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The Standard Model of particle physics can be deduced from a small number of axioms within Connes' noncommutative geometry (NCG). Boyle and Farnsworth [New J. Phys. 16 (2014) 123027] proposed to interpret Connes' approach as an algebra extension in the sense of Eilenberg. By doing so, they could deduce three axioms of the NCG Standard Model (i.e. order zero, order one and massless photon) from the single requirement that the extended algebra be associative. However, their approach was only applied to the finite algebra and fails the full model.

By taking into account the differential graded structure of the algebra of noncommutative differential forms, we obtain a formulation where the same three axioms are deduced from the associativity of the extended differential graded algebra, but which is now also compatible with the full Standard Model.

Finally, we present a Lorentzian version of the noncommutative geometry of the Standard Model and we show that the three axioms still hold if the four-dimensional manifold has a Lorentzian metric.

I. INTRODUCTION

Noncommutative geometry provides a particularly elegant way to derive and describe the structure and the Lagrangian of the Standard Model in curved spacetime and its coupling to gravitation [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] . The main ingredients of this approach are an algebra A = C ∞ (M )⊗A F (where M is a Riemann spin manifold and A F = C⊕H⊕M 3 (C)), [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] a Hilbert space H = L 2 (M, S) ⊗ H F (where S is the spinor bundle and H F is 96-dimensional), and a Dirac operator D.

The elements a of the algebra are represented by bounded operators π(a) over H. In this approach, the gauge bosons are described by gauge potentials (i.e. noncommutative one-forms) in Ω [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] D A, where Ω D A is the differential graded algebra (DGA) constructed from A, whose differential is calculated by using the commutator with D.

From the physical point of view, a striking success of the noncommutative geometric approach is that the algebra, the Hilbert space and the Dirac operator of the Standard Model can be derived from a few simple axioms, including the condition of order zero, the condition of order one and the condition of massless photon. [START_REF] Chamseddine | [END_REF][3][4] Then, the Lagrangian of the Standard Model coupled to (Riemannian) gravity is obtained by counting the eigenvalues of the Dirac operator D. [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] Still, this approach is not completely physical because it is formulated in the Riemannian (instead of Lorentzian) signature and is not quantized. Therefore, the original NCG approach was variously modified, by using Lie algebras 5 , twisted spectral triples [START_REF] Connes | Traces in Geometry, Number Theory and Quantum Fields[END_REF]7 or Lie algebroids and derivation-based NCG, 8 to deal with models that do not enter into the standard NCG framework (e.g. quantum groups or Grand Symmetry). 9 However, to discover the mathematical framework most suitable for the physical Standard Model, it might also be useful to go the other way and find an approach where the Standard Model is still more constrained (i.e. deduced from less axioms) than in NCG. Boyle and Farnsworth 10 recently used Eilenberg's algebra extension method to build an algebra E where the universal DGA Ω built on A (see section III) is extended by the Hilbert space H. This is physically more satisfactory because the gauge field, the field intensity, the curvature and the Lagrangian densities are noncommutative differential forms, which belong to Ω up to an ideal described below. They observed that the associativity of the algebra E imposes a new condition (of order two) which is satisfied by the finite part A F of the Standard Model and removes a somewhat arbitrary axiom in Chamseddine and Connes' derivation. 4 This axiom requires the Dirac operator D F of the finite algebra to commute with a specific family of elements of A F . It is called the condition of massless photon because it ensures that the photon has no mass.

However, as noticed by Boyle and Farnsworth, this approach has two drawbacks: i) it is not valid for a spin manifold (i.e.

the canonical spectral triple (C ∞ (M ), L 2 (M, S), D M ) does not satisfy the condition of order two); (ii) it uses the DGA algebra Ω in which gauge fields with vanishing representation (i.e. A ∈ Ω such that π(A) = 0) can have non-zero field intensity (i.e. π(dA) = 0). This makes the Yang-Mills action ill defined. [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] A consistent substitute for Ω is the space Ω D of noncommutative differential forms which is a DGA built as the quotient of Ω by a differential ideal J usually called the junk.

To solve both problems, we define an extension E of the physically meaningful algebra Ω D of noncommutative differential forms by a representation space M D that we build explicitly. Since the algebra Ω D is a DGA, we require the extension E to be also a DGA and we obtain that M D must be a differential graded bimodule over Ω D (see below). The most conspicuous consequence of this construction is a modification of the condition of order two proposed by Boyle and Farnsworth, which provides exactly the same constraints on the finite part of the spectral triple of the Standard Model, but which is now consistent with the spectral triple of a spin manifold. As a consequence, the full spectral triple of the Standard Model (and not only its finite part) now satisfies the condition of order two and enables us to remove the condition of massless photon.

