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Relative Motion Threshold for
Rejection in ICP Registration

François Pomerleau, Francis Colas, François Ferland and François Michaud

Abstract Simultaneous Localization and Mapping (SLAM) iteratively builds
a map of the environment by putting each new observation in relation with
the current map. This relation is usually done by scan matching algorithms
such as Iterative Closest Point (ICP) where two sets of features are paired.
However as ICP is sensitive to outliers, methods have been proposed to reject
them. In this article, we present a new rejection technique called Relative Mo-
tion Threshold (RMT). In combination with multiple pairing rejection, RMT
identifies outliers based on error produced by paired points instead of a dis-
tance measurement, which makes it more applicable to point-to-plane error.
The rejection threshold is calculated with a simulated annealing ratio which
follows the convergence rate of the algorithm. Experiments demonstrate that
RMT performs better than former techniques with outliers created by dy-
namical obstacles. Those results were achieved without reducing convergence
speed of the overall ICP algorithm.

Key words: ICP, registration, scan matching, rejection, SLAM.

1 Introduction

Simultaneous Localization And Mapping (SLAM) algorithms use motion and
observation probabilistic models to incrementally correct positioning prob-
lems. The mechanism used to transform different observation models into the
same coordinate system is called registration (also known as data association
or scan matching). Proposed SLAM solutions based on Maximum Likelihood
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(ML) present fast capabilities to minimize global positioning errors [7], but
they still need to rely on efficient and robust registration algorithms to be
stable in real robotic applications.

Registration can be done using landmarks (e.g., lines, circles, arcs, cor-
ners) [1]. When applied to the registration processes, landmarks confer the
advantage of accelerating calculation by summing up information. However,
landmark registrations can be sensitive to unstructured environments where
landmarks are difficult to detect. A second type of registration is called Nor-
mal Distribution Transform (NDT). NDT segments spatial information and
works on the first and second statistical moments to reduce the computa-
tional cost [9] while avoiding to define specific landmarks. However, NDT
is still very sensitive to segmentation because large spatial cells filter out
relevant details, whereas small cells augment the computational cost.

Another strategy is to directly use point clouds derived from exteroceptive
data. One technique to find such matches is known as Iterative Closest Point
(ICP) [2]. This method pairs points of both scans by finding for each point
of the first scan the nearest point in the second one. From these pairs a
motion vector is estimated to cope for their misalignment. This process is
iterated until convergence. ICP variants were first developed for applications
involving 3D model reconstructions [4], [6], [8]. When used in SLAM by an
autonomous robot, these algorithms need to be adapted in several ways: 1)
they must work in real-time [3]; 2) they must be adapted to the sensors to
be able to use 2D and 3D spatial information [11], and to cope with sensor
fusion (range, laser reflectivity [14], color [13], etc.); 3) they must be able to
deal with occlusion and partially overlapping scans that frequently arise in a
dynamic environment explored by a mobile platform.

This paper addresses the issue of occlusions and partially overlapping scans
by using a new adaptive rejection technique called Relative Motion Threshold
(RMT). For SLAM, changes in the environment and occlusions caused by the
motion of the mobile robot are sources of outliers (i.e., points with no match).
Fig. 1 presents an example for which an optimal rotation and translation
of the blue point cloud (pi) must be applied to align it with the reference
red point cloud (qj), with i and j being point indexes. Even after a small
displacement of the robot between t1 and t2, maps can largely differ due
to sensor occlusion. For example, in Fig. 1(b), 50% of the blue points are
outliers when compared to the red point cloud. Also, the disambiguation of
points obtained from obstacle 1 and obstacle 2 must be resolved to make
ICP robust to initial positioning errors and overlapping. Removing outliers
from the paired points is done during the rejection step of ICP, where it
minimizes misalignment errors for the determination of the motion vector
between two point clouds. The rejection technique introduced in this paper
uses an adaptive threshold based on simulated annealing ratio to augment
the robustness of ICP against outliers.

The paper is organized as follows. Section 2 presents an overview of rejec-
tion techniques. Section 3 describes the RMT rejection technique we propose.



