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Одна из основных задач информационного поиска—извлечение до-

кументов, релевантных информационной потребности пользователя, 

выраженной запросом. Зачастую пользовательские запросы не пре-

восходят 3 слов, что усложняет задачу. Многочисленные исследова-

ния показали, что автоматическое расширение запроса в среднем 

повышает точность, несмотря на то, что для некоторых запросов ре-

зультаты ухудшаются. В статье предлагается новый метод автомати-

ческого расширения запроса, основанный на оценки важности слов-

кандидатов, определяемой силой их связи со словами из запроса. 

Предлагаемый метод комбинирует локальный анализ, а именно обрат-

ную связь по релевантности, и глобальный анализ коллекции докумен-

тов. Оценка метода была произведена на международных тестовых 

коллекциях, согласно установленным метрикам. Полученные резуль-

таты были сравнены с одной из лучших моделей, описанных в лите-

ратуре. Системы показали сравнимые результаты в среднем. Однако 

глубинный анализ исходных и расширенных запросов позволил сде-

лать выводы, которые могут помочь в исследовании данной области.

Ключевые слова: информационный поиск, расширение запроса, 

анализ слов запроса, обратная связь по релевантности, глобальный 

анализ, совстречаемость
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Information retrieval aims at retrieving relevant documents answering 

a user’s need expressed through a query. Users’ queries are generally less 

than 3 words which make a correct answer really difficult. Automatic query 

expansion (QE) improves the precision on average even if it can decrease 

the results for some queries. We propose a new automatic QE method that 

estimates the importance of expansion candidate terms by the strength 

of their relation to the query terms. The method combines local analysis and 

global analysis of texts. We evaluate the method using international bench-

mark collections and measures. We found comparable results on average 

compared to the Bo2 method. However, we show that a deep analysis of ini-

tial and expanded queries brings interesting insights that could help future 

research in the domain.

Key words: information retrieval, query expansion, analysis of query terms, 

relevance feedback, global analysis, co-occurrence

1. Introduction

Information Retrieval (IR) systems aim at retrieving information that an-

swers a user’s needs/he expresses through a query. Retrieving relevant information 

to a query implies a two-step process: off line, the system indexes documents, gener-

ally using a bag of words representation; online, the system computes the similarity 

between the user’s query and the document representations (indexing terms) to re-

trieve the most similar documents.

IR systems have to face the problem of query term ambiguity inherent in nat-

ural language; it is even more a challenging problem since users’ queries are very 



short (Chifu and Ionescu 2012). Indeed, more than 90% of the queries are 3 words 

or less long. Considering such a small number of terms, it is a challenge for the systems 

to “understand” the query or to disambiguate it.

To face these challenges, IR systems consider several strategies. One of them 

is to diversify the results by providing document related to the various senses of query 

terms, the system optimizes the chance of providing relevant information (Vargas 

et al. 2013). Another strategy is to expand the query (Gauch and Smith 1991).

The principle of query expansion (QE) is to add new query terms to the initial 

query in order to enhance its formulation. Candidate terms for expansion are either 

extracted from external resources such as WordNet or from the documents them-

selves; based on their links with the initial query terms. In the latter types of methods, 

the most popular one is the pseudo-relevance feedback (Buckley 1995).

Pseudo-relevance feedback has been shown as an effective method in average; how-

ever, it can lower results for some queries. For example, it is most probable that for poor 

performing queries query expansion is helpless since it will be based on the first retrieved 

documents that are probably non-relevant documents. It is thus important to know in ad-

vance if QE will be helpful or on the contrary if it will degrade the results. Selective query 

expansion aims at making this decision. However, current methods use blind method-

ologies and uses learning methods as black boxes. On the contrary, we think that a deep 

analysis of queries and query expansion terms could help understanding when QE would 

be useful and if there are some sort of typology of QE usefulness.

This paper pursues two objectives; first of all, we suggest a new automatic query 

expansion method. This new method estimates the importance of expansion candidate 

terms by the strength of their relation to the query terms. The second objective is to deeply 

analyze the results: both the initial and expanded queries and the terms they are com-

posed of, and the cases when the expansion lowers the results and when it improves them. 

The remaining of the paper is organized as follows: Section 2 reports related 

works. In Section 3, we present the new QE method we propose. Section 4 presents 

the evaluation framework. Section 5 discusses the results and presents a deep analysis 

of query terms, on a linguistic point of view.

