
HAL Id: hal-01142539
https://hal.science/hal-01142539v1

Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approach Based Patterns for System-of-Systems
Reconfiguration

Franck Petitdemange, Isabelle Borne, Jeremy Buisson

To cite this version:
Franck Petitdemange, Isabelle Borne, Jeremy Buisson. Approach Based Patterns for System-of-
Systems Reconfiguration. International Workshop on Software Engineering for Systems-of-Systems,
May 2015, Florence, Italy. �hal-01142539�

https://hal.science/hal-01142539v1
https://hal.archives-ouvertes.fr


Approach Based Patterns for System-of-Systems
Reconfiguration

Franck Petitdemange
IRISA

University of South Brittany
Vannes, France

franck.petitdemange@irisa.fr

Isabelle Borne
IRISA

University of South Brittany
Vannes, France

isabelle.borne@irisa.fr

Jeremy Buisson
IRISA

Military Academy of St-Cyr
Vannes, France

jeremy.buisson@irisa.fr

Abstract—Systems-of-systems (SoS) are a particular class of
systems that recruit dynamically their constituents to achieve a
global goal. To accomodate this approach, the architecture of SoS
is usually described by architectural patterns to be instantiated
at runtime. Based on the study of an example, we introduce
reconfiguration patterns to help reasoning on reconfiguration and
maintaining the architectural patterns of the SoS.

I. INTRODUCTION

System-of-systems (SoS) are a particular class of systems.
An SoS is a set of Constituent Systems(CSs) which collab-
orate to fulfill a mission. Each CS has its own managerial
independance, meaning that it has its own teams of managers,
developers, administrators, maintainers who control its lifecy-
cle (e.g., deciding when the CS is started, stopped, updated)
independently of the SoS. Each CS has also operational inde-
pendance, meaning that the CS can fulfilled valid missions if
disassembled from overall system. In this context, the architect
who designs an SoS has autority on interactions between CSs
but has no control over the CSs themselves. Due to the lack
of coercitive power on the environnement of the SoS some
architectural details are delayed until runtime. For instance a
CS can leave or join the SoS on its own right, therefore the
SoS must reconfigure its architecture at runtime to accomodate
such changes.

The architecture of the SoS defines the role of each con-
stituent system and the interactions between them. In order
to be assisted with regard to this point, the SoS architect
can use patterns. A pattern is a generic building block which
defines a structure and behaviors as a solution to solve a
well-identified design problem in a specific context with well-
known properties.

One challenge of SoS engineering is that the constituent
systems, because of their own managerial and operational
independence, can decide to engage or disengage at their will.
But regardless of the decisions of the constituent systems,
the SoS must self-reconfigure to continuously achieve its
global mission. In the case of SoS, we identify two cases
for reconfiguration: either maintaining the SoS pattern or
switching to a new coalition.

A difficulty arises because the role a constituent system
plays after reconfiguration depends not only on its role before
reconfiguration, but also on its involvement in other SoS as

well as its own missions. In this paper we consider the example
of a fire emergency system. Clearly, if an ambulance system is
transporting injured persons at the time of the reconfiguration,
this ambulance will not play the same role as if it were idle.
To solve this issue, we propose to assist reconfiguration with
patterns. Our idea is that the architect defines configurations
and reconfigurations with patterns. Then reconfiguration pat-
terns can be used as patches on the architecture in order to
change it at runtime while maintaining the consistency of SoS
and preserving the other patterns (i.e., the other SoS).

Section II presents the main concepts of the SoSADL
architecture description language we are relying on, as well as
an illustrative example expressed in terms of these SoSADL
concepts. Section III presents how we propose to use patterns
to assist reconfiguration. Section IV provides an overview
of related works. Section V concludes the paper with future
directions.

II. BACKGROUND

A. SoSADL Concepts
This paper focuses on the reconfiguration concern in SoS.

To make the examples more concrete, we rely on SoSADL, a
language under construction in our team targeted the SoS de-
scription architectures. SoSADL is an evolution of π-ADL [1],
a language used to describe static and dynamic architectural
specifications. π-ADL is based on the π-calculus, a formal
basis to verify specification of architectural structures and
behaviors. SoSADL extends π-ADL with new architectural
artifacts for SoS. In comparison to other ADL, SoSADL allows
to declare sets of architectural constraints solved at runtime to
generate the configuration. This language relies on three main
concepts.

• Systems are the constituents of an SoS. Following the
definition of SoS, each system has its own mission
and is operationally and managerially independent, while
contributing to the global mission of the SoS. Systems
are described in terms of their interaction points, called
gates, and a model of their interaction behavior. The gates
are the means given to the SoS to interact with the system
such that the system achieves some tasks for the SoS.

