
HAL Id: hal-01142538
https://hal.science/hal-01142538

Submitted on 16 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The Virtual Splitter: Refactoring Web Applications for
the Multiscreen Environment

Mira Sarkis, Cyril Concolato, Jean-Claude Dufourd

To cite this version:
Mira Sarkis, Cyril Concolato, Jean-Claude Dufourd. The Virtual Splitter: Refactoring Web Appli-
cations for the Multiscreen Environment. DocEng’14: ACM Symposium on Document Engineering,
2014, pp.Pages139-142. �10.1145/2644866.2644893�. �hal-01142538�

https://hal.science/hal-01142538
https://hal.archives-ouvertes.fr

The Virtual Splitter: Refactoring Web Applications for the
Multiscreen Environment

Mira Sarkis, Cyril Concolato, Jean-Claude Dufourd
Telecom ParisTech; Institut Mines-Telecom; CNRS LTCI

{sarkis, concolato, dufourd}@telecom-paristech.fr

ABSTRACT
Creating web applications for the multiscreen environment
is still a challenge. One approach is to transform existing
single-screen applications but this has not been done yet au-
tomatically or generically. This paper proposes a refactor-
ing system. It consists of a generic and extensible mapping
phase that automatically analyzes the application content
based on a semantic or a visual criterion determined by the
author or the user, and prepares it for the splitting process.
The system then splits the application and as a result de-
livers two instrumented applications ready for distribution
across devices. During runtime, the system uses a mirror-
ing phase to maintain the functionality of the distributed
application and to support a dynamic splitting process. De-
veloped as a Chrome extension, our approach is validated
on several web applications, including a YouTube page and
a video application from Mozilla.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
D.2.11 [Software Engineering]: [Software Architecture]

Keywords
Application Distribution, Authoring, Multiscreen, Web Ap-
plication

1. INTRODUCTION
Recently, intense research activity has been focused on

multi-screen scenarios [4][6] inside home environment where
cooperation between heterogeneous devices is leveraged. In
such a cooperative environment, a ”Multi-Screen Applica-
tion” (MSA) is an application distributed across multiple
connected devices, each having a screen, and designed to of-
fer a convivial experience. Examples of MSA are: using a
tablet to display additional information synchronized with a
TV program, or using the interaction capabilities of smart-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DocEng ’15, September 08 - 11, 2015, Lausanne, Switzerland
Copyright 2014 ACM 978-1-4503-2949-1/14/09 ...$15.00.
http://dx.doi.org/10.1145/2644866.2644893.

phones (e.g., touch screen) jointly with the large screen and
processing power of a PC or a TV to display media elements.

Multi-screen applications impose multiple challenges to
the application developers. First, they have to design an
application that leverages the multi-screen environment and
copes with the diversity of devices. Then, they have to deter-
mine how the application content will be distributed across
devices based on their specific capabilities, to manage the
distributed content and to maintain the synchronization and
consistency of the distributed content. The use of web tech-
nologies helps reducing the complexity of these tasks and
increasing the possibility of deploying a ubiquitous applica-
tion. In this paper, the term application refers to a web
application. Many applications were created before the de-
velopment of the multi-screen concept. Many of them are ac-
tually made of different components that could benefit from
being distributed. However, few of them were designed in a
modular manner that facilitates code distribution.

With such a motivation and focusing on challenges related
to authoring MSAs, this paper aims to meet one principal
objective: To propose a new approach that reuses existing
single-screen applications and refactors them for the multi-
screen environment. In contrast to existing works, our ap-
proach is based on mapping the application content onto
available devices by automatically analyzing the content fol-
lowing the author or the user choices, on splitting the ap-
plication into two sub-applications and synchronizing them
while maintaining the overall application functionality and
supporting a dynamic splitting process. The ability for the
user to guide this splitting process is novel and opens up
many usage scenarios.

