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Abstract

The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open
question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive
molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple
levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of
morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal
turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the
underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present
a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall
mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell
autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral
organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not
equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing
lateral organs. Using flower development as an example, we further show how a limited number of gene activities can
explain the complex shape changes that accompany organ outgrowth.
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Introduction

The control of form and size is a central issue in developmental

biology. It is commonly accepted that genetic regulation is at the basis

of morphogenesis. However, while molecular genetics has provided

an important number of actors required for morphogenetic events,

the link between these regulators and global shape control remains

largely an open question in both plant and animal biology.

Furthermore, the contribution of multicellularity in shape changes

and growth remains poorly explored. In fact, certain species exhibit

complex shapes while being composed of only one giant and

multinucleated cell (see S1 Fig.). This raises the question of the exact

contribution of the presence of neighboring cells in the growth of a

given cell, within a tissue. So far, this issue has mainly been addressed

from a signaling point of view (e.g. diffusion of morphogens [1],

mechanical feedbacks [2,3]), but the role of multicellularity in the

biophysics of growth remains to be formalized.

Here we consider this issue in plants. Plant cells are under high

internal turgor pressure and it is only the presence of a rigid

exoskeleton that prevents them from bursting. This exoskeleton,

the cell wall, is composed of a dense network of cellulose

microfibrils that are cross-linked to each other by a network of

polysaccharides. Sachs, as early as in 1882 (reviewed in e.g. [4,5])

discovered that cell expansion can only take place as long as the

cells are under pressure, which has led to the concept of turgor-

driven cell growth. It is now widely accepted that this involves the

irreversible (plastic) yielding of the cell wall to this pressure, e.g.

[6].

Based on this general concept of wall yielding a now widely

accepted general scenario was proposed by Lockhart to describe

the growth of an isolated cell [7]. This scenario can be

summarized as follows. In a non-growing isolated cell, the internal

pressure is counterbalanced by the tension in the cell wall. If this

pressure further increases and reaches a certain threshold, the load
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bearing parts of the cell wall yield. Lockhart [7] proposed to model

this viscoplastic process with a simple relationship between 2 key

variables, the relative rate of growth of the cell volume V , and the

cell turgor pressure P: if the pressure is greater than a fixed

threshold Py and the flow of water is not a limiting factor, then the

cell yields and the rate of growth is proportional to the excess of

turgor pressure:

1

V

dV

dt
~ W(P{Py), ð1Þ

where W denotes the extensibility of the cell, i.e. its ability to

grow under a given pressure, the inverse of its viscosity. If the

turgor pressure does not reach the yield threshold Py, no growth

is achieved and the cell deformation is entirely elastic

(reversible). Above Py, the cell deformation becomes plastic

(irreversible). The potential decrease in pressure due to cell

growth is continuously compensated by further water uptake,

thus keeping the wall under continuous tension [4]. In other

words, in a single cell system, growth can be entirely described

in terms of the variations of the internal turgor pressure and of

the mechanical properties of the cell wall.

The initial formulation of Lockhart and subsequent models did

not account for cell geometry and anisotropic properties of wall

material. Recently, Dumais and coworkers applied Lockhart’s

model of cell growth to cell walls, and extended it to account for

wall anisotropic properties [8]. They introduced a model of tip-

growing cells (e.g. root hairs) that combines two key processes of

cell growth, namely the deposition of material on cell walls and the

mechanical deformation of the cell wall due to stresses resulting

from the cell’s inner turgor pressure. Interestingly, the authors

show that the Lockhart growth equation can be simply extended in

3 dimensions to take into account wall anisotropy. This leads to 3

equations (instead of one) that express how the rate of deformation

in the 3 directions of space are affected by mechanical anisotropy

in the cell walls [8]. With the help of this model, the authors

could analyze the dynamics of a tip growing cell, and how the

visco-elastic properties of cell walls may impact its shape in steady

or non-steady regimes.

In a multicellular context, morphogenesis relies on differential

growth across tissues. Each cell may feature specific values for the

various parameters (turgor pressure, yielding threshold, extensi-

bility…) used in Eq.(1). In principle, the regulation and

coordination of these parameters is achieved through the action

of the molecular regulatory networks that control the composition

and mechanical properties of the cell wall, as described by the

black arrows in Fig. 1. For example, cell wall modifying enzymes

such as expansins, xyloglucan endo-tranglycosylases or pectin

modifying enzymes are known to be triggered by transcription

factors such as APETALA2 [9], MONOPTEROS [10] and

AGAMOUS [11]. At the scale of the cell wall, actions of such

enzymes have the potential to increase or decrease the viscosity

and/or the rigidity of the wall. As a consequence, extensibility W
in Eq.(1) may be modified and affect growth.

Although the general concepts described above are widely

accepted, they do not explain how genetic determinants collec-

tively generate an organism with a particular shape. The situation

is made even more complex because morphogenetic events at the

multicellular level can feed back on the cellular or molecular scale.

Morphogen gradients, for example, are limited by the geometry of

the tissue in which they diffuse [1,2] and mechanical stresses

generated by differences in growth rate within an organ can

potentially feed back on cellular growth directions and rate [3]. It

is therefore not self-evident to explain how a particular gene by

interfering with local cell wall properties influences the overall

shape of an organ. To proceed further and to explore hypotheses

linking in an intricate way gene function to morphogenesis, a

computational modeling framework is required (red bold arrows in

Fig. 1).

Fig. 1. Schematic view of the regulation of growth in
multicellular tissues. The different horizontal layers represent
different levels of biological organization. The plain black arrows
symbolize the downward stream of regulation between growth
hormones and actual growth through transcription factors activation
and physical quantities modulation. The red plain arrows depict the
indirect, integrated relationships between transcription factor activa-
tion, physical quantities modulation and cell wall irreversible extension
our computational framework attempts to grasp. Finally the black
dashed upward arrows stand for possible feedback mechanisms from
shape changes on the biochemical regulation of growth.
doi:10.1371/journal.pcbi.1003950.g001

Author Summary

In recent years, much research in molecular and develop-
mental biology has been devoted to unravelling the
mechanisms that govern the development of living
systems. This includes the identification of key molecular
networks that control shape formation and their response
to hormonal regulation. However, a key challenge now is
to understand how these signals, which arise at cellular
scale, are physically translated into growth at organ scale,
and how these shape changes feed back into molecular
regulation systems. To address this question, we devel-
oped a computational framework to model the mechanics
of 3D tissues during growth at cellular resolution. In our
approach, gene regulation is related to tissue mechanical
properties through a constitutive tensorial growth equa-
tion. Our computational system makes it possible to
integrate this equation in both space and time over the
growing multicellular structure in close to interactive time.
We demonstrate the interest of such a framework to study
morphogenesis by constructing a model of flower devel-
opment, showing how regulation of regional identities
can, by dynamically modulating the mechanical properties
of cells, lead to realistic shape development.

3D Mechanical Modeling of Plant Morphogenesis
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In a seminal series of papers, Coen and colleagues have

proposed such a framework for tissue growth, termed the Growing

Polarized Tissue (GPT) framework, that can capture overall

growth rates and directions of tissues in three dimensions while

taking into account mechanical interactions between different

regions ([12–14]). With this method, the authors were able to

propose hypotheses for the genetic regulation of organ formation

in different species [14]. This framework was the first system able

to simulate 3D organ development and shapes based on plausible

genetic regulation hypotheses. However, in GPT gene functions

are expressed in relatively abstract terms. This is mainly because

it models events occurring at the scale of entire tissue regions.