• Mediators are communicating elements that specify the
interactions among systems. Mediators belong to the



SoS, i.e., the SoS has full control over them. They are
described in terms of their interaction points, which we
call duties, and their internal behavior.

• Each SoS is described by a coalition, which identifies
systems and controls mediators. Coalition are described
by-intention. It means that each coalition is defined by
1) sets of to-be-discovered systems and sets of to-be-
instantiated mediators; and 2) a constraint that describes
how the system gates and mediator duties are bound to
one another to establish communications. With SoSADL,
we consider that SoS can themselves be systems involved
in other SoS. Hence a coalition may expose some gates
to its environment, like any other system. The resolu-
tion of the coalition constraint determines the instances
of mediators that are required as well as the bindings
between system gates and mediator duties. When systems
are discovered or disengage from the SoS, the resolution
of the constraint yields to a new architecture and triggers
a reconfiguration.

B. Illustrative Example

To illustrate our proposal we study the case of an emergency
organization. It is a reference case study commonly used in
the SoS area [2], [3]. In this paper we focus the example on
a single fire emergency service, independently of the other
services that may be involed. This service is composed of
several ambulances, fire cars and officers that are dispatched
to emergency scenes by a strategic command center (SCC)
which fulfills the global mission by controling the allocation
of these elements.

When an incident scene requires the coordination of multi-
ple resources (ambulances, fire cars and/or officers), the SCC
creates a temporary tactical command (TC). An officer is in
charge of the command and control of the resources allocated
to the TC. Following a hierarchical command scheme, the
TC issues operational orders to its allocated ressources based
on strategic decisions received from the SCC. In this case,
resources are subordinates of the TC, rather than the SCC.

The fire emergency service can be considered an SoS
because:

• ambulances and fire cars are distributed over several dis-
tricts in order to minimise intervention time (geographical
distribution);

• an ambulance can operate standalone to rescue one
wounded (operational independence);

• in such situation, the ambulance has its own strategy
to operate and control its own cycle life (managerial
independence); and

• the number of ambulances and fire cars changes over the
time (evolution).

The constituent systems (CSs) of the fire emergency service
are SCC, ambulances, fire cars and officers. Because we
consider a hierarchical command chain (coercive power on
CSs), the SoS belongs to the directed category [4].

C. Modelization of the example in terms of SoSADL concepts

In our example, we identify two coalitions: the global
architecture of the emergency service; and the adaptation of
the service to specific incident scenes.

1) Fire emergency service: The fire emergency service
contains four sets of constituent systems: one SCC, some
officers, some ambulances and some fire cars. It contains a set
of mediators named transmitter which model communication
equipment. The coalition defines the SCC as the central
authority that is responsible for the control and command of
the other CSs. The coalition constraint states that a transmitter
handles the communications between SCC and the CSs of a
district: it broadcasts orders from SCC to CSs and transmits
reports from CSs to SCC. As consequence, the SoS must
instantiate a set of transmitters in order to comply to this rule.
As shown in Figure 1, to resolve the coalition constraint, the
SoS instantiates one transmitter when all the CSs are located
in the same district. But in the case the ambulances, officers
and fire cars are dispacthed over several districts the SoS
instantiates several transmitters.

2) Tactic command: When an incident occurs in the en-
vironment of the SoS, a tactical command coalition is tem-
porarily instantiated by the SCC, resulting in a reconfiguration
of the global architecture. The SCC reshapes the coalition,
introducing a new intermediate authority (an officer) and
allocates some resources to it. The new constraint of the
reconfigured coalition states that communications must pass
through the officer, involving a second set of transmitters
between officers and SCC. SCC maintains direct authority
on officers. The reconfiguration brings for instance the SoS
from Figure 1 to Figure 2: transmitter 2 is instantiated and
ambulance and fire car are connected to it. Once again,
depending on geographical distribution of the CSs, several
transmitter 1 and several transmitter 2 may be instantiated to
accomodate hardware constraints of the equipment modeled
by transmitters.

III. PATTERNS FOR DYNAMIC RECONFIGURATION

Architectural patterns provide a high level view of a system
architecture and define rules to support software construction
with well-defined properties. According to [5]:

Architectural patterns capture important structure,
practice, and technique that are key competencies
in a given field.

Due to the increased complexity of SoS (compared to regular
systems), the use of architectural patterns is mandatory to
help architects understanding and documenting the behavior
and structure of the SoS [6]. Existing projects such as COM-
PASS [7] and DANSE [8] study how existing patterns in the
literature may be applied in a SoS architecture.