In the next section, we describe the extension of an algebra by a vector space, first proposed by Eilenberg 11 and used by Boyle and Farnsworth. We discuss the modification required to take the differential graded structure into account. Then, we describe the construction by Connes and Lott of noncommutative differential forms, we build a space M D that can be used to extend Ω D into a DGA E and we show that the spectral triple of the Standard Model fits into this framework if and only if the condition of massless photon is satisfied. Finally, we add a fundamentaly symmetry that makes the model compatible with the Lorentz signature of the spin manifold M , thus reaching the fully physical Standard Model.

II. EXTENSION OF ALGEBRAS

The cohomology of Lie algebras plays a crucial role in the modern understanding of classical [START_REF] Giachetta | Advanced Classical Field Theory[END_REF] and quantum 13 gauge field theories. This cohomology theory mixes the gauge Lie algebra and its representation over a vector or spinor bundle. Shortly after the publication of the cohomology of Lie algebras, Eilenberg generalized this idea to the representation of any algebra whose product is defined by a bilinear map with possible linear constraints (Lie, associative, Jordan, commutative, etc.). 11

A. Eilenberg's extension

If A is a (possibly non-associative) algebra with product a • b and V is a vector space, then the (possibly nonassociative) algebra (E, ⋆) is an extension of A by V if V ⊂ E and there is a linear map ϕ : E → A such that ϕ(e) = 0 iff e ∈ V , ϕ(e ⋆ e ′ ) = ϕ(e) • ϕ(e ′ ) for every e and e ′ in E and u ⋆ v = 0 when u and v are in V .

Eilenberg showed that, if η :

A → E is a map such that η(a) represents a in E (i.e. for every a ∈ A, ϕ(η(a)) = a), then η(a • b) = η(a) ⋆ η(b) + f (a, b), where f is a bilinear map A×A → V . The product ⋆ in E induces two bilinear maps (a, v) → a⊲ v = η(a)⋆ v and (v, a) → v ⊳ a = v ⋆ η(a)
and it can be shown that a ⊲ v and v ⊳ a are in V and independent of η. Conversely, a product in A and two blinear maps ⊲ and ⊳ determine an extension E of A by V and a product ⋆, which are unique up to an equivalence determined by f .

Noncommutative geometry belongs to this framework if we define A = A, V = H, a ⊲ v = π(a)v, where π(a) is the representation of a in the space B(H) of bounded operators on H and v⊳b = π(b) • v, where π(b) • = Jπ(b) † J -1 and J is an antilinear isometry called the real structure. Notice that, in the last expression, the right action v ⊳b of b on v is replaced by the left product by π(b) • on v. This remark will turn out to be crucial. When there is no ambiguity, we sometimes use a common abuse of notation and write a for π(a) and b • for π(b) • .

Then, Eilenberg showed that the extension E is associative iff the following conditions are satisfied:

a • (b • c) = (a • b) • c, (1) a ⊲ (b ⊲ v) = (a • b) ⊲ v, (2) 
(v ⊳ a) ⊳ b = v ⊳ (a • b), (3) 
(a ⊲ v) ⊳ b = a ⊲ (v ⊳ b), (4) a ⊲ f (b, c) + f (a, b • c) = f (a • b, c) + f (a, b) ⊳ c. (5)
Condition (1) means that A is an associative algebra, condition (2) that ⊲ is a left action of A on V , condition (3) that ⊳ is a right action of A on V , condition (4) that the right and left actions are compatible (i.e. that V is a bimodule), the map f in condition ( 5) is required for the extension to have better functorial properties but we do not use it here and we consider the case E = A ⊕ V , ϕ(a + v) = a, η = Id and f = 0. In the NCG example of the extension of A by H that we gave in the previous paragraph, condition (4) We noticed in the introduction that Ω and Ω D are DGA. It is now time to explain what that means. A graded vector space is a direct sum V = n≥0 V n of vector spaces. If v ∈ V belongs to some V n we say that v is homogeneous and that its degree is |v| = n. A DGA is a graded vector space A equipped with an associative product • and a differential δ. The product of the algebra satisfies |a • b| = |a| + |b|. The differential satisfies |δa| = |a| + 1, δ 2 = 0 and the graded Leibniz rule δ(a • b) = (δa) • b + (-1) |a| a • (δb). Differential graded algebras are a basic tool of cohomological physics. [START_REF] Stasheff | Algebraic Topology -Rational Homotopy[END_REF] A graded left-representation of A is a graded vector space M with a left action ⊲ of A over M such that |a ⊲ m| = |a|+|m|, with a similar definition for a graded rightrepresentation. A differential graded left-representation of A is a graded left-representation M furnished with a differential δ :

M n → M n+1 such that: 15 δ(a ⊲ m) = (δa) ⊲ m + (-1) |a] a ⊲ (δm). (6) 
Similarly, in a differential graded right-representation:

δ(m ⊳ a) = (δm) ⊳ a + (-1) |m] m ⊳ (δa). (7) 
The signs in Eqs. ( 6) and ( 7) are imposed by the fact that an algebra is a left and right representation of itself. By a straightforward generalization of Eilenberg's result, we see that E is an extension of A by M as a DGA iff M is a differential graded bimodule over A (i.e. M is a differential graded left-representation, a differential graded right-representation and the left and right actions are compatible in the sense of Eq.( 4)).