Recently, several attempts were made to develop other modeling

frameworks at cellular resolution and to build mechanical models

of morphogenesis for multicellular tissues. To reduce complexity,

these models have been initially restricted to 2 dimensions either

in the plane ([15] for algae, [16,17] for leaves and [16,18] for

roots), or on 2D surfaces in 3D ([3] for shoot apical meristems).

However, new technologies to image and segment the complete

volume of multicellular tissues in 3D at wall resolution [19] and

to measure cell mechanics [20,21] now lead to new questions

regarding the interactions between cells in three dimensions.

Addressing these questions, requires a new generation of models,

able to account for the genetic regulation of biophysical processes

in 3D multicellular systems. Here, we present such a modeling

framework where cell growth results from the deformation of

walls that are under tension in the tissue. A tensorial formalism is

used to account for the anisotropic nature of cell wall material

and to model wall deformation based on a generalized Lockhart

viscoplastic law. An adapted finite element method has been

designed to carry out efficient numerical simulations. This

computational framework is then used to analyze the develop-

ment of the early flower bud and test the effect of different

regulation hypotheses.

Results

Prior to describing our computational framework to model

multicellular tissue growth, let us analyze the physical situation of a

small region - a cell or a portion of a cell wall - in a growing tissue.

Multicellular growth involves both cell autonomous and
non-cell autonomous forces

Similarly to isolated cells, cells in plant tissues are growing under

the action of forces that stretch their wall and make it yield.

However, for single isolated cells, the only significant forces able to

trigger growth are the ones generated by its turgid cytoplasm

pushing on the cell wall (Fig. 2A). In a multicellular context, the

situation is somehow complicated by the fact that cells are rigidly

connected to each other. The deformation of one cell generates

physical constraints on its neighbors and vice versa. It has been

recognized by Sachs as early as in 1882 (cited by Kutschera [4])

that epidermis cells in plant tissues are experiencing external forces

due to the inner turgid cell layers pushing outwards against the

surface cells, and inducing tension stresses in the epidermis

(Fig. 2B). In a plant tissue, the mechanical stresses undergone by

one cell wall are thus not only due to their own turgid cytoplasm,

that we call cell autonomous stresses, but also comprise the physical

constraints imposed by the neighboring cells, called the non-cell
autonomous stresses.

Genes can regulate growth by controlling processes that

modulate these stresses. Cell autonomous stresses can be

modulated directly by the cell itself. This can be done in two

ways: either by increasing the cell’s own turgor pressure or by

modulating the mechanical properties of its wall (e.g. by changing

its elasticity or its yielding threshold). In contrast, non-cell

autonomous stresses reflect distant mechanical interaction between

cells where genes are being expressed and the ones where the

consequences of this expression are observed.

Let us illustrate these different possibilities in the context of a

primordium outgrowth on a growing meristematic dome, see

Fig. 2C. As discussed above, any specific cell of the epidermis is

suject to three types of stresses: i) the stress Sint induced by the

cell’s inner turgor pressure on the wall ii) the stress Sext resulting

from the action of the rest of the tissue on the cell wall and iii)
the stress Selas due to the cell wall elastic deformation in reaction

to the other stresses. In growing tissue, mechanical equilibrium

leads to a balance between these three stress components

(Fig. 2C1):

SelaszSextzSint~0, ð2Þ

In a cell-autonomous perspective, regulation of the inner

pressure of the cell would lead to a change in Sint (Fig. 2.C2)

and modifying the mechanical properties of the wall would

directly impact the elastic term Selas (Fig. 2.C3). Likewise,

modulating Sext (e.g. by changing the turgor pressure of some

neighboring cells) would correspond to a non-cell autonomous

regulation of growth, (Fig. 2.4). Interestingly, new experimen-

tal evidence of the possibility of such a non-cell autono-

mous regulation has recently been reported by Peaucelle et al.
[20].

The situation is complex as, if one of these stress components is

affected by some regulation mechanism, all the other stresses will

in turn be affected. Moreover, in real plants several of these

regulations may be triggered at the same time, leading to even

more complex interactions between regulation and growth.

Therefore, to understand the growth of multicellular tissues, one

needs to model both cell autonomous and non-cell autonomous

growth. How can this be achieved?

Computational framework to model local deformations
in tissues

Both cell and non-cell autonomous growth rely on turgor-

generated forces that are directly translated into mechanical

stresses within the cell walls. Therefore considering a mechanical

stress-based growth mechanism ensures that both types of growth

are taken into consideration. Depending on their mechanical

properties, the cell wall deform in response to the direction and

intensity of these stresses. We assume that each small wall region of

each cell in the tissue, at any time t, has a rest shape, i.e. the shape

that the region would have if isolated from the rest of the tissue.

Under the effect of the tissue stresses due to turgor pressure and

connection to other cells, each small region is elastically deformed

with respect to its rest shape. For the sake of simplicity, we assume

that the thickness of the wall is kept at a constant value during

growth (we do not model the details of the wall remodeling process

itself). We also assume that the thickness of the walls has no major

mechanical effect at this scale of analysis and therefore can be

integrated in the wall’s in-plane properties. Then, if the region is

chosen sufficiently small, the wall deformation can be assimilated

to an affine transformation and represented by a matrix Fe called

the deformation gradient (Fig. 3A-B, see Model section for

mathematical details). From Fe, it is easy to compute the region

strain Ee:

3D Mechanical Modeling of Plant Morphogenesis
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Fig. 2. Origin of forces driving growth in a multicellular tissue. (A) In the single-cell case, the mechanical (elastic) stresses (Selas, dark blue
double arrows) undergone by the cell wall are due to the inner pressure (P, light blue single arrows) of the cell. The mechanical equilibrium within
this wall is regulated by the cell itself. (B) In a tissular case, (here a shoot apical meristem), mechanical stresses Selas within the outer cell walls of the L1
layer (light red cells), can be modulated by remote cells (here in light green). In this case the stem (light blue cells) plays the role of a base on which
the inner cells rely in order to push the L1 layer upward. (C) Three main modalities of growth can be considered in a multicellular context (details on
the stresses equilibrium within the outer cell wall are represented in the zooming views). From an initial state (C1) of the growing tissue three
scenarios are considered: (C2) & (C3) present cell-autonomous ways where growth of a given cell is triggered by an increase of its inner pressure or a
modulation of its wall mechanical properties respectively. (C4) represents a non-cell-autonomous case in which growth of the studied cell is initiated
by physical alteration of its neighbors. (C5) All three modifications result in the local outgrowth of the considered region.
doi:10.1371/journal.pcbi.1003950.g002

3D Mechanical Modeling of Plant Morphogenesis
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Ee~
1

2
(FT

e Fe{I), ð3Þ

where FT denotes the transpose matrix of F and I the identity

matrix. The fact that this strain is the elastic response of the

material to tissue stresses is described by a constitutive law of the

wall material. In the simplest case, it is a linear relation between

elastic strain and stress corresponding to a generalized Hooke’s law

in 3 dimensions:

Se~H : Ee, ð4Þ

where Se is a matrix representing the stress on the small region

and H is an order-4 tensor expressing the local elastic properties of

the material. In particular, the anisotropy of the material if any is

encoded in H coefficients.

The forces that act on a region may vary throughout time,

notably through either direct or indirect genetic regulation.

Regions may be subject to new stress distributions (Fig. 3C),

inducing new strains. In the spirit of Lockhart equation for cell

volumes (Eq. 1, we assume that if the strains get above some

threshold, the walls start to yield and the cell to remodel them. As

a consequence, the reference state of the region is modified

irreversibly (Fig. 3D). A number of studies have proposed to model

this process by using a multiplicative decomposition of the overall

deformation F [22] and then [23,24] (Fig. 3B-C-D),

F~Fe:F , ð5Þ

where F denotes the irreversible modification of the rest shape

of the region, called the growth tensor, and Fe is by a purely elastic

deformation corresponding to the reversible part of the process.

