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Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.

Introduction

The plant hormone auxin plays an important role in regulating plant growth and developmental processes such as embryogenesis, apical dominance, lateral root formation, tropism, fruit development and vascular differentiation [START_REF] Friml | Auxin transport-shaping the plant[END_REF]. Auxin also plays a crucial role in specifying vascular stem cells [START_REF] Miyashima | Stem cell function during plant vascular development[END_REF], and regulating the activity of the vascular cambium (for a review, see Bhalerao and Fischer 2014)-a lateral meristem that contributes to secondary radial growth of wood in trees. Measurements of auxin levels across woodforming tissues revealed a radial auxin concentration gradient where high auxin concentrations localize to the cambium, intermediate concentrations to the xylem elongation zone and low concentrations to the maturation zone [START_REF] Uggla | Auxin as a positional signal in pattern formation in plants[END_REF][START_REF] Tuominen | A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in Hybrid Aspen[END_REF][START_REF] Uggla | Indole-3-acetic acid controls cambial growth in scots pine by positional signaling[END_REF]. It was proposed that this gradient regulates cambial activity and differentiation of cambial derivatives by providing positional information to cells within the tissue [START_REF] Uggla | Indole-3-acetic acid controls cambial growth in scots pine by positional signaling[END_REF][START_REF] Sundberg | Cambial growth and auxin gradients[END_REF][START_REF] Schrader | Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals[END_REF]; however, the hypothesis that auxin acts as a morphogen still lacks strong experimental support (Nilsson et al. 2008, Bhalerao and[START_REF] Bhalerao | Auxin gradients across woodinstructive or incidental?[END_REF]. Moreover, the expression patterns of most of the auxin-responsive genes correlate only weakly with auxin concentration across the wood-forming gradient, arguing against a strong and direct impact of auxin levels on radial patterning [START_REF] Nilsson | Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen[END_REF]). In addition, there is only subtle variation in the absolute auxin levels between active and dormant cambium in trees, suggesting that there may be instead a seasonal fluctuation of auxin sensitivity [START_REF] Uggla | Auxin as a positional signal in pattern formation in plants[END_REF][START_REF] Uggla | Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine[END_REF][START_REF] Schrader | Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals[END_REF][START_REF] Schrader | Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome[END_REF]). Indeed, the reduced auxin responsiveness of the dormant cambium correlates with reduced expression levels of components of the auxin perception machinery, implying that auxin signaling controls cambial activity by modulation of auxin responsiveness [START_REF] Baba | Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen[END_REF].

Wood is a highly variable material that is both developmentally and environmentally regulated [START_REF] Plomion | Wood formation in trees[END_REF]. For instance, in reaction to mechanical stress, a local increase in cambial cell division induces the formation of tension wood in the upper side of bent angiosperm tree stems. Tension wood has specific anatomical features such as the presence of a characteristic inner gelatinous cell wall layer (G layer) [START_REF] Timell | The chemical composition of tension wood[END_REF][START_REF] Pilate | Tension wood as a model for functional genomics of wood formation[END_REF]. Auxin is proposed to be implicated in the tension response, and application of either exogenous auxin or auxin transport inhibitors is known to induce the formation of G fibers [START_REF] Morey | Induction of tension wood by 2,4dinitrophenol and auxins[END_REF]Cronshaw 1968, Mellerowicz et al. 2001). For many years it was assumed that auxin distribution is involved in the regulation of tension wood but [START_REF] Hellgren | Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine[END_REF] showed that auxin levels were homogeneously balanced under gravitational stress in bent Populus stems. Auxin may instead exert its influence by means of components of its signaling pathway, as suggested by changes in expression of a large set of auxin-related genes [START_REF] Andersson-Gunneras | Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis[END_REF] including some members of the aspen Aux/IAA gene family [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF][START_REF] Paux | Transcript profiling of Eucalyptus xylem genes during tension wood formation[END_REF].

The perception and signaling of auxin involves central regulators such as the transport inhibitor response 1 (TIR1)/ auxin signaling F-box (ABFs) proteins, auxin/IAA (Aux/IAA) proteins and auxin response factor (ARF) proteins [START_REF] Mockaitis | Auxin receptors and plant development: a new signaling paradigm[END_REF]Estelle 2008, Calderon Villalobos et al. 2012). Aux/IAA proteins are direct targets of TIR1 and of its paralogous AFBs [START_REF] Dharmasiri | The F-box protein TIR1 is an auxin receptor[END_REF][START_REF] Kepinski | The Arabidopsis F-box protein TIR1 is an auxin receptor[END_REF][START_REF] Tan | Mechanism of auxin perception by the TIR1 ubiquitin ligase[END_REF]. At low intracellular auxin concentrations, Aux/IAA proteins act as transcriptional repressors of auxin-mediated gene expression by interacting and sequestering ARF proteins, thus preventing them from regulating the transcription of their target genes [START_REF] Guilfoyle | Auxin response factors[END_REF]. In contrast, high intracellular auxin levels foster interactions between Aux/IAA proteins and TIR1 E3 ubiquitin-ligase complexes, resulting in the degradation of Aux/IAA proteins by the 26 S proteasome [START_REF] Gray | Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins[END_REF][START_REF] Woodward | Auxin: regulation, action, and interaction[END_REF][START_REF] Tan | Mechanism of auxin perception by the TIR1 ubiquitin ligase[END_REF]). As a consequence, ARF proteins are released from their Aux/IAA interaction partners and can regulate the transcription of their auxin-responsive target genes.