We saw in section II A that in the NCG framework, the right action of an element a of the algebra is represented as a left product by the operator π(a) • . To retain this type of representation for M, we define a linear map a → a • such that the right action by a (i.e. m ⊳ a) is represented by the left product with a • (i.e. a • m). We do not assume that a • belongs to the algebra A but we require that |a • | = |a|. However, the representation of m ⊳ a by a • m is different from the case where A is only an algebra because compatibility with the DGA structure imposes the following sign:

15 a • m = (-1) |a||m| m ⊳ a. (8) 
Indeed, δ(a

• m) = δ(a • )m + (-1) |a| a • δm implies now (-1) |a||m| δ(m ⊳ a) = (-1) (|a|+1)|m| m ⊳ (δa) +(-1) |a|+|a|(|m|+1) (δm) ⊳ a,
and we recover Eq. ( 7). The map • is compatible with the differential graded bimodule structure if the following conditions hold for every a and b in A:

a • b • = (-1) |a||b| (b • a) • , (9) 
a • b = (-1) |a||b| b a • , (10) δ(a • ) = (δa) • . (11) 
Equation ( 9) follows from Eqs. ( 3) and ( 8), Eq. ( 10) follows from Eqs. ( 4) and (8). To derive Eq. ( 11), we apply transformation (8) to Eq. ( 7) to obtain δ(a • m) = (-1) |a| a • δm + (δa) • m and we compare with the expression for δ(a • m) given after Eq. ( 8).

III. NONCOMMUTATIVE DIFFERENTIAL FORMS

If A is an algebra, its associated universal differential graded algebra Ω = n≥0 Ω n is defined as follows. [START_REF] Connes | Noncommutative Geometry[END_REF][START_REF] Landi | An Introduction to Noncommutative Spaces and their Geometries[END_REF] In degree zero Ω 0 = A. The space Ω n is generated by the elements a 0 (δa 1 ) . . . (δa n ), where a 0 , . . . , a n are elements of A and δ is a linear operator satisfying δ 2 = 0, δ(a) = (δa), and δ(ωρ) = (δω)ρ + (-1) |ω| ω(δρ).

In NCG, δa is represented over H as the (bounded) operator [D, a] and the n-form ω = a 0 (δa 1 ) . . .

(δa n ) is represented by π(ω) = π(a 0 )[D, π(a 1 )] . . . [D, π(a n )]
where π becomes now a * -representation of Ω. However, this representation is not graded (a fact which is sometimes overlooked) because π(Ω) ⊂ B(H), which is not graded. To obtain a graded representation we replace π by

π : Ω → B ∞ (H) = n V n where each V n is B(H): if ω ∈ Ω n , then π(ω) ∈ V n .
However, the difference between π and π is invisible as long as we only consider homogeneous elements and are careful about their degree. This is why we will stick to the notation π in the sequel when no confusion can arise.

The representation π (i.e. π) is now a graded *representation of Ω considered as a graded algebra. [START_REF] Connes | Noncommutative Geometry[END_REF] However, it is not a well-defined representation of the differential because there can be n-forms ω such that π(ω) = 0 and π(δω) = 0, as we illustrate now with the spectral triple of a spin manifold.

Let f and g be two functions in C ∞ (M ). They are represented by multiplication over

H = C ∞ (M, S): π(f )ψ = f ψ. Then, δf is represented by π(δf ) = [D M , f ] = -i µ γ µ ∂ µ f
, where γ µ runs over the γ-matrices of the spin bundle. If we consider ω = g(δf ) -(δf )g, then π(ω) = -i µ (g∂ µ f -∂ µ f g)γ µ = 0 because the functions g and ∂ µ f commute. However, δω = (δg)(δf ) + (δf )(δg) by the graded Leibniz rule and π(δω) is generally not zero because

π(δω) = - µν ∂ µ f ∂ ν g(γ ν γ µ + γ µ γ ν ) = -2 µν g µν ∂ µ f ∂ ν g I = -2(∂f ) • (∂g) I,
where I is the unit matrix in the spinor fiber.

