subsampling methods with a) random
selection, and b) fixed step based on fixed skip. Solid blue represents ICP
performance and dashed green represents time for convergence.

C. Nearest-Neighbor Approximation

This experiment stems from the observation that using an
approximate NN-search leads to faster registration without
affecting the error much [5] [7], compared to an exact search.
We implement the NN-search using an approximate kd-tree
as in [6] and vary ν, the approximation factor8.

In Fig. 7a, we see that when ν increases, both the time
and the performance decrease, but the latter decreases slower
than the former. Moreover, the time decreases rapidly to
a minimum and then increases again. The reason is that
while the number of points visited in the kd-tree decreases
exponentially with ν, the number of iterations required by
the ICP to converge increases linearly (Fig. 7b). Given those
results, we selected ν = 3.3. It is interesting to note that this
is the same optimal value as reported briefly in [7].

D. Robustness Evaluation

Using the selected parameters, we compare the tracking
error for different motion velocities, motion types, and
environment complexities (27 trajectories). Fig. 8 presents
the results of the tracker translation error directly in meter for
each tracking second instead of the performance metric used
in former experiments. The error on translation for the three
graphs is represented following a common log scale on the
y-axis to highlight differences at low value. The box plots
represent quartiles with the vertical red line being the median
and the “+” symbols being outliers over 99.3% coverage of
the distribution.

The most important relation is that the error increases
significantly as a function of the motion velocity with the
median being outside the first quartile of each velocity clusters.

8We defined ν =
√
1 + ε where ε is the approximation constant defined

in [6].
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Fig. 7. Performance and time for approximate search using a kd-tree. a)
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We also observe this effect with the percentage of failures,
which has a median value of 0% for the slow motion and
going up to 32% for the fast motion (not present in the graph).
Translation motions are the easiest to register followed by
rotational movements and free-fly movements where larger
accelerations are present. We note that the low-complexity
environment is harder to register than the high and medium
complexity ones. The reason is that the low-complexity
environment contains very few planes and they are rarely all
in the field of view of the Kinect, leading to some under-
constrained dimensions.

In our experience, the main factor influencing registration
speed is the number of points randomly subsampled. Demand-
ing a low-processing time means accepting more error from
the registration. Since this processing time highly depends
on the computer, we tested three different processors with an
increasing number of points kept. Note that the algorithm is
not multi-threaded and does not employ any GPU acceleration,



which allows us to compare the performance with embedded
systems. The systems are: a recent laptop with an Intel Core
i7 Q 820, an old desktop PC with an Intel Xeon L5335, an
embedded system with an Intel Atom CPU Z530.
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Fig. 9. Comparison of time vs ratio of points used for different hardwares:
Intel Core (blue “x”), Intel Xeon (red “.”), and Intel Atom (black “*”)

Results from Fig. 9 show a significant difference in the
range of frequencies between different systems. To help
interpreting the graph, the horizontal green line represents
30 Hz which (i.e. the minimum frequency available for real-
time operations using a Kinect) and the vertical green line
represents a minimum number of points selected in the
subsample experiment (Section V-B). Recent processors can
process up to 3700 points at 30 Hz or one can reduce the
number of points to free processing time for other programs.
Note that the Atom can run at most at 10 Hz, with the
minimal number of points. Based on former experiment with
quadcopters [17], a control loop needs to run between 5 and
10 Hz to cope with the dynamic of such a system. This shows
that our tracker is usable on Unmanned Aerial Vehicles; we
will conduct further tests in this direction.

VI. CONCLUSIONS AND FUTURE WORKS

We presented first an efficient and modular open-source
ICP library. Its modularity allows to quickly test and compare
different variants of ICP algorithms. Based on this library, we
designed and optimized a 3D pose tracker for dense depth
cameras running at 30 Hz on standard laptop with thousands
of points. As it does not use GPU acceleration, the tracker
can also run on embedded system (10 Hz on a Atom board).
Finally we proposed a sound performance evaluation using
datasets recorded with a ground truth of millimeter accuracy.

It is very difficult to find a general solution to all problems
using ICP. We can optimize a particular ICP implementation by
identifying environmental characteristics and typical motions
expected for a given application. One must also take into
account sensor frequency, noise, and field of view to devise a
robust registration strategy. From a robotic-application point
of view, the robustness experiment shows that pose-tracking
in cluttered rooms, typically encountered in apartments or
offices, is easier than tracking in corridors of public buildings
or in places with few furnitures. To cope with this, one could
adjust the speed of the robot as a function of the complexity of
the environment. One should also limit the rotational velocity
when the curvature of the sensor path is large.

Hierarchical subsampling also increases speed as high-
lighted in the introduction. However, further investigation is
required to optimize according to specific applications.

We also intend to augment the diversity of building blocks
available in the modular ICP library to increase the space of
possible algorithm comparisons.
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