2. Literature Review

2.1. QE and Pseudo Relevance Feedback

QE is either based on the analysis of a document collection (Carpineto and Ro-

mano 2012) or they imply dictionary or ontology-based methods (Bhogal, Macfarlane, 

and Smith 2007). This study focuses on document analysis methods. This analysis 

may be either (1) global (corpus analysis to detect word relationships) (Carpineto and 

Romano 2012) or (2) local feedback (analysis of documents retrieved by the initial 

query) (Rocchio 1971; Xu and Croft 1996). Local analysis or local feedback methods 

rely on the hypothesis that relevant documents contain terms that could be useful 

to enhance query formulation. Rocchio defined a method in which term weights are 



re-computed so that the terms that occur in relevant documents contribute positively 

to the new query whereas the weight of the terms from non-relevant documents are 

lowered (Rocchio 1971). Rocchio’s method implies to know document relevance. 

Buckley suggested pseudo-relevance feedback (PRF) in which the top retrieved docu-

ment are automatically considered as relevant (Buckley 1995). PRF is now common 

practice and used in many expansion methods (Carpineto and Romano 2012). Global 

methods work alike but in that case candidate terms come from the entire document 

collection rather than just (pseudo-) relevant documents.

Divergence from Randomness (DFR) models were developed by the School 

of Computing Science, University of Glasgow (Ounis et al. 2006). These models are 

based on the assumption that informative words are relatively more frequent in rele-

vant documents than in others. During QE the best-scored terms from the top-ranked 

documents are extracted. Terms are ranked using one of the DFR weighting model. 

DFR models include Kullback-Leibler divergence, Chi-square divergence, Bose-Ein-

stein 1 (Bo1) and 2 (Bo2) models. In the DFR models QE is performed by ordering 

the candidate terms by their information content given the query Q. DFR models are 

presented in (G. Amati 2003). In this paper, we compare our results with Bo2.

2.2. Analysis of Queries and Results

A few studies have reported analysis of results. The deeper analysis has been con-

ducted in the RIA Workshop that took place in 2004. One of the objectives of the work-

shop was to analyze the variability in systems: some systems answering well on some 

queries and badly on others; some other systems behaving oppositely. One of the con-

clusion of the workshop was that the comprehension of variability is complex because 

of various parameters: query formulation, the relation between the query and the doc-

uments as well as the characteristics of the system (Harman and Buckley 2009). More-

over, they conducted failure analysis for 45 of the TREC topics. After using various 

systems on “hard” topics, the workshop participants analyzed why the system failed. 

For 39 topics out of 45 the systems failed for the same reason. Moreover, even if they 

did not retrieve the same documents, they were missing the same aspect in the top 

documents. Predicting query difficulty remains a challenge (Mothe and Tanguy 2005).

The work presented in this paper combines local analysis, namely relevance 

feedback, and global analysis.

3. Method Description

The key idea of our new QE method is to estimate the importance of candidate 

terms by the strength of their relation to the query terms. In contrast to DFR models 

we do not compare the term frequency in PRF and the entire collection. In our ap-

proach, documents from PRF provide term candidates that are analyzed in two as-

pects: their frequency in PRF and their co-occurrence with query terms in the whole 

collection. Indeed, DFR models are based on two metrics: term frequency in PRF and 



the frequency of the term  in the collection. Particularly, Bo2 uses the extrapolation 

of term frequency in PRF on the whole collection. 

In our method candidate terms are selected from the PRF and are based on the un-

derlain hypotheses: the strength of their relation to the query terms is proportional to the 

fraction of the number of the documents containing both candidate terms and query 

terms and the product of the number of documents containing at least one of these sets. 

A query is first preprocessed. It is cleared from stop-words, punctuation; dupli-

cate terms are removed. However if a query contains only stop-words, this could mean 

that a user is interested, for example, in grammar. For instance, the query “a and the” 

may imply that a user wants to find how to use English articles. Thus, if a query con-

tains only stop-words, we keep all of them. 

The importance of term combinations  is estimated by the formula:

where  is the term combination,  is the -th term from ,  is the 

number of documents containing the -th term.  is similar to IDF. For widely-

spread terms with low  the importance of their combination is approximately 

equal to their number. 

The importance of candidate terms  is computed as follows:

where  is the set of all possible term combinations, and  is the analogue 

of non-negative point-wise mutual information calculated by the formula:

where  is the number of documents containing the candidate term , 

 is the number of documents containing all terms from the term com-

bination ,  is the length of their intersection, and n is the total 

number of documents in the collection.

All weights  are normalized. The best-scored term candidates are selected for 

query expansion.



4. Evaluation

4.1. Data Collections and Evaluation Measures

The evaluation was performed on two kinds of datasets: TREC (Text Retrieval 

Conference) Ad Hoc Track data sets for three years (1997–1999) (Voorhees and Har-

man 2000) containing 150 topics in total and composed of news articles, and WT10g 

from TREC Web track 2000–2001 (Hawking and Craswell 2002) which is a 10GB sub-

set of the web snapshot of 1997 from Internet Archive. There are 100 topics in this 

second collection from track 2000 and 2001. 