This paper is organized as follows. Section 2 compares
our approach with related work. Section 3 describes the
virtual splitter architecture, including the mapping, anno-
tation, splitting and mirroring phases. An implementation
of the solution, an evaluation and a survey of its limitations
are given in Section 4. Finally perspectives and conclusions
are drawn in Section 5.

2. STATE OF THE ART
In prior works, a ’WebSplitter’ [5] was proposed to split

XML-based applications, based on a metadata file. This file
is unique for each application and determines which applica-
tion portions, i.e., which XML elements can be seen on each
user device. The splitter requires a middleware proxy that
splits the application content into partial views and a client-
side component that receives data pushed by the server. The
XML splitter architecture is centralized and requires a man-

1

Figure 1: Virtual Splitter Architecture

ual mapping for each XML element of the application. In
his research, Cheng [3] proposed a virtual browser capable of
separating the application logic from its rendering. The logic
is kept within a virtual web page. Automatically the vir-
tual browser splits the main DOM tree into multiple DOM
trees and maps these trees to corresponding devices as de-
noted in a hint file that is specific to each application and
manually created by the developer. Cross-device operations
are executed in a centralized manner depending ultimately
on the browser. Bassbouss et al.[2] outlined how to enable
traditional applications to become multi-screen-ready. The
application is developed as a single-screen application and
requires a multi-screen enabled browser. Based on metadata
information provided manually by the developer, specific el-
ements are assigned to a remote device while always being
shown on the main device.

In contrast to [3] and [5] our system has a decentralized
architecture. Similar to [2] it delivers master-slave appli-
cations. The common part for the three previous works is
that each application is analyzed and mapped separately
and manually by the author (via a hint file or metadata).
This means there is no generic analysis method that can be
applied to a set of applications. On the contrary, we pro-
pose an extensible system that is capable of automatically
analyzing the application and mapping its elements, thus
simplifying the author’s task and involving the end user in
mapping her application. The author only has to determine
the analysis criterion.

3. THE VIRTUAL SPLITTER

3.1 Overview
A web application consists mainly of HTML, CSS and

JavaScript (JS) resources, that are tightly linked. Links ex-
ist between elements in the DOM tree (e.g., parent-child,
siblings), between the DOM and JS when the JS accesses
elements by specific attributes (e.g., id) or by document nav-
igation, between the DOM and the CSS via selectors, etc. In
such a context, splitting an application will break some links
and cause a failure in the application look and functionality.

In addition, an application presents two dynamic aspects
that make the splitting approach more complicated. On
one side, splitting a web application requires support for
its dynamism since elements are continuously modified, cre-
ated, moved or removed during runtime. Supporting this
dynamism during run-time is essential to ensure the coher-
ence between elements in each of the distributed application.
On the other side, automatic partitioning of the application
script is a hard task since JS is a flexible and dynamic lan-
guage characterized by high-order functions, closures, ’eval’
function which dynamically evaluates a string expression,

etc. In this paper, we take care of the links and dynamicity
of the application by focusing on splitting only the HTML
document, maintaining links and providing a dynamic split-
ting phase during run-time while keeping the JS code as
a whole running on one device. The following subsections
present a detailed description of the virtual splitter archi-
tecture as illustrated in Figure 1.

3.2 HTML Elements Mapping
The mapping phase is the first phase in our system. Its

purpose is to determine which of the application elements
map to the devices involved in the multi-screen experience.
In any multiscreen scenario, at least two devices are coop-
erating. The literature refers to the smartTV as the first
screen and assigns the expression ’companion screen’ [1] or
’second screen’ [8] to a device providing a means of interac-
tion with the smartTV services. In this work, the ’princi-
pal device’ is responsible of processing the main application
logic, while the ’secondary device’ receives processing results
only if it is concerned. As depicted in Figure 1, the mapping
phase takes as input a query from the application author,
when the application is pre-processed offline; or from the
user, when the whole process of splitting the application is
done at run-time. In our approach, we have envisaged sev-
eral possible mapping techniques: based on the analysis of
HTML elements, their associated semantics and roles, dis-
cussed in Section 3.2.1; or based on the visual rendering
of elements, discussed in Section 3.2.2. These techniques
could be also combined. For instance, mapping only inter-
active elements placed in a certain region of the screen to the
secondary device. This phase is extensible and other analy-
sis techniques could be used here. The query can therefore
be either a simple query indicating which mapping tech-
nique should be used along with its specific parameters (e.g.,
element category or position); or a combined query using
boolean logic. The output of the mapping phase is two lists
of elements, one for each device.