(a) (b)

Fig. 1 Map registration example for SLAM, with misalignment caused by odometry error.

The green lines represent the alignment error minimized by ICP algorithms. Obs.: Obstacle.
(a) Two laser scans taken at time t1 and t2. (b) Point cloud pi (blue) taken at t2 is

represented in the coordinate system of point cloud qj (red) taken at t1. Black arrows are

surface orientations.

Section 4 presents experimental results that evaluate the performance of each
rejection technique in terms of matching and convergence rate of ICP in sim-
ulated and real-world applications.

2 Rejection Techniques

Rejection techniques can be categorized as follows:

• Fix: Manual setting of the maximum distance d authorized between paired
points. Then, all paired points with a distance higher than d are systemati-
cally rejected. This method is simple but does not adapt well to conditions
that would require different thresholds.

• Zhang: Strategy based on statistical moments of the distribution of the
distances between the paired points [15]. Four conditions are needed to
adapt the threshold d:

d =


µ+ 3σ, if 0 ≤ µ < η

µ+ 2σ, if η < µ ≤ 3η
µ+ σ, if 3η < µ ≤ 6η
ρ, otherwise

(1)

where ρ is the median of the distance between paired points and η is a
distance-based parameter set by the user. This method can be adjusted to
different statistical distributions of the distances but still lacks generality.

• Mean: Technique proposed in [6] which sets d equal µ+σ for each iteration,
and where µ and σ are respectively the mean and the standard deviation
of the distances between paired points. This method has no parameter



and is flexible to different type of outliers. However it filters outliers on
the assumption that the distribution of distances is Gaussian, which is not
a good assumption in the case of a dynamic environment where several
local minima can emerge.

• Median: An other statistical method proposed by [5] fixes d to 3 times the
median of the distances between paired points. The method has no param-
eter, but calculating a median over a huge point cloud is computationally
expensive.

• Trim.: Overlapping parameter ξ defined by [4] is used to reject a percentage
of outliers:

Ntrimmed = ξNtotal (2)

where N is the number of paired points. This approach is less dependent on
the shape of the distribution. However, it requires to sort all paired points
based on their distances at each iteration, which increases computation
time. It can also misled by a large change in the overlap that may occur
with a moving platform due to occlusions.

In addition to these techniques, it is also possible to reject multiple pairing
to a single point [16], [3], as shown in the lower right part of Fig. 1(b) where
multiple green lines connect to the same red points. Instead of authorizing
all pairs, only the one with the smallest distance is kept. This criterion has
been shown to improve the performance of all standard rejection techniques,
and thus all results presented here use this additional criterion.

3 Relative Motion Threshold Technique for Rejection

Existing rejection techniques rely mostly on the Euclidean distance between
paired points. While this distance has a direct impact on point-to-point error
metric, ICP implementations commonly use a point-to-plane error metric
to pair the points because of its faster convergence speed. This point-to-
plane error metric1 assumes that there is a local surface orientation vector
estimated for each point qj and projects the Euclidean distance between pi

and qj on this vector. The point paired to qj then minimizes this error and
not the Euclidean distance (see Fig. 1(b)). We introduce a new, more general,
rejection technique called Relative Motion Threshold (RMT). RMT is an
adaptive rejection technique that progressively identifies outliers that create
most of the error during the process of ICP. Adaptation is based directly on
the error created by paired points instead of the Euclidean distance between
those points in accordance to the matching process. We propose to reject the
outliers with a maximum authorized error et at iteration t, evaluated by:

1 In the remaining of the text, the term error will refer to the point-to-plane error metric

when there is no ambiguity.



et =

{
λet−1, if λ < 1
et−1, otherwise (3)

with λ being a simulated annealing ratio defined by:

λ =
||Tt−1||
||Tt−2||

(4)

This ratio uses past motion information to determine if the point cloud
is converging to a local minima, where ||T || is the Euclidean norm of the
translation vector T which minimize the alignment error of pi at iteration t.
The translation vector T and the rotational vector Ω are calculated during
the Error and Minimization step at the end of each iteration and are used to
move pi toward qi. A ratio λ smaller than 1 means that the position of pi is
stabilizing. All points with a translation error larger than et + ε are identified
as outliers and rejected during the iteration t. If the ratio λ is larger than 1,
the motion of point cloud pi is accelerating toward qi due to new appearing
constraints. The maximum authorized error et is then kept stable until the
point cloud starts to converge again.