The equation of growth
To describe growth we need a constitutive law that relates the

rate of change of the matrix F , called growth rate tensor, to

physical processes. We assume this law to be strain-driven: above a

certain deformation threshold, the rest configuration of a region

changes at a speed proportional to the strain of the region. In

terms of tensors, the simplest form of such a law can be expressed

as (see Model section for details):

dF

dt
:F{1~ H½Ee{E0�, ð6Þ

where the left-hand term defines the relative rate of variation of

the reference state, is a constant characterizing the rate at which

walls yield (extensibility) and the components of the term

H½Ee{E0� correspond to non null tensor components in the

directions where the elastic strain is above the threshold values

encoded in E0. Replacing the strain components in Eq.6 by their

stress counterpart using Hooke’s law, leads us to the following

generalized 3D Lockhart-like form:

dF

dt
:F{1~ H½H{1(Se(P){S0)�: ð7Þ

This equation shows how growth is related to key mechanical

variables: the extensibility controlling the rate of growth, the

elastic properties of the material H, the turgor pressure P that

appears through the stress it induces Se in the tissue and S0~HE0,

a plastic stress yielding threshold corresponding to the strain

yielding threshold E0. Note that the mechanical properties of the

material are taken into consideration through a rigidity tensor H

which allows the plastic deformation evolution (
dF

dt
:F{1) to be

non-collinear to the plastic stress (Se(P){S0).

The above equation describes the plastic deformation evolution

of a small region of the tissue, typically a part of a wall, during a

small amount of time. To compute the deformation of the whole

tissue during development, we need to integrate these local

deformations over the whole tissue and throughout time, so that all

these elements are assembled in a symplastic manner in the

deformed tissue. This computation is made by minimizing the

global mechanical energy in the tissue (see Model section). The

strain and stress configuration of each region will thus be chosen so

that the mechanical energy is minimal among all possible

combinations of local elastic deformations that preserve the

integrity of the tissue and the adjacency of cell walls. By contrast,

the rest configuration of each individual small region is not

necessarily compatible with that of other regions [25], i.e. there

may not be physical continuity between rest configurations. The

integration is carried out using a finite element method - FEM -

(see Model section below).

Fig. 3. Formalization of plastic growth of a small region of wall.
A tissue region is in general observed as a deformed object in a real
tissue (A) due to local stresses internal to the tissue (light blue arrows).
Taken outside its tissue context, without any stress on its borders, the
region has a rest shape (B). Note that this rest shape is not actually
observed. The transformation matrix to pass from the rest shape to the
observed deformed shape is denoted Fe . Due to changes in stress
distribution in time, at a subsequent date the stress configuration
acting on the region changes (dark blue arrows) and induces a new
deformation of the region (C). If the intensity of the elastic deformation
between the former rest shape (B) and the new deformed object (C) is
above a certain threshold, then plastic growth is triggered: the rest
shape is remodeled by the cell by adding material to the wall (D) which
reduces the elastic strain. This change is made according to a
constitutive rule that describes the material plasticity (see Model
section below). As a result, the transformation F from the old rest state
(B) to the new deformed state has been decomposed as a product of a
reversible term Fe and an irreversible term Fg representing growth.
doi:10.1371/journal.pcbi.1003950.g003
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A comparative analysis of the putative mechanisms
behind organogenesis at the shoot apical meristem

We next used our modeling framework to analyze organogen-

esis at the shoot apical meristem (SAM). The SAM is a population

of stem cells that continuously initiates new stem tissues and lateral

organs, thus generating all the aerial parts of the plant. We first

constructed a model of the SAM as a dome made up of polyhedra

representing the 3-D cells and rigidly connected to each other

(Fig. 4A). The faces of these polyhedra represent cell walls and are

composed of 2-D elastic triangular elements whose mechanical

properties are represented by tensors H. The stiffness of these

elastic triangles is set higher in the epidermis walls than in the

inner walls and may be either isotropic or anisotropic for

epidermis triangles. We assume that cells are inflated with a

uniform turgor pressure P0, and that triangle mechanical

properties are all initially isotropic and uniform.

In this initial configuration, the turgor pressure induces a stress

that puts all the cell walls under tension. If the plastic growth

threshold E0 is reached, the dome grows isotropically in all the

directions (Fig. 4B). This plastic deformation is accompanied by a

Fig. 4. Growth regulation mechanisms and their impact on shape development. (A) Face, top and inside view of an artificial dome made of
cells with mechanical properties. The transversal cut shows the inner cells. The basal faces of cells shown in blue here are constrained to keep in a
horizontal plane. (B-E) Growth of a multi-cellular dome. In all the simulations, the gray scale code on the initial dome represents regions with
different rigidities. A different color code is then used on the other steps to figure mechanical stress intensity, c.f. color scale on the top right corner.
(B) Homogeneous dome: all cells are isotropic with identical elasticity, plasticity threshold and growth speed. (C) Mechanical anisotropy is imposed
on the lower half of epidermis to model the effect of microtubules circumferential orientation. Axial growth emerges. (D) Analysis of the extent of the
anisotropic zone on growth. From left to right: Initial state of the simulation with circumferential anisotropy imposed up to 80% of the dome height:
The resulting growth is axial. Initial state with a dome anisotropy limited to 40% of the dome height: The corresponding growth is globular. (E)
Growth with a gradient of circumferential anisotropy from the bottom to the top of the dome: The resulting growth is inbetween purely axial and
isotropic. (F-J) Creation of a lateral dome. (F) The rigidity of the cells in a small region at the flank of the meristem is decreased (cell autonomous
regulation). During growth a lateral bump starts to form. The simulated dome is shown at two time points (middle and right). (G) Transversal cuts of a
dome showing tentative generations of a bump with non-cell autonomous stresses: (G-1) Decreasing wall rigidity (10-fold) in a group of inner cells
(blue cells with i.e. low mechanical stress): No visible bump emerges; (G-3) Increasing the turgor pressure (3-fold) in the same group of cells (red cells
i.e. high mechanical stress): A shallow bump emerges and inner tissues are compressed inside. Compare with the reference situation (G-2)
corresponding to a transversal cut of F middle. (H) Similar to F, but cells surrounding the primordium region are made stiffer. A well marked dome
appears (middle and right). (I) Similar to F, but cells surrounding the primordium region are made stiffer in the bump ortho-radial direction only
(anisotropy in boundary region). (J) Simulation similar to H, combining a smaller decrease of rigidity with an increase of the walls synthesis rate
(namely extensibility) in the primordium. Movies corresponding to each simulation are available as Supporting Information.
doi:10.1371/journal.pcbi.1003950.g004
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decrease of inner pressure in cells as their volume increases due to

growth. In vivo, this would lead to a difference in water potential

between the cells within the dome and surrounding tissues,

drawing new water from below the dome inside the meristematic

cells. It is generally assumed that water uptake is combined with

osmolyte regulation to maintain turgor relatively constant in the

cell during growth [4]. As these processes are considered fast

compared with growth, we simply assume in our model that,

otherwise stated, the turgor pressure is continuously kept constant

at P0.

A key feature of meristematic activity is the generation of

cylindrical stems and roots. In principle there are several ways to

generate axial structures, but there is overwhelming evidence that

this is due to a switch from isotropic to anisotropic growth over

several cell files. Indeed, when cells leave the meristematic dome,

they start to generate cellulose microfibrils in highly ordered

arrays, oriented along the circumference of the meristem [3,26].