In our evaluation, we considered the following evaluation measures:\begin {itemize}

Precision at 10;

Mean Average.

Precision (P) is the fraction of retrieved documents that are relevant. 

P at 10 (P@10) is the fraction of the top 10 retrieved documents that are relevant. Av-

erage precision (AP) is the average of precision computed each time a relevant docu-

ment is retrieved. Mean average precision (MAP) is calculated as the mean of average 

precision over queries. 

4.2. System Details

We compared our system (Co) with the Bo2 DFR model implemented in Terrier 

platform.

Both systems used InL2c1.0 model for PRF, 3 documents from which 10 best 

scored terms were extracted. InL2c1.0 is a DFR (divergence from randomness) model 

based on TF-IDF measure with L2 term frequency normalization (Gianni Amati and 

Van Rĳsbergen 2002; He and Ounis 2005)Heidelberg”,”page”:”200–214”, ”event-place”: 

”Berlin, Heidelberg”,”URL”:”http://dx.doi.org/10.1007/978-3-540-31865-1_15”,”DOI”: 

”10.1007/978-3-540-31865-1_15”,”ISBN”:”3-540-25295-9, 978-3-540-25295-5”,”author”: 

[{“family”:”He”,”given”:”Ben”},{“family”:”Ounis”,”given”:”Iadh”}],”issued”:{“date-parts”: 

[[“2005”]]}}}],”schema”:”https://github.com/citation-style-language/schema/raw/

master/csl-citation.json”}. 

4.3. Performance Results

Table 1 provides information about the number of relevant retrieved documents 

(RRD), MAP, and P@10. On adhoc data set by all metrics our systems showed the best 

results, which are much higher than the baseline. The Student’s test confirmed that 

the differences between MAP values of Co and Bo2 is not significant at the level $p < 

0.05$. Significant difference is marked by *, the best results are marked-up in bold. 

Our system showed lower results than Bo2 according to P@10. In case of web data, 

Bo2 obtained the same MAP score as Co. Co remains the best according to P@10.



Table 1. General results

Co Bo2 Baseline

TREC 6-8 data RRD 8230 8184 7225

MAP 0.2507 0.2491 0.2105*

P@10 0.4400 0.4413 0.4180

Web data RRD 3897 3935 3810

MAP 0.2190 0.2190 0.1894*

P@10 0.3327 0.3296 0.2816

5. Discussion and Further Analysis

5.1.  Detailed Results

In the previous section, we reported the results when averaged over the set 

of topics. In this section, we aim at analyzing the results deeper.

Table 2. Detailed statistics

# topics # Baseline best # Bo2 best # Co best

Adhoc 150 33 (22%) 52 (34.6%) 63 (42%)

Adhoc 25 hardest 25 8 (32%) 7 (28%) 10 (40%)

Adhoc 25 easiest 25 7 (28%) 10 (40%) 7 (28%)

Web 98 34 (34.7%) 30 (30.6%) 31 (31.6%)

Web 25 hardest 25 11 (44%) 5 (20%) 7 (28%)

Web 25 easiest 25 10 (40%) 10 (40%) 4 (16%)

Table 2 reports the number of topics in each collection for which the method 

(column) got the best results according to AP. We also report these numbers when 

the 25 hardest and 25 easiest topics are considered. The hardest and easiest topics 

are defined as the ones that got the highest and lowest AP using the initial query. 

For example, in the Adhoc collection, from 150 topics, 33 are best treated without 

QE, 52 best when using Bo2 and 63 when using our method. The percentage of best 

treated topic per method is slightly different when considering the easiest topics: 7 are 

best without QE, 10 are best treated using Bo2 and 7 using our method.

Two examples are provided below. Each topic is composed of the title part which 

was used as a submitted query to the system, as well as descriptive and narrative parts 

that helps in understanding the user’s need. 



Example 1

<num>530

<title>do pheromone scents work? 

<desc>What is the scientific evidence that suggests pheromones stimulate the op-

posite sex?

<narr>A relevant document will discuss how pheromones act as an attractor 

or repellent among humans, other animals, or plants.

Example 2.

<num>494

<title>nirvana 

<desc>Find information on members of the rock group Nirvana.

<narr>Descriptions of members’ behavior at various concerts and their perform-

ing style is relevant. Information on who wrote certain songs or a band mem-

ber’s role in producing a song is relevant. Biographical information on members 

is also relevant.

Table 3 provides the results in terms of AP and the various query formulations 

the system really used as well as the term weights. For example, with regard to topic 

530, “do” was removed as a stop word and the other words have been stemmed.