3.2.1 Semantic Mapping
As a possible mapping criterion, we describe here a se-

mantic based approach. It is fully automatic, selected by
either the author or the user. In the context of multi-
screen applications, we analyzed the HTML5 elements de-
fined in the standard to determine their roles and how they
could be classified for the purpose of application splitting.
We identified four relevant classes: interactive elements
(i.e., a, area, button, datalist, form, input, keygen, textarea,
nav, optgroup, option, output, select), multimedia ele-
ments (i.e., video, audio, source, track), non-interactive,
non-multimedia visual elements (i.e., caption, dialog, fig-
caption, h1 to h6, hgroup, img, kbd, label, legend, object, p,
progress) and other elements. As part of the query param-

2

eters, the author indicates one or more class of elements to
be moved to the secondary device depending on the charac-
teristics of the available devices. For instance, if a smartTV
is present, the system or the user may decide to move only
multimedia elements on that device. As another example,
if a touch screen is present, the interactive elements may be
moved onto that device. This mapping technique produces
the lists of elements as follows. First, for each element of
the application, the algorithm compares it to the tag names
present in the classes indicated in the author query. If the
element falls within the indicated classes, it is added to the
secondary device list. If the element is a composite element
(i.e., div, table, iframe) the algorithm iterates over the its
children first. If there is no match and if the element does
not belong to the ’other’ class, it is added to the primary
device list. Then, the algorithm detects any change in the
element basic role by checking its attributes, mainly declara-
tive event listeners (e.g., ’onclick’) since they are responsible
of making elements interactive. A non-interactive element
which role is only displaying content i.e., image, becomes
interactive if it has an event listener that lets users interact
with it. In addition, we exploit the semantic links that are
created between HTML elements (e.g., ’for’ attribute) by
keeping these elements together in the same list.

3.2.2 Screen Region Mapping
We also investigated a region-based approach as a map-

ping criterion. It is fully automatic but this time based on
the application visual rendering. It is selected during run-
time by the end-user in her browser. Once the user selects a
screen region, the system detects elements within that rect-
angular region to produce the secondary device list. All
other elements are placed in the primary device list.

3.3 Annotating Elements
As depicted in Figure 1, the second phase is the annota-

tion. It prepares the application for the splitting phase and
takes as input the lists of elements produced by the mapping
phase. The annotation algorithm starts by processing each
DOM leaf element and sets the value of the ’data-device’
attribute to ’device2’ for elements in the secondary device
list and ’device1’ for elements in the primary device list.
It should be noted that the previous mapping phase may
have populated those lists with only some DOM elements,
and not all elements in the tree, for instance only interac-
tive elements or only the elements located in a given region.
Thus, each remaining leaf element (resp. parent element)
in the DOM tree is annotated with the value of its siblings
(resp. its children), if the annotation is the same across sib-
lings (resp. children), or with the value ’dev1&dev2’ if they
differ, meaning that the element will be present on both de-
vices. As a result, the application is totally annotated: each
element contains metadata information, in a ’data-device’
attribute, reflecting its target device(s).