For a general spectral triple, Connes and Lott 18 remove all the badly-behaving forms by defining the junk J = J 0 + δJ 0 , where J 0 = n≥0 J n 0 and J n 0 = {ω ∈ Ω n ; π(ω) = 0}. The ideal J 0 is the kernel of π but not the kernel of π. The term δJ 0 is needed because J 0 is a graded ideal of Ω but not a differential ideal (i.e. δJ 0 is generally not a subset of J 0 ). But J is a graded differential ideal of Ω because δ 2 = 0 implies δJ = δJ 0 ⊂ J and Ω D = Ω/J is now a well-defined DGA called the space of noncommutative differential forms of the spectral triple. Moreover, 17

Ω D = Ω/J ∼ = n≥0 π(Ω n )/π(δJ n-1 0 ). ( 12 
)
For a spin manifold, Ω D is then isomorphic to the usual space Γ(M, ΛT * M ) of differential forms on M . Why don't we represent Ω over H? Indeed, since A is represented over H, it would be tempting to represent Ω over a graded version of H (i.e. a graded vector space V where every V n = H) and to represent Ω D as some quotient. However, in such a picture we would have to represent Ω D over the graded vector space W where

W n = π(Ω n )H/π(δJ n-1 0
)H and this quotient is often trivial. For the example of the spin manifold, we saw that (∂f • ∂g) I belongs to π(δJ 1 0 ). As a consequence, π(δJ 1 0 )H = H and M 2 = {0}. Our purpose is now to extend Ω D by M D in the sense of Eilenberg, where M D is a differential graded bimodule over Ω D naturally defined out of the spectral triple data. This will be done in two steps. We first explain how a left-right graded representation of Ω can be viewed as a left graded representation of a certain algebra B. Then we take the junk into account, what leads us to quotient B by an ideal K. We then obtain a graded algebra B/K which, under some condition, has the ability to produce differential graded Ω D -bimodules out of graded B-bimodules.

A. Left and right representations of Ω as left representations of B

The only mean at our disposal to produce a right action of Ω is by extending the definition of the map x → x 0 from π(A) to π(Ω). This extension, uniquely determined by π(δa

) • = [D, π(a) • ] = δπ(a)
• and condition (9), is defined by:

π(ω) • = (-1) |ω|(|ω|+1)/2 (ǫ ′ ) |ω| Jπ(ω) † J -1 , (13)
where ǫ ′ is such that JD = ǫ ′ DJ. This definition is also compatible with the involution (δa) * = -δ(a * ). [START_REF] Connes | Noncommutative Geometry[END_REF] The receptacle for the objects we need to manipulate is the graded * -algebra generated by all the elements of the form π(ω) or π(ω) • for ω ∈ Ω. We call B = n≥0 B n this algebra, where each B n ⊂ B(H) and we observe that the grading of B follows from the grading of Ω:

|π(a)| = |π(a) • | = 0, |π(δa)| = |π(δa) • | = 1.
Consider now a graded left-representation M of B. Then M is automatically a graded left and right representation of Ω with the following actions for homogeneous elements ω ∈ Ω and m ∈ M:

ω ⊲ m = π(ω)m m ⊳ ω = (-1) |ω||m| π(ω) • m.
Let us check that ⊳ indeed defines a right action:

(m ⊳ ω) ⊳ ω ′ = (-1) |ω ′ |(|m|+|ω|)+|ω||m| π(ω ′ ) • π(ω) • m = (-1) (|ω ′ |+|ω|)|m| π(ωω ′ ) • m = m ⊳ (ωω ′ ).

B. Bimodule over ΩD

Thus M is a graded left and right representation Ω but it is not a bimodule: the left and right actions are not compatible in general. Moreover, we saw that the elements of π(Ω) cannot be properly identified with differential forms which are given by the quotient of Eq. (12). Because of the isomorphism described by Eq. ( 12), we can consider an element of Ω D from two equivalent points of views: either as a class [ω] of universal differential forms ω, such that [ω] = [ω ′ ] iff there is an η and a ρ in J 0 such that ω ′ = ω + ρ + δη, or as a class α of elements of π(Ω) such that α = α ′ iff there is an element η of J 0 such that α ′ = η + π(δη). Since J is an ideal of Ω and π(δJ 0 ) is an ideal of π(Ω), the product

[ω][ω ′ ] = [ωω ′ ] or α α ′ = αα ′ are well defined and [ωω ′ ] = αα ′ if α = π(ω) and α ′ = π(ω ′ ). Moreover, δ[ω] = [δω] = π(δω) is now a well-defined differential on Ω D .
Here, Ω D was built as the quotient of π(Ω) by the ideal π(δJ 0 ). Similarly, we can define Ω • D as the graded quotient of π(Ω) • by π(δJ 0 ) • . More precisely, we define Ω • D as the set of classes α • where α

• = β • iff there is an η ∈ J 0 such that β • = α • + (δη) • . This defines a map Ω D → Ω • D by α • = α • . Note that the product α • β • is well defined as a product in B ∞ (H). Since (δJ 0 ) • is an ideal in π(Ω) • we can define similarly αβ • = (-1) |α||β| β • α • = (-1) |α||β| β • α • ,
where we used the fact that (αβ

) • = (-1) |α||β| β • α • in B ∞ (H).
Finally, the differential on Ω D is compatible with • in the sense that δ α • = δ α • = δα • is well defined. Thus, the compatibility equations ( 9) and ( 11) are satisfied.