This microfibril organization creates a high circumferential

rigidity that favors growth in the perpendicular axial direction.

This mechanical anisotropy can be reproduced in the 3D model

by imposing higher rigidity in circumferential direction using

anisotropic H tensors (Fig. 4C). Interestingly, the ability of the

microfibrils to create well formed axes depends on the amount of

microtubule anisotropy in the dome (Fig. 4D dark gray). If too

small, a bulge forms at the tip (Fig. 4D). Intermediate shapes can

be obtained by using a less sharp transition between isotropic and

anisotropic regions, using e.g. a gradient of anisotropy between the

bottom and the top of the dome (Fig. 4E).

Next, using this mechanical model of the SAM, we tested

different scenarios for organ emergence. As discussed above,

several processes can in principle account for this phenomenon, in

a cell- or non-cell-autonomous way, including changes in turgor

pressure, modifications in wall stiffness and modifications in the

rate of wall synthesis.

Starting from the growing dome of Fig. 4E, we first tested the

possibility to grow an organ on the dome assuming cell

autonomous regulation. For this, we lowered the outer periclinal

wall rigidity in a small region close to the tip of the main dome

(Fig. 4F). This created a bulging zone in the corresponding region

of the tissue. We then tested the alternative possibility to create a

primordium in a non-cell autonomous manner, by relaxing the

wall rigidity up to 10-fold in a group of cells immediately below the

previous surface region. No visible bulges could be obtained in this

way (Fig. 4G–1; compare with Fig. 4G–2 corresponding to a

transversal cut obtained from the simulation of Fig. 4F middle that

shows a much larger bump at the same stage of development). To

further explore the ability of non-cell autonomous stresses to

trigger bump outgrowth locally, we also tested the possibility to

obtain a bulge by increasing (by up to a 3-fold factor) the turgor

pressure in the same group of inner cells. Here again, no clear

bulge could be obtained (Fig. 4G–3). In this latter case, we could

observe in the transversal cut that the tissues were actually

compressed internally. We concluded from this series of simula-

tions that bumps can more easily be generated in the context of

cell autonomous regulation.

In this context however, we could observe that the growing

bumps were not clearly separated from the main dome (e.g.

Fig. 4F). We therefore constrained a ring of cells at the surface,

around the bump location, to be very rigid. This resulted in a well

formed bump growing on the top of the initial dome (Fig. 4H). A

similar separation between the two organs can be obtained by

stiffening the cells of the ring only in the circumferential direction.

Interestingly, the cells of the ring are also supporting high stress

but are left free to grow in the axial direction of the new bump

(compare right images in H and I). A well marked bump can also

be created by a less important decrease of the primordium zone

rigidity compensated by a local increase of the cell growth rate in

this region (Fig. 4J).

The simulations showed how simple scenarios can in principle

explain important morphogenetic processes during plant develop-

ment, including the formation of cylindrical stems and roots and

the outgrowth of lateral organs at the SAM. Importantly, although

these simulations can lead to comparable shapes, they make

different predictions regarding the mechanical properties and

resulting growth patterns.

A case study: Morphogenesis of a flower bud
The simulations presented above were based on abstract

versions of real meristems. We therefore next applied our

computational framework to perform simulations from realistic

templates. Hereby, we used the floral meristem of Arabidopsis
thaliana - which has been very well characterized - as a case study.

As a reference for model construction, we used a series of confocal

stacks of the same young growing floral primordium taken at 24 h

intervals from early stage 1 to stage 2 (3 time-points, Fig. 5A-B-C).

Using the Mars-Alt pipeline [19], the individual cells were

identified and cell lineages were tracked in the thus segmented

reconstructions (Fig. 5D-E-F). The confocal images and 4D

reconstructions suggest that in vivo, the primordium first grows

out from the meristem as a small radial symmetric globular

structure in a direction normal to the surface of the meristem.

Then the global direction of primordium growth changes

progressively and the initial symmetry around the normal to the

surface breaks as the the abaxial region expands more rapidly than

the adaxial region (Fig. 5G-H-I). The sepals appear with different

growth rates as the abaxial and adaxial sepals grow much faster

than the two lateral ones. A recent analysis of gene expression in

the flower bud showed complex spatio-temporal expression

patterns with as many as 16 different domains expressing different

combinations of transcription factors [27]. This raises two main

questions: (i) how many different gene activities would in theory be

required to produce this structure? (ii) are mechanical-related

actions of these genes alone sufficient to reflect for the observed

shape evolution?

To address these questions we investigated with our mechanical

model how to reproduce, at first qualitatively, the developmental

pattern described above. Hereby we distinguished two phases: (a)

the initial outgrowth of the bud and (b) the formation of the sepal

primordia. For this purpose, we made a number of assumptions

based on the literature and on the first set of models described

above.

First, we simulated the outgrowth of the flower bud using the

following itinerary through successive scenarios:

i In the first scenario, we tested the possibility to initiate organ

outgrowth by a combination of local wall softening in the incipient

primordium and anisotropic wall stiffening in the organ bound-

aries. A number of experimental evidence supports such a

scenario. The young primordium is characterized by relatively

high concentrations of the plant hormone auxin [28,29]. There is

evidence, that auxin influences cell wall loosening by the activation

of specific enzymes. For instance, in the hypocotyl ABP1 (Auxin

Binding Protein 1) controls the level of expression of glycosyl

hydrolases known to modify hemicellulose within the cell wall,

[30]. At the apex, atomic force microscopy measurements

suggested that auxin accumulation leads to cell wall softening via

a PMEI3-dependent pathway [31]. Finally, transcription factors

such as AINTEGUMENTA and MONOPTEROS which are

homogeneously expressed in the young outgrowing flower bud are
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thought to regulate the expression of expansins and xyloglucan

modifying enzymes [9,10]. Organ boundaries are also character-

ized by specific gene expression patterns. In particular the CUP-

SHAPED COTYLEDON transcription factors are strongly

expressed between the meristem and the primordium and genetic

studies show that they repress growth in this region (e.g. [32,33]).

In addition, Hamant et al. [3] found that in the same region, cells

are likely to have highly anisotropic wall structure. Based on these

observations and on preliminary simulations shown on Fig. 4I, we

assumed the existence of a band of anisotropic cells around the

primordium’s upper half. As a result, the model produced a bulge

normal to the surface with a quasi symmetric shape (Fig. 5J-K).

ii The next morphologically significant step in organogenesis

happens when differential growth behavior between the adaxial

Fig. 5. First stages of development of a flower bud. Upper part: (A-B-C) Transversal sections in the young outgrowing flower bud at time
points separated by 24 h. (D-E-F) Automatic 3D segmentation of the corresponding confocal images using the MARS-ALT pipeline [19]. (G-H-I) The
analysis of growth patterns shows that growth at the abaxial side is faster than at the adaxial side, causing the floral meristem to bend towards the
SAM. Lower part: Different attempts were made to regulate the mechanical parameters in time so as to reproduce this differential growth behavior.
On the left:representation of the zones used in the simulation (CZ = Central Zone, Fr = Frontier, Pr = Primordium, Ad = Adaxial zone, Ab = Abaxial
zone, Pe = Periphery). For all the simulations, the rigidity was decreased (light gray) in Pr (relative to CZ and Pe, and in the anisotropic zone Fr, the
direction of maximum rigidity was set ortho-radially to Pr. With such an initial configuration, a globular and symmetric dome emerges normal to the
surface (J-K). Then by tuning the mechanical properties of the Ad/Ab regions we could obtain different asymmetric developments: increasing the
rigidity of Ad cells (medium gray) resulted in a restricted development of the upper part of the primordium (L-M) while, by contrast, an increased
rigidity of the Ab cells (medium gray) shifted the primordium development upwards (N-O) as expected. Finally a growing dome with correct
development of the Ad/Ab regions could be obtained when the abaxial cells where also imposed a high degree of anisotropy (orientation shown by
the thick black bars oriented circumferentially in the Ab, (P-Q)). The table under the snapshots illustrates the relative variations of Elastic modulus
used for each case. The x and y coordinates respectively refer to the axial and circumferential directions, as exposed on sub-figures (J) and (K).
Numerical values used in the simulations and corresponding movies are available as Supporting Information.
doi:10.1371/journal.pcbi.1003950.g005
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and the abaxial regions emerges. At stage 2 (or P2) cells of the

abaxial side of the primordium start to expand faster in the

meridional direction than the ones from the adaxial region,

(Fig. 5G-I, see also [34]). To account for that differential growth in

our simulations, we assumed that mechanical properties are

differentially regulated between the abaxial/adaxial regions.