The minimum error ε is the only parameter needed for our rejection tech-
nique. It represents noises from sensor readings. A simple way to evaluate
this parameter is to take two scans of a static environment and look at the
distribution of translation errors created by the error metric used. This trans-
lation error should be centered on zero and can be estimated by a Gaussian
distribution. The parameter ε can be estimated using the standard devia-
tion of this distribution, making the parameter sensor-dependent instead of
situation-dependent.

(a) (b)

Fig. 2 (a) A generic example of maximal authorized error based on RMT in function of
iterations. Dashed line represents minimum error ε. (b) Final position of the registered

point clouds used in the generic example.

Fig. 2(a) presents an example of the relative motion threshold in function
of iterations. During the two first iterations, only the rejection of multiple
pairings is active to initialize a value for Tt−1 and Tt−2. Then, e2 is initialized



to the maximum Euclidean norm of translation error at iteration 2. The sim-
ulated annealing ratio reduces this error until the point cloud pi temporarily
stops converging. The ratio λ is higher than 1 between iteration 6 and 7,
forcing a constant error threshold until the point cloud pi start converging
again. The final threshold error is reduced until iteration 11 where it equals
the minimum error ε represented by the dashed line. Fig. 2(b) shows the
two point clouds used in this example at iteration 11. The point clouds were
taken in a room where two boxes were moved in different directions. The
thick points in light blue represent pi which converges to the right position
even with outliers caused by dynamic obstacles (i.e., boxes). Small black cross
represent outliers detected by RMT.

4 Experimental Results

Experiments were conducted in simulation and real settings using the follow-
ing ICP algorithm consisting in five steps [12]:

1. Selection reduces the number of points in pi by selecting a representative
subset of points ps, where s < i. This step is a compromise between com-
putation speed and robustness. Even if using a smaller number of points
results in faster computation time, the result may diverge if not enough
points are used, or if the selection process filters out necessary constraints.

2. Matching pairs each point of ps in the point cloud qj . This corresponds
to a closest point search problem. One data structure often used to solve
this problem is the k-d tree. It is a data structure that partitions the space
into k dimensions, with the property of accelerating the nearest neighbor
search. Recently, utilization of the approximate k-d tree [8] has shown to
give faster results without altering ICP precision.

3. Weighting improves or reduces impacts of pairing point on the error ma-
trix by using criteria such as distance, normal compatibilities and scanner
noise. However, results suggest that weighting is data-dependent and does
not increase convergence rate significantly [12].

4. Rejection uses techniques described in Section 2 and 3.
5. Error and minimization use all the remaining matched points to evaluate

the misalignment error and a create a motion vector m = [T,Ω]′ minimiz-
ing this error where T is the translation components and Ω the orientation
components. This motion vector is applied to the point cloud pi. Point-
to-plane error function is shown to have a faster convergence rate than
point-to-point error [12].

Steps 2 to 5 are repeated until any of the ending condition is reached.
Several ending conditions have been proposed, e.g. number of iterations, er-
ror, relative motion between two iterations [4], [16], stabilization of mean



and standard deviation of the distances between paired points, number of
registered pairs [6]. Our complete ICP algorithm uses all of those.