Constant evolution is a key feature of a SoS, but this
topic is not fully addressed in classical architectural patterns.
While, e.g., [9], [10] verify that primitive reconfiguration
actions preserve the architectural invariants of their respective
component model, the challenge for the SoS field arises from



SCC

system

transmitter1
mediator

officer

system

ambulance

system

fire car

system

coalition

Fig. 1. Pattern of the fire emergency service coalition

SCC

system

transmitter1
mediator

transmitter2
mediator

officer

system

ambulance

system

fire car

system

coalition

Fig. 2. Pattern of the fire tactical coalition

the generalized pattern-based new approach to architecture
description. Like suggested by the constraint-based approach
of SoSADL, the whole SoS architecture can be based on
an architectural pattern. A dynamic reconfiguration must not
compromise this architectural pattern used in the SoS.

The objective of this work is to explore a new approach in
order to reason about reconfiguration with specific patterns.

The architect could apply a set of reconfigurations described
by reconfiguration patterns. Reconfiguration patterns should
preserve the architectural decisions defined through architec-
tural patterns. In our work we focus on the relation between
architectural patterns and reconfigurations.

We identify two cases for SoS reconfiguration:
• On the one hand, reconfigurations should maintain con-

sistency in the hierarchy of architectural patterns defined
in the SoS. The architectural patterns will be instantiated
by coalitions, and re-instantiated when CSs leave or
join. Based on our example (figure 1), if a CS loses its
connection with SCC by moving to another district (out
of range of its transmitter), a new transmitter must be
instantiated for that district (if it does not exist) and then
the CS reconnected to this transmitter.

• On the other hand, reconfigurations must allow the evo-
lution of the hierarchy of patterns with composition and

fusion operations of other patterns. At runtime when the
SoS creates a new coalition, the process which selects
and composes CSs must preserve the consistency in the
SoS. For instance, when an incident occurs, the SCC
may want to create a new tactical command coalition.
When multiple incidents occur at the same time, several
tactical commands could be instantiated. Consider that
a tactical command assigns an ambulance to transport
an injured person to the hospital: in this case the SCC
cannot disengage this ambulance to provision a new
tactical command. According to the domain knowledge
and current state of SoS, dynamic reconfigurations should
determine a set of reconfiguration operations that preserve
consistency, and select and compose a new coalition.

The former clearly concerns the repeated resolution of the
constraint in order to instantiate the pattern depending on the
joining and leaving CSs. The latter shows that the role of the
CSs depends not only on the target pattern, but also on their
role before reconfiguration in regard to both the SoS and the
environment.

The reconfiguration patterns will be designed by identifying
the steps and constraints of a reconfiguration case. For example
starting from the main coalition (figure 1) to get a tactical
command coalition (figure 2) constitutes a reconfiguration



pattern composed of smaller patterns that explain the necessary
steps.

The main coalition will be described with SoSADL and the
reconfiguration patterns will include some SoSADL templates
to guide the reconfiguration process.

Several advantages could be excepted. Relating architectural
and reconfiguration patterns, we will describe what can be
reconfigured in a SoS and how to achieve these kinds of
reconfiguration. The combination of multiple concurrent re-
configurations should also be better controlled if the effects
of well-designed reconfigration patterns are bounded by the
related architectural pattern. Reconfiguration patterns will be
a means to reason about reconfiguration in SoS. Using an
adequate language, such as SoSADL, will allow to check and
validate the reconfiguration operations. This approach should
allow to have the traceability of the reconfiguration process.

IV. RELATED WORK

Some major European projects gave some ideas to deal
with reconfiguration of SoS (COMPASS and DANSE euro-
pean project). COMPASS addresses the problem of emergent
property dependences against dynamicity (changes in SoS
configuration) and evolution (changes in the behaviours of
SoS). This dependability relies on a contract approach [11], to
specify CSs behaviors, and a framework to model and reason
about fault tolerance. This project also proposes a collection of
architectural patterns [12] extracted from literature (software
system and engineering) which adress particular needs of a
SoS.

Another European project named DANSE [8] proposes
an approach of development process for architectures based
on architectural patterns. It demonstrates the usefulness of
architectural patterns in SoS enginering (modeling, analysis,
dealing with complexity). Architectural patterns are used to
generate optimized architectures. From informations extracted
from architectual patterns (e.g connections between CS, con-
straints on their behaviors and capacities) a solver generates
an optimized architecture which satisfies goals of the SoS. The
approach does not address issuing reconfiguration operations
to switch to the target architecture from current one. To deal
with dynamicity and evolution, DANSE has abstracted models
from SoS characteristics and used a contract approach to
define semantics on behaviors, evolutions and structural parts
of SoS [13]. Our approach mainly addresses evolution of SoS
with a dynamic reconfiguration process based on reconfigura-
tion patterns. As such it is a complementary approach to those
projects.