Although there is no strict evidence for differences in mechanical

properties, both regions are characterized by specific gene

expression patterns early on. For instance, transcription factors

such as FIL, KANADI, YABBI or ARF3 and ARF4 are part of

interlocking pathways necessary for organ polarity and proper

development [35,36], for reviews see also e.g. [27] and references

therein. To account for the faster growth rate in the abaxial

region, we first assumed that the abaxially expressed genes caused

a lower rigidity in that region (Fig. 5L-M). This indeed resulted in

a developmental abaxial-adaxial asymmetry. However, the organ

tended to develop downwards, opposite to what is observed in
vivo.

iii To correct this behavior, we set rigidities in the primordium

zone in the opposite way, i.e. with higher rigidity now in the

abaxial region. The summit/adaxial region was now developing

faster toward the upper direction but, contrary to observations in

actual development (Fig. 5G-I), with little shape asymmetry

(Fig. 5N-O). Indeed, in vivo observations carried out by e.g. Long

et al. [34] and Fernandez et al. [19] were reporting anisotropic

growth in the abaxial side of the floral primordium. The

discrepancies in simulations of Fig. 5N-O could finally be

corrected by setting a high rigidity anisotropy in the abaxial cells.

(Fig. 5P) The dome asymmetry was then correctly oriented

upward (Fig. 5Q), with fast development of the abaxial region

upwards as expected.

Following on the simulated flower bud growth, we next

simulated the outgrowth of sepal primordia (Fig. 6A-B). To

initialize the FEM simulations we constructed a triangle-mesh of

the floral meristem at stage 2 based on the segmented image. The

vertices of triangles coincide with the cell vertices (Fig. 6C). We

then reused the mechanical setting of this model to grow the four

sepal primordia on the outgrowing dome obtained in phase (a). In
vivo, this stage is characterized by auxin accumulation at the four

sites of sepal initiation [37], followed by the activation of genes that

promote organ outgrowth - in particular AINTEGUMENTA -

first in the abaxial and adaxial sepals, then in the lateral ones

(Fig. 6B). Simultaneously, organ boundary genes are activated at

the flower meristem boundary and in between the primordia. As

for the flower bud simulations presented above, we translated

these gene expression domains into zones with different mechan-

ical properties, i.e. wall loosening in the primordia and a

anisotropic stiffening in the boundaries as described above. Again

the rigidity in the abaxial regions was set higher than in the adaxial

ones. We also assumed that the initiation of lateral sepals was

slightly delayed with respect to the adaxial/abaxial pair. Based on

initial geometric structures obtained from confocal microscopy,

the resulting simulation was able to reproduce the developmental

dynamics of a flower bud and its first lateral organs based on a

spatio-temporal synchronization of the changes in mechanical

properties of regions (Fig. 6D).

Discussion

Modeling strategies are increasingly used to help understanding

the mechanisms behind shape changes and to make predictions.

However, so far models have been either relatively abstract, by

focusing on the instructing role of the gene network rather than on

the physical constraints of cell growth, or well-defined biophysically

but weakly connected to the gene network and its regulatory

role. In addition, models able to simulate in a realistic way in 3

dimensions the development of organs on the basis of cellular

regulation were missing.

Here we present such a conceptual and modeling framework

that is able to integrate the genetic input and the mechanical

determinants of the cell in a 3D multicellular context. Using this

framework, we tested different scenarios relevant to shape changes

and made a number of predictions for organogenesis at the shoot

apical meristem. Importantly, our approach does not overlook the

complexity that relates to multicellularity, but fully incorporates it

by taking into account both cell autonomous and non-cell

autonomous forces in 3D tissues.

In the past decade several modeling frameworks have been

proposed that are aimed at providing insight at multiple levels of

organization and regulation [8,13,16,18]. The framework we

propose here presents three significant complements to these

existing models. First, we explicitly formalize growth of plant cells

in tissues taking into account our current knowledge on the

mechanisms controlling growth at the cellular level. The resulting

equation allows us to make precise prediction on the primary

function of molecular regulators in terms of four local parameters

i.e. turgor pressure, wall extensibility, wall elasticity, and yield

threshold. Second, taking advantage of both the availability of

increased computer power and novel computing techniques we

were able to design a model tissue with cellular resolution in 3D.

This integrates a new data structure to handle multicellular tissues

[38] used by other groups for tissue simulation (e.g. [18]) and the

use of the modeling software platform SOFA for mechanical

simulation in biology [39]. The platform makes it possible to

express the mechanical, geometrical and simulation components

in a completely modular way and optimizes the computational

overhead during simulations by making use of efficient implicit

integration solvers. As a result, simulation in 3D of flower

development can be achieved in near interactive time. The model

is able to handle several hundreds of cells, and can take into

account both biochemical and physical properties of cells. Third,

by fully accounting for the complexity behind multicellularity, this

framework allows us to compare the contribution of cell

autonomous forces and non cell autonomous forces in shape

changes. Our conceptual framework notably integrates the

mechanical outputs from the gene regulatory network in each

individual cells and the secondary effects deriving from growth of

neighboring cells. It also provides us new means to quantitatively

investigate the contribution of geometrical, biochemical and

mechanical interactions in growth regulation with cell wall

resolution.

The simulations carried out on both synthetic and realistic

templates pose a number of interesting questions that now have to

be addressed experimentally. First, the plant seems to have the

possibility to create similar shapes through different pathways.

Growth rates in the organ boundaries, for example, can be

restricted by modifying wall stiffness, wall anisotropy or combina-

tions thereof. In parallel, organ outgrowth can be promoted by

reducing wall stiffness and/or by increasing the rate of wall

synthesis. Interestingly, the model may help us establish a

hierarchy between developmental scenarios and organize the

plausibility of developmental scenarios and to organize accord-

ingly experimental investigations. For example, to create a realistic

primordium on the meristem dome, simulations clearly indicated

that the intuitive solution consisting of softening the abaxial zone is

the least plausible (Fig. 5L-M). This forced us to explore other, less

intuitive hypotheses consisting instead of loosening the adaxial

zone (Fig. 5N-Q), and that appeared to be more realistic. Another
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interesting outcome concerns the number of different gene

activities that are required to generate an organ primordium or

a flower bud. Whereas gene expression studies have revealed a

complex partitioning of the growing flower bud in different

domains, the simulations carried out on realistic templates, suggest

that only five domains (central zone, peripheral whorl, abaxial and

adaxial domains and boundary) with specific wall modifying

activities would be sufficient. These hypotheses should now be

tested. This will include classical approaches such as gene

expression studies and transgenic approach, but also more

challenging techniques required for quantitative growth analysis.