4.1 Evaluation method

To test the RMT rejection technique while dealing with outliers or occlusion
caused by moving objects, we enriched the test protocol described in [10].
More specifically, we recorded data taken by a SICK LMS 200 laser range
finder in a U-shaped room. Without moving the sensor, we added or moved
boxes in its field of view. This way we generated 10 pairs of different scans
with an overlapping ratio around 75%. For each trial, one of the two scans
was transformed with a rotation and a translation vector drawn randomly
according to a Gaussian distribution in order to fit the uncertainty of the lo-
calization of standard SLAM techniques. The standard deviations were 0.15m
for each translation component and 0.15 rad for the angle. Fig. 3(a) shows an
example of two scans as well as the distribution of displacement of the second
scan. We can see that in the second scan, one of the boxes moved while the
other was removed. As the sensor is fixed between the scans, the result of the
registration algorithm is exactly the inverse of this transformation. Fig. 3(b)
shows the results for each rejection techniques. Curves represent the mean of
the XY alignment error of pi over 4000 trials. For rejection techniques that
require the setting of parameters, optimal values were derived by sampling
the parameter space and computing the percentage of good registration over
a training set. The final performances were evaluated using the remaining
configurations. Theses optimal parameters are presented in Table 1. RMT
provides a large improvement over the other rejection techniques, since other
methods tend to wrongly categorize points as outliers and converge towards
local minima.

(a) (b)

Fig. 3 (a) Two scans to be matched. The first scan is in red, whereas the second scan,
after translation and rotation, is in thick blue. The green crosses show the distribution of

displacement error used in our test with a standard deviation of 0.15 on x- and y-axis. (b)
Comparison of the performance of several rejection methods in function of iterations. The
performance is measured by the mean position error in respect to ground truth.



RMT Median Trim. Mean Fix Zhang

Parameter ε = 0.05 none ξ = 76% none d = 0.3m η = 0.02m

Table 1 Parameters used for each rejection techniques during comparison test.

In terms of speed, ICP is an iterative algorithm known to converge in a
small number of iterations. RMT rejection method does not impair the con-
vergence rate of the matching algorithm. The mean and covariance on the
number of iterations for the Median and RMT are respectively (µ = 9.5,
σ = 2.4) and (µ = 9.9, σ = 1.9). Those results were obtained while keep-
ing registration converging to the right value for 4000 trials. No significant
difference were observed between all rejection techniques tested.

Looking at how rejection techniques perform with shifting initial positions,
Table 2 presents the correct registration computed for 4000 trials of each
rejection technique for various standard deviations on the initial error. RMT
rejection technique performs better than the others for all conditions tested
by having the lowest residual error. Moreover, a rise in the initial position
variance decreases the performance for every methods, as expected. For this
setup, it means that uncertainty on the position of the robot should be kept
under 15 cm before applying ICP to achieve good registration. However, RMT
rejection method is more robust than other techniques as performance loss
occurs at a higher variance while being less computationally expensive than
median technique.

Std RMT Median Trim. Mean Fix Zhang

0.05 0.001 0.005 0.013 0.009 0.027 0.021

0.10 0.004 0.016 0.015 0.013 0.029 0.056

0.15 0.021 0.031 0.032 0.039 0.055 0.107

0.20 0.034 0.051 0.060 0.059 0.077 0.132

0.30 0.135 0.145 0.189 0.203 0.261 0.282

0.40 0.272 0.294 0.356 0.362 0.412 0.423

Table 2 Robustness of the rejection techniques with respect to initial error. The perfor-

mance is measured in term of the mean final of XY alignment error of point clouds (in
meter).

4.2 Real-world application

The last section described experiments with outliers mainly due to dynamical
obstacles. Another main source of outliers can be created by low overlapping
percentage of scans. The Canadian Space Agency (CSA) uses a rotating laser
range finder installed on a robot to test Mars exploration algorithms which
is showed in Fig. 4 (a). The robot typically moves few meters on a simulated
Martian terrain, takes a 3D scan and decides where to go next. In this kind



of application, overlapping between scans can vary between 50% and 90%
and few 3D features are available, making the registration very sensible to
outliers. The RMT was used on 3D point clouds extracted within this context
of application. Fig. 4 presents the result of one registration with a distance of
15m between the two scans. The grayscale surface correspond to the section
used for the registration. The maximum height of the surface is about 1m.
Points on both side of the surface represent outliers removed during the regis-
tration. This demonstrates that the RMT can also deal with outliers created
by low overlapping scans. Moreover, the algorithm is currently used by the
Space Technologies Research Program of the CSA for complete mapping of
the experimental Martian terrain.