Table 3. Query reformulation examples

# Topic

AP / Initial 

query AP / Bo2 reformulation AP / Co reformulation

530 0.3838 /

pheromon^ 

1.0 scent^ 

1.0 work^ 

1.0 

0.1551/ 

pheromon 1̂.60 scent^ 

1.30 work 1̂.00 fragranc^ 

1.00 perfum^0.96 men^ 

0.45 attract^ 

0.41 design^ 0.41 sex^ 

0.38 natur^ 0.34 sexual̂  

0.34 

0.1765 / 

pheromon^ 

2.0 scent^ 1.68 work^ 

1.42 perfum^ 1.0 fragranc^ 

0.97 aphrodisiac^ 

0.36 sex^ 

0.22 men^ 0.22 attract^ 

0.21 sexual̂  0.17 world^ 

0.16 cologn^ 0.15 natur^ 

0.15 nerd^ 0.13

494 0.1706 /

nirvanâ  

1.0 

0.3508 / 

nirvanâ  

2.00 kurt^0.29 cobain^ 

0.25 bootleg^0.17 world^ 

0.17 list^0.15 song^ 

0.13 new^0.11 contain^ 

0.11 dedic^0.11 

0.5703 / 

nirvanâ 2.0 cobain^ 

1.0 kurt^0.82 bootleg^ 

0.42 song^0.30 nerd^ 

0.26 music^ 

0.18 unplug^0.18 band^ 

0.17 world^0.16 sound^ 

0.15 stuff^0.14

In topic 530 both reformulation went to the “sex” concept which leaded to some 

noise in the answers. 



In topic 494, it is clear that adding “kurt” and “cobain”, the lead singer, guitarist, 

and primary songwriter of the band Nirvana help in retrieving relevant documents. 

Either the weight of the terms (which are stronger in our reformulation than in Bo2) 

or some additional terms such as “band” made our reformulation better than Bo2.

5.2. Types of Initial Queries

Types of initial queries play an essential role in the prediction of successful in-

formation retrieval. As usual initial queries include, besides articles and other gram-

mar words, nouns and entities, sometimes attributes and verbs. Grammatical struc-

ture of a title does not influence on the information retrieval process, because every 

title while processing the query is ruined into words and even word chunks. So types 

of queries are limited by a number of words and topic. Types of the query terms are 

restricted to words grammatical classes, such as parts of speech, and words semantic 

classes, such as terminology, entities, peculiarities, etc. 

Potentially a document matches the initial query thanks to one term, or one term 

with its attribute, or two (or more) different terms. The last possibility is the best one, 

since a number of documents with two (or more) unconnected terms from the initial query 

is less, than a number of documents with the term and its attribute (noun phrase). In other 

words, co-occurrence of two (or more) semantically unconnected query terms in a docu-

ment guarantees more accurate matching the initial query, while occurrence of one term 

just presupposes matching in a topic. Thus, one term query is less informative, than two 

and more terms queries. Hence for a one-word initial query QE is a productive way to in-

crease the relevance of results, however, it depends on semantics of the one-word query. 

Our results for QE for one-word queries are slightly better regardless of the QE methods. 

As a consequence of the diffusive character of the category, there are a lot of dif-

ferent factors which influence on the document frequency of the words associated 

with the topic. Thus, the more texts we use for the QE in the global analysis, the more 

unpredictable candidates we get for the QE. That is why the query generated on the 

basis of the title What is a Bengals Cat? (Animals) provides slightly better results with 

Bo2 QE system, while, with our system, we get a lot of useless extensions.

 The structure of scientific categories is more compact and hierarchical. We as-

sume that the initial query in the field of scientific categories evokes texts with less 

associative and more logical connections. The QE allows directing the IR process 

in a narrow relevant field. The title Unsolicited Faxes (Ad Hoc) refers to a multi-topic 

document, which simultaneously belongs to at least two topics in our set (“crimes” 

and “technology”). The results of QE performed by both systems are very good, but 

for our system it is significantly better: 0.6638 against 0.6015. 

Therefore, the topic of the initial query is a strong factor, which influences on the 

necessity of the QE. Within homogenous text collection, every QE system works good, 

producing better results, than an initial query. Within naive topics categories the sim-

ple QE system is appropriate, while our QE generates complicated associative queries. 

So for the IR on the topic from naive category within heterogeneous text collection our 

QE system is overcomplicated, and that is why it works worse.



6. Conclusion

In this paper, we first suggest a new method for QE we call Co. The key idea of the 

proposed method is to estimate the importance of candidate terms by the strength 

of their relation to the query terms.

In our experiments, we show that the Co method has similar results as the Bo2 

method from the literature. However, our finer analysis shows that the type of initial 

query can have an influence on the success of QE. 

In our future work, we will work on the relationship between the types of queries 

and the field associated to the query in order to detect correlation with these features 

and the best method to treat the query. We think that using more linguistic features 

can help in selective approaches in IR.
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