To complete the conditions on • we still have to satisfy Eq. (10). For this, we first must define the products

α • β and β α • . Since α and β • are elements of B ∞ (H), the product αβ • is well defined in B ∞ (H). Let us consider α ′ = α + π(δη) and β ′ = β + π(δζ). Then α ′ (β ′ ) • = αβ • + π(δη)β • + α(δζ) • + π(δη)(δζ) • .
Since we need α ′ (β ′ ) • = αβ • for the product α β • to be well defined, all the terms following αβ • must belong to an ideal K. By multiplying with other elements of π(Ω) or π(Ω) • , we see that K is the graded ideal generated by π(δJ 0 ) + π(δJ 0 ) • in the graded algebra B. In B/K, the products α β • and β • α are now well defined. Moreover, and this is an important check, if b • ∈ A (more precisely, if, for every b ∈ A, there is a c ∈ A such that π(c) = π(b) • ), then B = π(Ω), K = J and B/K = Ω D . Note that this is the case of the canonical spectral triple of a spin manifold because f • = f . Since junk forms act on the right as well as on the left, K is a graded ideal of B and B/K is a graded algebra. These actions are obviously well-defined since the difference between two representatives of [ω] ∈ Ω D belongs to K. The two actions will be compatible, that is ( (14) for all homogeneous ω, ω ′ ∈ Ω. Since Ω is generated as an algebra by elements of degree 0 and 1, it is equivalent to require that the usual order 0 and order 1 condition of spectral triples hold modulo K, which they obviously do, and that moreover:

[ω] ⊲ m) ⊳ [ω ′ ] = [ω] ⊲ (m ⊳ [ω ′ ]) if and only if π(ω)π(ω ′ ) • -(-1) |ω||ω ′ | π(ω ′ ) • π(ω) = 0 mod K,
π(δa)π(δb) • + π(δb) • π(δa) = 0 mod K. ( 15 
)

IV. APPLICATION TO THE STANDARD MODEL

As we saw, condition (10):

α • β = (-1) |α||β| β α • is equivalent to the four equations π(a)π(b) • -π(b) • π(a) = 0, [D, π(a)]π(b) • -π(b) • [D, π(a)] = 0, [D, π(a) • ]π(b) -π(b)[D, π(a) • ] = 0, [D, π(a)][D, π(b) • ] + [D, π(b) • ][D, π(a)] = 0 mod K.
The first equation is satisfied because it is the condition of order zero, the second equation is the condition of order one, the third equation is a consequence of the condition of order one, the fourth equation is called the condition of order two. It is new and we investigate it for the spectral triple (A, H, D, J, γ) of the Standard Model, which is the tensor product of (C ∞ (M ), L 2 (M, S), D M , J M , γ 5 ) and (A F , H F , D F , J F , γ F ) and where D = D M ⊗Id+γ 5 ⊗D F . Let us first consider these four conditions in a tensor product of general even spectral triples.

A. Tensor product of even spectral triples

If (A 1 , H 1 , D 1 , J 1 , γ 1 ) and (A 2 , H 2 , D 2 , J 2 , γ 2 ) are even spectral triples with representation maps π 1 and π 2 , then their tensor product is defined by [19][20][21] If the KO-dimension of the first spectral triple is 4, then

A = A 1 ⊗ A 2 , H = H 1 ⊗ H 2 , D = D 1 ⊗ Id 2 + γ 1 ⊗ D 2 and γ = γ 1 ⊗ γ 2 .
J = J 1 ⊗ J 2 .
The conditions of order zero and one hold for this tensor product 20 but we must investigate the condition of order two. Let a = a 1 ⊗ a 2 and b = b 1 ⊗ b 2 , by using the fact that γ 1 is unitary, self-adjoint, commutes with all elements of A 1 and anticommutes with D 1 we obtain

{[D, a], [D, b • ]} = {[D 1 , a 1 ], [D 1 , b • 1 ]} ⊗ a 2 b • 2 +a 1 b • 1 ⊗ {[D 2 , a 2 ], [D 2 , b • 2 ]}
and the condition of order two means that this anticommutator must belong to the junk K of the tensor product. In general, [START_REF] Madore | An Introduction to Noncommutative Differential Geometry and its Physical Applications[END_REF] the universal DGA Ω built from A 1 ⊗ A 2 is different from the DGA Ω 1 ⊗ Ω 2 and the expression of Ω D in terms of Ω D1 and Ω D2 is rather intricate. 23 However, when A 1 = C ∞ (M ) and A 2 = A F the situation is simpler and it can be shown that 24

π ⊗ (δJ 1 0 ) = π M (δJ 1 0M ) ⊗ π(A F ) + C ∞ (M ) ⊗ π(δJ 1 0F )
where

π ⊗ = π M ⊗ π.
Since there is no element of degree zero or one in π(J), the space K 2 of elements of degree two in the junk of the tensor product is

K 2 = π ⊗ (A) • π ⊗ (δJ 1 0 ) + π ⊗ (A)π ⊗ (δJ 1 0 ) • .
More precisely,

K 2 = π M (δJ 1 0M ) ⊗ π(A F )π(A F ) • +C ∞ (M ) ⊗ π(δJ 1 0F )π(A F ) • +C ∞ (M ) ⊗ π(δJ 1 0F ) • π(A F ),
which must be completed by π M (δJ 1 0M ) = C ∞ (M )I, where I is the identity of the spinor bundle.