At this stage, the simulations already suggest a number of relatively

straightforward experiments. Differences in wall stiffness between

adaxial and abaxial domains can be measured, for example using

atomic force microscopy [21]. Correlations between organ

outgrowth and the expression of genes involved in wall modifi-

cations can also be made. Modifications in wall anisotropy at the

abaxial side of the primordia -as suggested by the model - can even

be monitored in vivo by direct observation of microtubule

dynamics [3]. Metrics will also have to be developed to compare

quantitatively results of mechanical simulations and the observed,

actual geometry of developing organs. Based on the recent

progresses in imaging protocols, cell segmentation and tracking

softwares, e.g. [19,40], it will now become possible to routinely

compare the simulated development of particular cellular regions

(e.g. central zone, primordium, abaxial/adaxial, frontier zone,…)

with the observed ones based on a quantitative comparison of their

principal direction of growth, rate of growth, and of various shape

factors such as local curvature, degree of symmetry, compacity,

etc. In turn, this opens the way to the development of inverse

Fig. 6. (A) Transverse sections of confocal images showing floral bud development between stage 1 and early stage 3. Abaxial sepals
start to grow out first (middle and right image). (B) Growth patterns and gene expression profiles. The respective development of the different zone is
indicated by small bars at the meristem surface. This growth pattern is accompanied by a change in gene expression patterns. At stage one, the floral
bud is characterized by adaxially (light blue) and abaxially (dark blue) expressed genes. Other genes such as LFY and ANT are first expressed
throughout the young flower. When the sepals start to grow out abaxial and adaxial domains are again established in these young organs (resp. dark
and light pink), characterized by specific expression patterns (e.g. REV or FIL). Other genes, such as ANT or AHP6 will finally remain active throughout
the pink zones that will generate the sepals (dark and light pink). Boundary zones, characterized by genes like CUC (red) separate the primordia from
the meristem proper, where genes like STM (green) are active. For review of expression patterns see [27]. (C) Creation of a 3D geometric model of a
flower bud. From left to right: confocal image; automatic cell segmentation using Mars-Alt pipeline [19]; construction of a mesh based on cell vertices;
transverse section of the mesh showing the geometric representation of the inner layers. (D) Mechanical simulation of a flower bud development and
its regulation by genes. Progression in the flower bud development is shown at three different stages, from primordia initiation to early stage 3 (see
Supporting Movie S5).
doi:10.1371/journal.pcbi.1003950.g006
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modeling techniques, where the estimation of some mechanical

parameters that are difficult to measure, will be derived from

minimizing the distance between simulated and observed devel-

oping shapes.

The current version of the model also has some limitations. In

particular, it currently does not include cell division. Generic rules

for cell division have been proposed in the literature, e.g. see

recent works [41,42] and references therein. However, in the

meristem, the validity of these rules has not been thoroughly

assessed, and in particular, the way cells divide in the inner layers

of meristem is still mostly unknown. Imposing specific rules here

would add an extra level of assumptions whose effect on shape

development would require specific analysis. In addition, the

design of a robust algorithm for cell division on real 3D meshed

tissues is a challenging issue in itself and would require the

development of robust 3D algorithms. For these reasons, we

restricted in this paper our analysis to time-lapses that are small

enough to consider that deformations and mechanical forces are

not markedly modified by cell division. We used simulation

duration such that the deformations of cells were kept reasonably

small (cell volumes increased by less than a 3-fold factor). A second

limit of the current model is related to the use of 2D finite elements

with no thickness for the representation wall parts. We considered

that at least in a first approach neglecting the effect of the third

dimension (thickness) of these elements and the associated flexural

stiffness was a reasonable approximation. A further step would

then consist of using more complex 3D shell elements in the

numerical method to account for situations where these non in-

plane stresses cannot be neglected. Finally, in further rounds of

modeling, additional hypotheses and levels of regulation can be

included as well. For instance, so far we did not take into account

feedback effects between mechanical stress and wall structural

anisotropy during development, as reported in different recent

works in cells of the L1 layer [3,43–45]. Although we did not

address this level of complexity here, our mechanical model

provides a natural framework to model such constitutive laws as

the tensor representation of the material properties is naturally

adapted to the modeling of local anisotropy.

The morphogenetic model presented in this paper investigates

how plant axes and branching systems emerge from basic variables

at cellular level (turgor pressure, wall deformation and genetic

regulation). This model provides realistic multicellular 3D shape

simulations that mainly relies on the presence of a stiff epidermis

that is limiting for growth. Remarkably, this is in fact reminiscent

of the way a cell wall is limiting the expansion of the protoplast.

This similitude was already noticed by Kutschera: ‘‘The whole

organ can […] be regarded as a single giant cell’’ [4]. Using

realistic 3D mechanical simulations, our computational model

supports the view of multicellular axial growth underlying this

statement. It shows in addition how lateral organs can be

produced by locally regulating the mechanical properties of the

epidermis at the tip, while relying on both cell autonomous and

non-cell autonomous patterns of tension. Together with Dumais’s

model on single cell growth [8] also based on anisotropic growth,

these models give further support for the existence of a deep self-

similarity in the axial growth of plants. This self-similarity is

strikingly illustrated by the similitude in the circumferential

organization of cortical microtubules within the same tissue, i.e.

in a single meristematic cell and in the whole meristem (S1 A-B
Fig.). It is also further supported by the existence of single cell

organisms that have developed branching strategies (S1 C-D Fig.).

Caulerpa for instance, a single cell system, exhibits complex tree-

like shapes comparable to fern leaves (S1 E-F Fig.). Altogether, this

suggests that plants have found ways through evolution to scale up

axial growth in single cells to multicellular systems, using similar

biophysical principles. Conversely, this rather supports the idea

that growth in plants mainly relies on elongation. In this scenario,

cell division in plants would mainly be a way to subdivide an

increased volume, with little impact on growth. Such a unifying

principle across scales likely reflects the existence of some common

essential constraints behind growth. Identifying these core rules,

and their exceptions, will be a major challenge for the future of

development that only realistic mechanistic models based on the

actual effectors of growth will be able to address.

Models

This section describes the details of our mechanical model of

tissue growth. The elastic response being a pure mechanical

phenomenon and the growing process a complex biochemical

process, we assume that the characteristic elastic-response time ( e)

is very small compared to the characteristic time of the growth

mechanism ( ). Since our main focus is on the growth process, we

will consider time scale Dt such as: e%Dtƒ .

Kinematics variables & relations
The positions of material points of V are tracked throughout

time. The deformation field Q relates the coordinates of a material

point in the current, ‘‘observed’’ (Bt) and reference configurations

(B0) respectively noted x and X:

x~Q X,tð Þ ð8Þ

This field is assumed smooth enough so that its gradient,

mapping small variations of length between the material

configuration and the current configuration, is defined:

dx~F:dX

F~+X Qð Þ
ð9Þ

To model growth, the most common approach is to use a

multiplicative decomposition of the deformation gradient [22–24]

F~Fe:F , ð10Þ

where the global deformation gradient F is decomposed into a

reversible part Fe and and irreversible part F . This decomposition

leads to an intermediate, ‘‘grown’’, configuration (B ), where

material coordinates are noted X . F thus maps growth-related

deformations between B0 and B and Fe maps purely elastic

deformations between B and Bt, see Fig. 7. In that perspective,

growth is regarded as the time evolution of the irreversible part

(F ) of the deformation gradient field. Geometrically, the time

evolution of such deformation gradient fields is estimated through

their related velocity gradient fields. In the grown configuration

B , the growth-related part of the velocity gradient field reads as

follows:

L ~F :F {1 ð11Þ
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Conservation equations
Mechanical energy. We assume that the mechanical part of

V free energy density, notedW, is strictly elastic and only depends

on Fe, with a local minimum for Fe~I. Since it also must be

rotation invariant,W can be expressed as a function of the Green-

Lagrangian strain tensor (noted Ee) only:

W~W(Fe)~W(Ee) ð12Þ

With the following definition of Ee:

Ee~
1

2
(Fe

T :Fe{I) ð13Þ

A straightforward consequence of this assumption is that all the

mechanical dissipation processes depend on F only, which leads

to _FFe~0 at mechanical equilibrium.