(a) (b)

Fig. 4 (a) Robot and environment of the Canadian Space Agency for the Mars exploration

project. (b) RMT applied to scans with low overlapping. In grayscale, the surface recovered
from match points. In red and blue, the outliers of each scan.

5 Conclusion and Future Work

This paper presents a novel rejection technique called RMT in the context of
ICP registration applied to SLAM in mobile robotics. Results show promising
performance, making RMT a very interesting alternative to other rejection
techniques. In particular, RMT allows better registration with point clouds
containing dynamical obstacles. RMT also demonstrates its applicability in
a Mars exploration context with low overlapping percentages. It also gives
good results for identifying dynamical obstacles. In future work, we plan to
characterize the stability of the approach in a complete SLAM algorithm,
and to further extend the range of initial error that ICP can resolve.

6 Acknowledgments

The authors gratefully acknowledge the contribution of the Natural Sciences
and Engineering Research Council of Canada (CRSNG), the Canada Re-



search Chairs (CRC) and the Fondation UdeS for their financial support. We
extend our thanks to David Gingras for his work realized under the Space
Technologies Research Program at CSA. This work was also partially sup-
ported by Robots@home STREP EU Project IST-6-045350.

References

1. M. Altermatt, A. Martinelli, N. Tomatis, and R. Siegwart. Slam with corner features

based on a relative map. Intelligent Robots and Systems (IROS). Proceedings of the
IEEE/RSJ International Conference on, 2:1053–1058, Sept., Oct. 2004.

2. P. Besl and H. McKay. A method for registration of 3-d shapes. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 14(2):239–256, Feb 1992.

3. A. Censi. An icp variant using a point-to-line metric. Robotics and Automation

(ICRA). IEEE International Conference on, pages 19–25, May 2008.
4. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed iterative closest

point algorithm. Pattern Recognition. Proceedings. 16th International Conference on,
3:545–548, 2002.

5. J. Diebel, K. Reutersward, S. Thrun, J. Davis, and R. Gupta. An icp variant using a

point-to-line metric. Intelligent Robots and Systems (IROS) IEEE/RSJ International
Conference on, pages 3436–3443, Sept., Oct. 2004.

6. S. Druon, M. Aldon, and A. Crosnier. Color constrained icp for registration of large
unstructured 3d color data sets. Information Acquisition. IEEE International Con-

ference on, pages 249–255, Aug. 2006.
7. G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient estimation

of accurate maximum likelihood maps in 3D. Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3472–3478, October 2007.
8. N. Ho and R. Jarvis. Large scale 3d environmental modelling for stereoscopic walk-

through visualisation. 3DTV Conference, pages 1–4, May 2007.
9. B. Huhle, M. Magnusson, W. Strasser, and A. Lilienthal. Registration of colored

3d point clouds with a kernel-based extension to the normal distributions transform.

Robotics and Automation (ICRA). IEEE International Conference on, pages 4025–
4030, May 2008.

10. J. Minguez. Metric-based scan matching algorithms for mobile robot displacement
estimation. In In Int. Conf. on Robotics and Automation, 2005.

11. A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d slam with approximate

data association. Advanced Robotics, 2005 (ICAR). Proceedingsof the 12th Interna-
tional Conference on, pages 242–249, July 2005.

12. S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. Proceeding on
3DIM, pages 145–152, 2001.

13. M. Strand, F. Erb, and R. Dillmann. Range image registration using an octree based

matching strategy. Mechatronics and Automation (ICMA). International Conference
on, pages 1622–1627, Aug. 2007.

14. H. Yoshitaka, K. Hirohiko, O. Akihisa, and Y. Shin’ichi. Mobile robot localization and
mapping by scan matching using laser reflection intensity of the sokuiki sensor. IEEE

Industrial Electronics (IECON). 32nd Annual Conference on, pages 3018–3023, Nov.
2006.

15. Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13(2), 1994.
16. T. Zinsser, J. Schmidt, and H. Niemann. A refined icp algorithm for robust 3-d

correspondence estimation. Image Processing (ICIP). Proceedings. 2003 International

Conference on, 2:II–695–8 vol.3, Sept. 2003.