3.4 Splitting Application Content
After the annotation phase, during run-time, the splitting

phase relies on the element metadata information to form
two separated applications: a master and a slave application
as Figure 1 shows. From the original application, elements
annotated with ’device1’ or ’dev1&dev2’ values are kept visi-
ble on the screen of the primary device. Elements annotated
with ’device2’ value are hidden on the primary device. This

forms the master application. These hidden elements serves
as a shortcut whenever the application main logic requires
reading or modifying elements of the remote application on
the secondary device, thus the term ’virtual splitter’. Ele-
ments annotated with ’device2’ and ’dev1&dev2’ values are
extracted from the original application and imported to the
new slave application running on the secondary device. On
the master application, in addition to the retained original
application logic, JS code is added in an instrumentation
phase and aims at making the master application capable of
working synchronously with its slave (see Section 3.5). This
code also supports the application dynamism and ensures a
dynamic mapping and splitting at run-time. On the slave
application, the JS code makes the application capable of
collecting user interactions, redirecting them to the master,
receiving and integrating changes made to its DOM tree.

3.5 Mirroring Application Contents
The virtual splitting phase described in Section 3.4 du-

plicates some content between the master and slave appli-
cations. The role of the mirroring phase is to ensure that
the slave application has a DOM tree that is an accurate
mirror of the hidden DOM tree in the master application.
It is performed as follows: On the ’primary device’, any dy-
namic change affecting elements of the ’secondary device’
(e.g., node modification, removal or creation) is mirrored
to that device through change messages. Upon receiving a
message, the application running on the ’secondary device’
updates its DOM tree and integrates this change. On the
’secondary device’, any user interaction (e.g., clicks, data in-
puts) is captured and propagated to the ’principal device’
where the interaction handler is processed.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation
We decided to implement the virtual splitter as a Google

Chrome extension, first to enable on-the-fly instrumentation
of the application without having to change the application
itself, and second for the better debugging environment com-
pared to the situation on devices. Master and slave applica-
tions are rendered as tabs in the browser and communica-
tion between them is done using the postMessage API that
is similar to the communication mecanism in COLTRAM[4].

As discussed in Section 3.5, to detect relevant changes in
the DOM we use the Mutation Summary library1 which is
based on the working draft of the Mutation Observer API 2.
A Mutation-Summary object is configured to watch changes
made to elements with ’device2’ annotation. If any change
happens to these elements, their descendants or attributes,
the extension sends a message to the ’secondary device’. The
message contains a list of changes. Each change object con-
sists of the type of change, the concerned node, its position
in the DOM tree (i.e., parent and previous sibling node),
the concerned attribute(s) and the new value of a text node.
However, the Mutation Summary library suffers from some
limitations. For instance, it cannot detect changes made to
HTML elements using JS functions especially if they are not
reflected on the DOM tree. To overcome this limitation, as
well as supporting dynamism, we use the Monkey Patching

1see http://code.google.com/p/mutation-summary
2see http://www.w3.org/TR/domcore

3

http://code.google.com/p/mutation-summary
http://www.w3.org/TR/domcore

(a) Main Application (b) Master Application (c) Slave Application

Figure 2: Splitting The Semantic Video Application Based On The Screen-Region Criterion

technique [7], to extend in JS some native browser functions
with custom code, in particular: the ’createElement’ func-
tion is extended to detect the creation of new elements and
to trigger dynamically the mapping, annotation and split-
ting of these elements; the ’setAttribute’ function to update
the Mutation Summary configuration, to enable the mirror-
ing of newly created attributes; and the ’addEventListener’
function to overcome the limitation of the Mutation Sum-
mary library, and to replace an event handler triggered on
the slave application to a call to the master application.

4.2 Results and Discussion
We tested our system on different applications from simple

static pages to dynamic applications, among them: a seman-
tic video application3, relying on the Popcorn and JQuery
libraries and showing various information (e.g., map, text,
images) synchronized with a video. We first used the region-
based mapping. On the video application, we separated the
video and Flick’r images from the additional information as
Figure 2 shows. This experiment verified the performance of
the mirroring phase by maintaining a reliable mirror and the
synchronization between both master and slave applications.
In addition, no compatibility issues were reported between
our instrumented code and the JS libraries. We then used
the semantic mapping to split a YouTube page and to sepa-
rate the interactive class of elements from the other classes
(i.e., non-interactive and multimedia). As a result, the video
runs on the master with all the comments of users while all
buttons, anchors, guide container that proposes additional
videos to watch later are moved to the secondary device.