Forces balance. As we assume the static equilibrium of the

elastic part of the deformation gradient F, the local formulation of

the balance of linear momentum and boundary conditions in the

reference ‘grown’ configuration reads:

+Xg
:Pezb ~ 0 in B

Q ~ �QQ on LBD,

Pe
:N ~ �TT on LBN

ð14Þ

where Pe, the first Piola-Kirchoff stress tensor, is a measure of

the stress applied in the current configuration with respect to the

‘‘grown’’ configuration. b stands for any external force density field

and will be neglected hereafter. N is the unit outward normal to

the boundary of the undeformed body. �TT is the prescribed traction

per undeformed unit area in part of the boundary LBN
g . In our

case, �TT~DP:N where DP stands for the turgor pressure

difference between the inside and the outside of the tissue. Finally,

�QQ is the prescribed deformation mapping in the rest of the

boundaries LBD (in our simulations, it corresponds to the fixed

basis of the meristem).

Constitutive equations
To compute the time evolution of the meristem under pressure,

we need to define how the cell walls elastically deform and how

they grow.

Elasticity. We assume a linear strain/stress relationship

(Hooke’s law): Se~H : Ee where Se~Fe
{1Pe is the second

Piola-Kirchoff stress tensor and H is the Hooke fourth order

stiffness tensor. The elastic deformation is thus characterized by a

mechanical energy W:

W~
1

2
Ee : Se~

1

2
Ee : H : Ee ð15Þ

In its most general form H is a fourth order tensor (81 parameters)

that relates stresses and strains distributed in three dimensions. For

the sake of simplicity, we assume plane stress conditions (since

bending forces can be neglected with respect to in-plane forces).

Stresses and strains can be described as 2|2 symmetric matrices,

downsizing the number of independent coefficients in H to 6. Using

the Voigt notation, the relationship between stress and strain can be

written in the following matrix form:

Fig. 7. Schematic representation of the different configurations at different time and the deformations between them.
doi:10.1371/journal.pcbi.1003950.g007

3D Mechanical Modeling of Plant Morphogenesis

PLOS Computational Biology | www.ploscompbiol.org 12 January 2015 | Volume 11 | Issue 1 | e1003950



sxx

syy

sxy

0
B@

1
CA~

Exx 0 0

0 Eyy 0

0 0 (ExxzEyy)=4

0
B@

1
CA:

Exx

Eyy

2Exy

0
B@

1
CA ð16Þ

In order to test our framework with the most simple anisotropic

mechanical law possible we chose to neglect the mechanical

coupling between directions (null Poisson’s ratios in H), leading to

a diagonal form for H in the Voigt form. The non-null remaining

coefficient are the two Young’s moduli Exx and Eyy and the shear

modulus Gxy~(ExxzEyy)=4. In order to reduce to the bare

minimum the number of independent variables in this first set of

simulations, we choose a simple expression inspired by the

isotropic case.

Growth. The growth of the wall can be regarded as creep

that can be modeled using the Maxwell model of viscoelasticity. In

this model, reversible and irreversible phenomena are embodied,

respectively, as a purely elastic spring (characterized by an effective

spring constant k) and as a purely viscous dashpot (characterized

by an effective viscosity m), the two being connected in series.

Adding a friction force in parallel to the viscous drag enables us to

take into account the threshold phenomenon, see Fig. 8. Under

loading forces, the mechanical equilibrium of such a system leads

to:

kDx~Ef loadE

m
dl0
dt

~kDx{EffricE
:

(
ð17Þ

The first line of Eq.17 refers to the mechanical equilibrium at

point p2 on Fig. 82b and links the elastic stretching of the material

to its loading force. The second line refers to the mechanical

equilibrium at point p1 and links the creeping rate of the material

to the difference between its elastic stretching and the threshold

related force. Using the measure of strain E~Dx=l0 in the system

exposed at Eq. 17 leads us to the following expression:

E~H{1:P
dl0

dt
l{1
0 ~ (E{Etr)

,

8<
: ð18Þ

where we assumed that the friction force is proportional to the

initial rest length of the system (EffricE~kEtrl0) and that the

loading force can be expressed as a pressure force Ef loadE~PS0

with S0 the section on which the pressure P is applied. We also

introduced H~kl0=S0 the effective Young’s modulus of the

material in the considered direction and ~k=m a coefficient

characterizing the extensibility of the material in that direction.

Extrapolating Eq. 18 in 3D with large deformation leads to the

constitutive growth equation:

Ee~H{1 : Se

L ~
dF

dt
:F{1~ H½Ee{Etr�

8<
: , ð19Þ

where Etr~EtrI is the threshold matrix strain has to overcome in

order to induce growth and H :½ � represents the matrix version of

the primitive of the Heaviside function, defined as followed:

H A½ �ij~
0 if Aijƒ0

Aij if Aijw0

�
ð20Þ

Discretization
Time discretization. The backbone of the numerical

simulation of our model is an iterative loop in which each step

represents a time lap dt such as:

e%dt% ð21Þ

Each time step happens as follow:

1. at the beginning of the (nz1)th step the system is already at

mechanical equilibrium, deformed by the loading forces. If the

strain tensor En
e is above the threshold value Etr growth is initiated.

2. Once growth has been initiated, the growth-related

deformation Fg is updated from its current value Fn to a new

one Fnz1 established by Eq. 25.

3. Once F has been updated, mechanical equilibrium is

computed and the strain tensor is updated with value Enz1
e . A new

step can begin.

Incremental evolution of F . By discretizing time in steps of

duration dt, we can express deformation F (tn) (with tn~ndt) as

the multiplication of incremental deformations Fi . Moreover,

deformation at time tzdt is directly related to deformation at time

t:

F (tzdt)~P
nz1

i~1
Fi ~Fnz1:F (t) ð22Þ

Fig. 8. 1D version of a unit element of the biomechanical
model. a) the system in its resting configuration (B0). b) the system
deformed by a the loading forces, at mechanical equilibrium (Bt).
Orange, blue and gray arrows represent respectively the loading
(turgor-related) force, the elastic forces and the sum of viscous drag and
friction force.
doi:10.1371/journal.pcbi.1003950.g008
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Since dt% , the instantaneous growth rate (noted thereafter

Fi ) is supposed constant over each step. Therefore each element of

the multiplicative decomposition (Eq. 22) can be expressed in

terms of its corresponding instantaneous growth rate:

Fi ~IdzFi dt ð23Þ

Applying forward finite differences to L (t) leads to:

L (t)~limdt? e

F (tzdt){F (t)

dt
:F (t){1 ð24Þ

Combining Eqs.22),(23, 24 & 19 enables us to estimate the (nz1)th

growth-related deformation Fnz1 knowing the strain tensor at step n:

Fnz1~Idz (Ee(ndt){Etr):dt ð25Þ

Space discretization. We have chosen to discretize the

continuous model of cell walls using first order finite elements.