To summarize this discussion, the condition of order two is satisfied for the tensor product

A = C ∞ (M ) ⊗ A F if and only if it is satisfied for C ∞ (M ) and the anticom- mutator {[D F , a], [D F , b • ]} belongs to π(A F )π(A F ) • + π(δJ 1 0F )π(A F ) • + π(A F )π(δJ 1 0F ) • .
This is what we are going to check in the next sections.

B. Spin manifold

For the spectral triple of a spin manifold, π(f ) • = Jf * J -1 = f JJ -1 = f . Thus, π(A) • = π(A) and the right action of C ∞ (M ) over C ∞ (M, S) is the same as the left action. As a consequence, M DM = Ω DM is obviously a differential graded bimodule over itself and we do not need to check the condition of order two. Let us do it anyway by calculating

[D M , f ][D M , g] + [D M , g][D M , f ] = π(δω),
where ω = g(δf ) -(δf )g was defined in section III. Since π(ω) = 0, then π(δω) ∈ π(δJ 0 ) and {[D M , f ], [D M , g]} indeed belongs to the junk.

C. The finite spectral triple

Since we consider a single generation, the 32dimensional Hilbert space H F can be split into four 8dimensional subspaces

H F = H R ⊕ H L ⊕ H R ⊕ H L ,
where H R describes the right-handed particles, H L the left-handed particles and H R and H L their antiparticles. An element of the finite algebra A F is parametrized by a complex number λ, a quaternion written as a pair of complex numbers (α, β) and a 3x3 matrix µ. Its representation over H F is:

π(a) =    A 0 0 0 0 B 0 0 0 0 C 0 0 0 0 C    , and 
π(a) • =     C T 0 0 0 0 C T 0 0 0 0 A 0 0 0 0 B T     , with A =           
λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 The antilinear real structure J acts by

λ            , B =            α β 0 0 0 0 0 0 -β ᾱ 0 0 0 0 0 0 0 0 α 0 0 β 0 0 0 0 0 α 0 0 β 0 0 0 0 0 α 0 0 β 0 0 -β 0 0 ᾱ 0 0 0 0 0 -β 0 0 ᾱ 0 0 0 0 0 -β 0 0 ᾱ            , C =            λ 0 
J 32 i=1 v i e i = 16 i=1 v i+16 e i + 32 i=17 v i-16 e i .
where (e 1 , . . . , e 32 ) is a basis of H F . The chirality operator is

γ =    -I 8 0 0 0 0 I 8 0 0 0 0 I 8 0 0 0 0 -I 8    .
The relations D † F = D F , D F J = JD F , D F γ = -γD F and the condition of order one imply the following form for the Dirac operator:

D F =     0 Y † M † 0 Y 0 0 0 M 0 0 Y T 0 0 Y 0     , with the Yukawa matrix Y =           
l 11 l 12 0 0 0 0 0 0 l 21 l 22 0 0 0 0 0 0 0 0 q 11 0 0 q 12 0 0 0 0 0 q 11 0 0 q 12 0 0 0 0 0 q 11 0 0 q 12 0 0 q 21 0 0 q 22 0 0 0 0 0 q 21 0 0 q 22 0 0 0 0 0 q 21 0 0

q 22           
, where l ij stands for y l,ij and q ij for y q,ij in the notation used by Boyle and Farnsworth and the mass matrix

M =            a b c 1 c 2 c 3 0 0 0 b 0 d 1 d 2 d 3 0 0 0 c 1 d 1 0 0 0 0 0 0 c 2 d 2 0 0 0 0 0 0 c 3 d 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           
, where a corresponds to the mass of the right-handed neutrino and the other parameters are eliminated by the condition of massless photon. For notational convenience we write c = (c 1 , c 2 , c 3 ) and d = (d 1 , d 2 , d 3 ).

We must check that {[D F , a], [D F , b • ]} = 0 up to the junk. Since the condition of order two is of degree two, we need the junk of degree two, which was determined in section IV A. We do not try to determine K 2 more explicitly. We calculate the 32 × 32 matrices m = π(δa ′ )π(δb ′ )π(c) o , n = π(δa) • π(δb) • π(c ′ ) and p = π(e ′ )π(e) • for generic a, b, c, a ′ , b ′ , c ′ , e and e ′ in A F and we notice that there are 820 pairs of indices (k, l) such that m kl = n kl = p kl = 0 (see Fig. 1).