Based on this, we identified a few areas for future im-
provement. This includes mainly the re-organization of ap-
plication layout based on devices screen characteristics, the
solving of some problems related to the use of relative URLs,
the handing of HTML elements such as Canvas that have
no inner DOM representation but are controlled by JS code.
We will also conduct more systematic testing and validation.

5. PERSPECTIVES AND CONCLUSIONS
In the multi-screen context, this paper proposed a sys-

tem to transform existing applications from single-screen to
multi-screen applications based on author or user choices.
The system consists of an automatic and extensible map-
ping phase that analyzes the application semantically, vi-
sually or a combination of these two, an annotation and
a virtual splitting phase that result in master-slave appli-

3see http://popcornjs.org/demo/semantic-video

cations. A mirroring phase ensures the correct functional-
ity and synchronization between both parts and a dynamic
splitting process. We validated our system on two existing
applications: YouTube and semantic-video, and we verified
the correct content mapping, synchronization and applica-
tion functionality. As a future step, we aim at implement-
ing our system in the COLTRAM multi-screen platform and
extending this system with a context driven splitting tech-
nique that collects information concerning involved devices
and creates dynamically adaptive mapping criteria.

6. REFERENCES
[1] S. Basapur, H. Mandalia, S. Chaysinh, Y. Lee,

N. Venkitaraman, and C. Matcalf. FANFEEDS:
Evaluation of socially generated information feed on
second screen as a tv show companion. In EuroiTV ’12
Proceedings of the 10th European Conference on
Interactive TV and Video, pages 87–96, Berlin, 2012.

[2] L. Bassbouss, M. Tritschler, S. Steglich, K. Tanaka, and
Y. Miyazaki. Towards a multi-screen application model
for the web. In IEEE 37th Annual Computer Software
and Applications Conference Workshops, pages
528–533, Japan, July 2013.

[3] B. Cheng. Virtual browser for enabling multi-device
web applications. In Proceedings of the Workshop on
Multi-device App Middleware, Montreal, Quebec,
December 2012.

[4] J.C. Dufourd, M. Tritschler, L. Bassbouss, R. Bouazizi,
and S. Steglich. An open platform for multiscreen
services. In In the 11th European Interactive TV
conference EuroITV, Como, Italy, 2013.

[5] R. Han, V. Perret, and M. Naghshineh. Websplitter: A
unifed xml framework for multi-device collaborative
web browsing. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work,
pages 221–230, Philadelphia, USA, December 2000.

[6] J. Jang, H. Nam, and Y. Kim. Mobile device-controlled
live streaming traffic transfer for multi-screen services.
In IEEE International Conference on Information
Networking, pages 415 – 420, Bali, February 2012.

[7] B.S. Lerner, H. Venter, and D. Grossman. Supporting
dynamic, third-party code customizations in javascript
using aspects. SIGPLAN Not., 45(10):361–376, 2010.

[8] E. Tsekleves, L. Cruickshank, A. Hill, K. Kondo, and
R. Whitham. Interacting with digital media at home via
a second screen. In 9th IEEE International Symposium
on Multimedia, pages 201–206, December 2007.

4

http://popcornjs.org/demo/semantic-video

	Introduction
	State of the art
	The Virtual Splitter
	Overview
	HTML Elements Mapping
	Semantic Mapping
	Screen Region Mapping

	Annotating Elements
	Splitting Application Content
	Mirroring Application Contents

	Implementation and results
	Implementation
	Results and Discussion

	Perspectives and Conclusions
	References