Nodes are placed at each wall junction, and triangles obtained by

tessellation. Material points are interpolated from nodes, based on

linear (barycentric) shape functions N i(X ):

x~
X

i

N i(X )xi ð26Þ

where X are 2-dimensional material coordinates in the ‘grown’

configuration. For simplicity, we match material principal

directions with mechanical anisotropy. By spatial differentiation,

we obtain 3|2 elastic deformation gradient matrices, which are

uniform over each triangle:

Fe~
X

i

xi
LN i(X )

LX
ð27Þ

Nodal elastic forces in the current configuration are spatially

integrated using midpoint quadrature. One evaluation of the energy

density per element is sufficient since it is uniform within each triangle:

f i~{(
L
Ð
SW

Lxi

)T~{
X
j[T(i)

Sj

LEe
T
,j

Lxi

: Hj : Ee,j ð28Þ

where T(i) are the adjacent triangles of node i. Hj , Ee ,j and Sj

are the Hooke tensor, strain tensor and surface of triangle j
(‘grown’ configuration).

For inner cell walls, where no information of mechanical

anisotropy is available, we assume that the representation of

mechanical properties can be simplified by using one dimensional

elasto-plastic elements - or springs- between cell vertices.

f i~{
X
j[E(i)

Lj

LE,j
T

Lxi

:Hj :E,j~
X
j[E(i)

Hj(1{
lj

Lj

)uij ð29Þ

where uij is a unit vector of edge j in the direction of node i, Hj

is the spring stiffness and Lj ,lj the ‘grown’ and current length of

edge j.

Turgor pressure is converted into nodal external forces by

spatial integration:

fext
i ~

1

3

X
j[T(i)

DPjSjNj ð30Þ

where DPj is the pressure (supposed uniform) on triangle j. Nj is

the outward unit normal (current configuration).

Time evolution. Solving the weak form of Eq. 14, turns out

to minimize the total elastic. We solve this by gradient descent:

dxi~{(f izfext
i )h ð31Þ

where h is the step size. For faster convergence and stability, we

use an implicit scheme. At iteration k, we have:

x(kzh){x(k)~(I{hK){1f(k)h ð32Þ

where K~
Lf

Lx
is the stiffness matrix. x and f are the position

and force vectors of all nodes (concatenation of the xi and

(f izfext
i )). This linear system is solved using the conjugate

gradient algorithm.

Computational simulation framework. We have imple-

mented our mechanical model in the open source software SOFA

[39]. Its modularity allowed us to combine different element types

(triangle and edge elements), forces (elastic forces and turgor) and

positional constraints within the same model. At each step of

growth, the software is used to find the static elastic equilibrium,

Eq. 14 given a current configuration. The use of an implicit

integration scheme makes it possible to achieve close-to interactive

simulation of growth.

Supporting Information

S1 Fig Axial growth self-similarity in plants. (A). NPA-

grown seedling exhibiting a naked SAM expressing the GFP-MBD

construct. (B) 93 h after microtubule depolymerization, a meri-

stematic cell expressing the GFP-MBD construct has grown

without dividing, hence its increased size, and has repolymerized

its microtubules. Note the presence of circumferential microtubule

orientations at the periphery and random microtubule orientations

in the center in both A and B. (C) Longitudinal section through an

Arabidopsis SAM (From [46]). (D) Longitudinal section through

the phylloid growing tip of unicellular algae Caulerpa taxifolia

(Adapted from [47]). Note the morphological similarities between

C and D. (E) Drawing of the common fern Polypodium vulgare,

highlighting its rhizome and composite frond (From [48]). (F)

Picture of unicellular green algae Caulerpa taxifolia, highlighting

its creeping cauloid and composite phylloid (Adapted from [47]).

Note the similarities in architectures.

(TIF)

S1 Text Supporting information. Units and parameter

values used in simulations corresponding to Fig. 4, Fig. 5, and

Fig. 6.

(PDF)
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S2 Text Software installation. This text describes the

procedure to install our software and to run the mechanical model.

(DOCX)

S1 Movie Growth of a dome of homogeneous cells. All

cells are isotropic with identical elasticity, plasticity threshold and

growth speed. See also Fig. 4.B.

(MP4)

S2 Movie Axial growth. Mechanical anisotropy is imposed to

the bottom cells in the epidermis to model the effect of

microtubules orientation. The selected plasticity threshold permits

axial growth only and restrains radial growth. See also Fig. 4.C.

(MP4)

S3 Movie Imposing anisotropy to 80% of the dome
height. Red cells are anisotropic to model alignment of

microtubules orientation while blue cells are isotropic. The growth

of the dome produces an axial shape. See also Fig. 4.D.

(MP4)

S4 Movie Imposing anisotropy to 40% of the dome
height. Red cells are anisotropic to model alignment of

microtubules orientation while blue cells are isotropic. The growth

of the dome produces a globular shape. See also Fig. 4.D.

(MP4)

S5 Movie Growth with a gradient of anisotropy. The

bottom cells have maximum anisotropy while top cells are

perfectly isotropic. See also Fig. 4.E.

(MP4)

S6 Movie Creation of a lateral dome by decreasing cell
wall rigidity in a primordium region. The frontier between

the main axis and the lateral bump is not well marked. See also

Fig. 4.F.

(MP4)

S7 Movie Non-cell autonomous growth where rigidity of
cells in the inner layers has been decreased by a 10-fold
factor. No bump emerges. See also Fig. 4.G left.

(MP4)

S8 Movie Transversal cut of the simulation of Fig. 4.F.
See also Fig. 4.G middle.

(MP4)

S9 Movie Non-cell autonomous growth where turgidity
of cells in the inner layers has been increased by a 2.5-
fold factor. Only a shallow bump tends to emerge. See also

Fig. 4.G right.

(MP4)

S10 Movie Creation of a lateral dome with a marked
frontier by increasing cell wall rigidity in the cells
surrounding the primordium. See also Fig. 4.H.

(MP4)

S11 Movie Creation of a lateral dome with a marked
frontier by introducing anisotropy in the frontier region.
The cell wall rigidity in the cells surrounding the primordium is

made stiffer in the circumferential direction only. See also

Fig. 4.H.

(MP4)

S12 Movie Increasing growth rate in the primordium to
facilitate the emergence of a lateral dome. Compared to

simulation of Fig. 4.I., the necessary decrease of rigidity of the cell

wall in the primordium is less important and is compensated by

the increase of growth rate. See also Fig. 4.J.

(MP4)

S13 Movie Initiating a asymmetric lateral dome. Fron-

tier region is only limited to the top part of the primordium. Even

with no frontier at the bottom, a globular dome emerges normal to

the surface. See also Fig. 5.J-K.

(MP4)

S14 Movie Tentative creation of an asymmetric lateral
dome with stiffer adaxial region. Primordium region is

subdivided into abaxial and adaxial regions. With stiffer adaxial

cells, upward development of the primordium is limited. See also

Fig. 5.L-M.

(MP4)

S15 Movie Tentative creation of an asymmetric lateral
dome with stiffer abaxial cells. Upward development of the

primordium is predominant. See also Fig. 5.N-O.

(MP4)

S16 Movie Creation of an asymmetric lateral dome.
Abaxial cells are made stiffer and anisotropic. See also Fig. 5.P-Q.

(MP4)

S17 Movie Mechanical simulation of a flower bud with
outgrowth of sepal primordia. Four regions corresponding to

the sepal primordia are defined with a frontier region that

surrounds the primordia. Each region is given specific wall

stiffness, anisotropy and growth speed corresponding to different

gene expression. See also Fig. 6.

(MP4)

S18 Movie Characterization of residual stress after
removal of the turgor pressure. The simulation of Fig. 4.I

is used as starting point with its turgor pressure removed. The

stress of some regions shows incompatibilities of rest positions of

neighbor elements.

(MP4)
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