Among the pairs of indices where the junk is zero, 68 of them correspond to matrix elements of {[D F , a], [D F , b • ]} that are not generically zero (see Fig. 1). Since they cannot be compensated by the junk, the condition of order two implies that these 68 matrix elements must be equal to zero. Because of the symmetry generated by the adjoint † and the • operations, this gives 17 different equations that can be grouped into three systems. Let the elements a and b of the algebra be parametrized by λ, α, β, µ and λ ′ , α ′ , β ′ , µ ′ , respectively. The first system (of two equations): 

V. LORENTZIAN STANDARD MODEL

We show now that the second-order condition is also compatible with a Lorentzian spectral triple of the Standard Model on a Lorentzian spin manifold.

A. Lorentzian spectral triples

We describe the main aspects of a Lorentzian spectral triple, slightly changing the notation to make it more compatible with the physics literature. A Krein space is a Hilbert space H equipped with a self-adjoint unitary operator J = J † = J -1 called a fundamental symmetry. The Krein-adjoint of an operator T on H is

T × = J T † J . An operator T is Krein-anti-self-adjoint if T × = -T .
By putting together the works of Strohmaier (iv) a self-adjoint unitary operator γ that commutes with A and anticommutes with D and J ; (v) an antilinear unitary operator J such that J 2 = ǫI, JD = ǫ ′ DJ, Jγ = ǫ ′′ γJ and JJ = ±J J, where (ǫ, ǫ ′ , ǫ ′′ ) depends on the KO-dimension as for the usual spectral triples. [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] Note that the interplay between fundamental symmetry, real structure and chirality was also discussed in studies of topological insulators. 27 As compared to other definitions of a Lorentzian spectral triple, 25,28,29 we choose D to be Krein-anti-selfadjoint because the standard Dirac operator is so and we do not need to modify the ǫ-table giving (ǫ, ǫ ′ , ǫ ′′ ) as a function of the KO-dimension.

Since J commutes with π(A) we have π(a * ) = π(a) † = π(a) × . The space Ω D being a * -algebra, we need a representation of (δa) * compatible (δa) * = -δ(a * ). [START_REF] Connes | Noncommutative Geometry[END_REF] The Krein-anti-self-adjointness of the physical Dirac operator D implies that [D, π(a)] × = [D, π(a * )]. Therefore, if we represent δa by π(δa) = [iD, π(a)] we have π(δa) × = -π(δa * ). As a consequence, the representation of (δa) * is π(δa) × and the representation of a 0 (δa 1 ) . . .

(δa n ) is π(a 0 )[iD, π(a 1 )] . . . [iD, π(a n )].
The junk is built as in the standard case. 25 Moreover, to ensure the validity of Eq. ( 11), π(ω) • is given by formula (13) where π(ω) † is replaced by π(ω) × . The functional properties required for the Dirac operator are discussed in the literature. 25,29,30 By following the same reasoning as for a standard spectral triple, a real Lorentzian spectral triple should satisfy the order-zero condition We consider a four-dimensional smooth Lorentzian spin manifold M and we choose the metric signature (-, +, +, +) with p = 3 positive signs and q = 1 negative sign because: (i) it corresponds to the spectral triple of a spin manifold with KO-dimension p -q = 2, as advocated by Barrett; 31 (ii) it was argued that this is the only signature where a neutrinoless double beta decay can be correctly described. 32 Since the following discussion will be local, we can choose the γ-matrices to satisfy {γ µ , γ ν } = g µν , where g µν is diagonal with diagonal elements (-1, +1, +1, +1). [START_REF] Weinberg | The Quantum Theory of Fields. I Foundations[END_REF] We define the helicity operator γ M = γ 5 = -iγ 0 γ 1 γ 2 γ 3 , the Dirac operator D M = -iγ µ ∇ µ and the fundamental symmetry J M = β = iγ 0 , which is used in the calculation of expectation values: ψ|T |ψ with |ψ = β|ψ . The product ψ|ψ ′ is called a Krein product. The antilinear map is J M = ζK, where ζ = γ 5 γ 2 and K is the complex conjugate operator. The operator J M is different from the physical charge conjugation operator γ 2 K = -βγ 2 βK, [START_REF] Weinberg | The Quantum Theory of Fields. I Foundations[END_REF] . In fact there are two possible charge conjugation operators corresponding to two different ǫ-tables, 20 J M is the first one and the physical charge conjugation is the second one. It can be checked that all the axioms of a real even Lorentzian spectral triple hold with these definitions and that f

• = f and [D M , f ] • = -[D M , f ].
Thus, the order-zero, -one and -two conditions are satisfied.