Regarding dynamic reconfiguration, [9], [10] address the
preservation of invariants solely at the primitive operation
level. Both focus on invariants coming from the component
model, while considering that the approach generalizes well
to invariants coming from patterns or from the application. In
our work we aim to propose reconfiguration patterns similar to
architectural patterns, i.e., templates to be instantiated for each
application. Our approach is complementary to those previous
work.

V. FUTURE WORK

In this paper we proposed an approach to describe a particu-
lar kind of SoS and how we intend to manage reconfigurations
in a SoS architecture. We propose to assist reconfiguration with
a pattern-based approach. Relying on patterns implemented by
an SoS, our approach suggests a set of reconfiguration patterns
which could be applied to maintain consistency in the SoS. As
mentioned reconfiguration implementation should follow the
reconfiguration pattern. Another case study in our team based
on a real situation : a flood monitoring system developed at
the University of São Paulo, will allow us to collect more
reconfiguration examples. We are starting by decomposing the
reconfiguration steps and defining the elementary patterns. We
will study how to compose the elementary patterns [14] to
form reconfiguration patterns. Finally we will design a catalog
of architectural patterns devoted to SoS and will build a system
of patterns, where each pattern will describe an architectural
solution to a SoS reconfiguration problem.

REFERENCES

[1] F. Oquendo, “pi-ADL: An Architecture Description Language
Based on the Higher-order Typed pi-calculus for Specifying
Dynamic and Mobile Software Architectures,” SIGSOFT Softw.
Eng. Notes, vol. 29, no. 3, pp. 1–14, 2004. [Online]. Available:
http://doi.acm.org/10.1145/986710.986728

[2] M. Forcolin, P.-F. Petrucco, R. Previato, R. L. Stevens, R. Payne,
C. Ingram, and Z. Andrew, “Accident response use case engineering
analysis report using current methods & tools,” COMPASS Project,
Tech. Rep., 2013.

[3] T. Lochow, I. Sanduka, R. Bullinga, A. Arnold, R. Kalawsy, G. Cristau,
M. Jung, C. Etzien, and E. Honour, “Concept alignment example
description,” DANSE Projet, Tech. Rep., 2013.

[4] W. M. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[5] J. O. Coplien, Software patterns. New York; London: SIGS, 1996.
[6] R. S. Kalawsky, D. Joannou, Y. Tian, and A. Fayoumi, “Using archi-

tecture patterns to architect and analyze systems of systems,” Procedia
Computer Science, vol. 16, pp. 283–292, 2013.

[7] C. Ingram, R. Payne, J. Holt, F. O. Hansen, and L. D. Couto, “Modelling
patterns for systems of systems architectures,” COMPASS Project, Tech.
Rep., 2013.

[8] R. Kalawsky, D. Joannou, A. Bhatt, K. Ramalingam, I. Sanduka,
M. Masin, E. Shindin, and U.Shani, “Report on danse architectural
approaches,” DANSE project, Tech. Rep., 2014.

[9] M. Léger, T. Ledoux, and T. Coupaye, “Reliable dynamic reconfigu-
rations in a reflective component model,” in Proceedings of the 13th
International Conference on Component-Based Software Engineering,
ser. CBSE’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 74–92.

[10] J. Buisson, E. Calvacante, F. Dagnat, E. Leroux, and S. Martinez,
“Coqcots &#38; pycots: Non-stopping components for safe dynamic
reconfiguration,” in Proceedings of the 17th International ACM Sigsoft
Symposium on Component-based Software Engineering, ser. CBSE ’14.
New York, NY, USA: ACM, 2014, pp. 85–90.

[11] W. ling Huang, J. Peleska, K. Pierce, and U. Schulze, “Contract support
for evolving sos,” COMPASS Project, Tech. Rep., 2014.

[12] S. Perry, J. Holt, R. Payne, J. Bryans, C. Ingram, A. Miyazawa,
S. Hallerstede, L. D. Couto, A. K. Malmos, J. Iyoda, M. Cornelio,
and J. Peleska, “Final report on sos architectural models,” COMPASS
Project, Tech. Rep., 2014.

[13] C. Etzien, T. Gezgin, R. Passerone, A. Arnold, L. Mangeruca, and
E. Shindin, “Danse modelling formalism, including domain metamodel
& semantics: Focused on support for analysis and optimization,” DANSE
project, Tech. Rep., 2014.

[14] M. T. T. That, S. Sadou, F. Oquendo, and I. Borne, “Composition-
centered architectural pattern description language,” in Software Archi-
tecture - 7th European Conference, ECSA 2013, Montpellier, France,
July 1-5, 2013. Proceedings, 2013, pp. 1–16.