C. The Lorentzian Standard Model

To describe the Standard Model with Lorentzian metric, we make the tensor product of the Lorentzian spectral triple of M and the finite spectral triple A F of section IV C. The tensor product of pseudo-Riemannian spectral triples was investigated by van den Dungen. 29 The grading of the tensor product is γ = γ 5 ⊗ γ F , its Dirac operator D = D M ⊗ Id 2 + γ 5 ⊗ D M , its charge conjugation is J = J M ⊗ γ F J F because the KO-dimensions of the first and second spectral triples are 2 and 6, 19,20 and its fundamental symmetry is J = J M ⊗ I. The finite spectral triple cannot be Lorentzian because this would not be compatible with the anticommutation of γ and J . Moreover, using the finite spectral triple of section IV C provides the correct fermionic Lagrangian in the Lorentzian metric. 29 It can be checked that, with this definition, the tensor product of spectral triples is indeed a real even Lorentzian spectral triple of KO-dimension zero and this solves the fermion multiplicity problem. 31 The order-zero and -one conditions hold by construction. Moreover, the calculation of section IV A can be repeated to show that the order-two condition holds iff {[D F , a], [D F , b • ]} = 0 up to the junk. Since this was already proved, the Lorentzian spectral triple of the Standard Model satisfies the order-two condition.

VI. CONCLUSION

Chamseddine and Connes based their derivation of the Standard Model on a bimodule over an algebra A. Boyle and Farnsworth proposed to use a bimodule over the universal differential algebra Ω which is physically more satisfactory because it contains (up to the junk) the gauge fields, the field intensities, the curvature and the Lagrangian densities. But their approach was not compatible with the manifold part of the Standard Model.

To take into account the differential graded structure of Ω D , we built a differential graded bimodule that takes the junk into account. The grading transforms the Boyle and Farnsworth condition on the commutator [π(δa), π(δb) • ] = 0 into a condition on the anticommutator {π(δa), π(δb) • } ∈ K, which is now satisfied for the full Lorentzian Standard Model and not only for its finite part.

This indicates that, in a reinterpretation of the noncommutative geometric approach to field theory, the differential graded structure of the boson fields must be accounted for. This is good news for any future quantization and renormalization of NCG because the differential graded structure is also an essential ingredient of the Becchi-Rouet-Stora-Tyutin and Batalin-Vilkovisky approaches.

Our differential graded bimodule retains some of the advantages of the Boyle and Farnsworth approach: (i) it unifies the conditions of order zero and one and the condition of massless photon into a single bimodule condition; (ii) it can be adapted to non-associative or Lie algebras.

Now we intend to investigate the symmetries of this approach by using the morphisms defined by Eilenberg. 11 It will be interesting to compare these symmetries with the ones found by Farnsworth and Boyle. [START_REF] Farnsworth | [END_REF] We also hope to use our construction for the quantization of a noncommutative geometric description of the Standard Model coupled with gravity.

  becomes π(b) • π(a) = π(a)π(b) • , which is the condition of order zero of NCG usually written [a, b • ] = 0. B. Differential graded-representation of a DGA

  In the following, we shall use the representation M D = B/K but more generally, any left representation M of B gives rise to a left representation M D = (B/K) ⊗ B M of B/K by extension of scalars, and what is more, M D is automatically a left and right representation of Ω D . The left and right actions of Ω D on M D are explicitly given by: [ω] ⊲ m = π(ω) m, m ⊳ [ω] = (-1) |ω||m| π(ω) • m.

  (α -λ)y l,11 + βy l,21 b(λ ′ -λ′ ) = 0, (ᾱ -λ)y l,21 -βy l,11 b(λ ′ -λ′ ) = 0. is solved by either b = 0 or y l,11 = y l,21 = 0 in the lepton
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 133333 FIG. 1: Each dot at position (i, j) corresponds to a generally non-zero element at line i and column j. The elements of the condition of order two {[D, a], [D, b • ]} are black dots. The other dots describe the junk. The green dots correspond to [D, a][D, b]c • , the pink dots to [D, a • ][D, b • ]c and the blue dots to ab • . Note that the non-zero matrix elements of the junk and of the second-order condition do not overlap.

  25 and Paschke and Sitarz 26 we can propose the following definition. A real even Lorentzian spectral triple consists of (i) a * -algebra A; (ii) a Krein space (H, J ) where every a ∈ A is represented by a bounded operator π(a) such that π(a * ) = π(a) × and [J , π(a)] = 0; (iii) a Krein-anti-self-adjoint operator D such that [D, π(a)] is bounded for all a ∈ A;

  [π(a), π(b) • ] = 0, the order-one conditions [[D, π(a)], π(b) • ] = 0, [π(a), [D, π(b) • ]] = 0 and the order-two condition {[D, π(a)], [D, π(b) • ]} = 0. B. Spectral triple of a Lorentzian spin manifold
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