The Aux/IAA genes were first identified in soybean and pea and were described as early auxin-responsive genes [START_REF] Walker | Isolation of cloned cDNAs to auxinresponsive poly(A)RNAs of elongating soybean hypocotyl[END_REF][START_REF] Theologis | Rapid induction of specific mRNAs by auxin in pea epicotyl tissue[END_REF][START_REF] Ainley | Sequence and characterization of two auxin-regulated genes from soybean[END_REF]. This plantspecific transcription factor family has 29 members in Arabidopsis [START_REF] Overvoorde | Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana[END_REF], the vast majority of which encode short-lived nuclear proteins. Canonical Aux/ IAA contains four highly conserved domains (called I, II, III and IV). Domain I contains a conserved leucine repeat motif (LxLxLx) similar to the EAR (ethylene-responsive elementbinding factor-associated amphiphilic repression) motif, which is responsible for the transcriptional repressor activity of this protein family [START_REF] Tiwari | Aux/IAA proteins contain a potent transcriptional repression domain[END_REF]) and can also interact with the co-repressor TOPLESS [START_REF] Szemenyei | TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis[END_REF]. Domain II has a motif of five highly conserved amino acids (VGWPP) that leads to the rapid degradation of Aux/IAA proteins through interaction with a component of the TIR1/AFBs ubiquitin-proteasome protein degradation pathway [START_REF] Gray | Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins[END_REF][START_REF] Dharmasiri | The F-box protein TIR1 is an auxin receptor[END_REF][START_REF] Kepinski | The Arabidopsis F-box protein TIR1 is an auxin receptor[END_REF]. This interaction is abolished by mutations within the core VGWPP motif of domain II, resulting in accumulation of the mutated protein and leading to defects in auxin responses [START_REF] Gray | Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins[END_REF][START_REF] Ouellet | IAA17/AXR3: biochemical insight into an auxin mutant phenotype[END_REF][START_REF] Reed | Roles and activities of Aux/IAA proteins in Arabidopsis[END_REF][START_REF] Tian | Regulation of Arabidopsis SHY2/ IAA3 protein turnover[END_REF]. Domains III and IV can mediate homo-dimerization and heterodimerization with other Aux/IAA family members, as well as dimerization with ARFs which also contain these two similar domains [START_REF] Kim | Protein-protein interactions among the Aux/IAA proteins[END_REF][START_REF] Ulmasov | Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements[END_REF][START_REF] Ouellet | IAA17/AXR3: biochemical insight into an auxin mutant phenotype[END_REF]. A high-throughput protein-protein interaction study of 29 Aux/IAAs and 23 ARFs in Arabidopsis showed that the majority of Aux/IAA proteins interact with themselves and with ARF activators [START_REF] Vernoux | The auxin signalling network translates dynamic input into robust patterning at the shoot apex[END_REF].

Our current knowledge of the diverse roles of Aux/IAA genes in plant growth and development comes mainly from characterization of gain-of-function mutants in Arabidopsis [START_REF] Watahiki | The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf[END_REF][START_REF] Rouse | Changes in auxin response from mutations in an AUX/IAA gene[END_REF][START_REF] Tian | Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene[END_REF][START_REF] Fukaki | Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis[END_REF][START_REF] Yang | The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1)[END_REF]) and from down-regulation in Solanaceae species [START_REF] Wang | The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[END_REF][START_REF] Chaabouni | Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[END_REF], Bassa et al. 2012, Deng et al. 2012a, Deng et al. 2012b[START_REF] Su | The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[END_REF].

Although, several studies have found that the auxin perception and signaling machinery are important in regulating cambial activity, cambial dormancy, secondary cell wall (SCW) deposition and tension wood formation [START_REF] Bhalerao | Auxin gradients across woodinstructive or incidental?[END_REF], the involvement of Aux/IAA genes in these processes remains largely underinvestigated. Work by [START_REF] Nilsson | Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen[END_REF] showed that changes in endogenous auxin levels in wood-forming tissues modulate expression of a few key regulators such as Aux/IAA genes that control global gene expression patterns essential for normal secondary xylem development. Moreover, these authors found that overexpressing a stabilized version of PttIAA3m (mutation in the degron domain II) in Populus led to a reduction in cambium cell division and a decrease in secondary xylem width [START_REF] Nilsson | Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen[END_REF]. To the best of our knowledge, this is the only example demonstrating the role of an Aux/IAA gene in xylem development in a woody species.

The sequence of the Eucalyptus grandis genome [START_REF] Myburg | The genome of Eucalyptus grandis[END_REF]) was published recently. This is the second forest tree genome to be sequenced, and it offers unique opportunities to analyze the characteristics of the Aux/IAA family in the most planted hardwood worldwide, which, in contrast to Populus, does not present cambium dormancy. In this study, we performed a comprehensive genome-wide identification and characterization of the Aux/IAA gene family in E. grandis. In addition to analyses of comparative phylogenetics, genomic organization and prediction of protein structural motifs, we investigated by quantitative reverse transcription-PCR (qRT-PCR) the expression profiles of the 24 Aux/IAA members among various organs and tissues, at different developmental stages and in response to environmental cues, with a special focus on wood-forming tissues. Based on these phylogenetic and expression results, we identified EgrIAA4 as the best candidate gene potentially involved in the regulation of wood formation in Eucalyptus. Overexpression of a stabilized version of EgrIAA4 (EgrIAA4m) in transgenic Arabidopsis led to auxinrelated aberrant phenotypes and strongly affected interfascicular and xylary fiber formation, thereby confirming the hypothesized role of EgrIAA4 in the regulation of cambium and wood-forming tissues.

Results

Identification and sequence analysis of the Aux/ IAA gene family in E. grandis

The procedure to identify all members of the Aux/IAA family in E. grandis is illustrated in Supplementary Fig. S1. After manual curation, a total of 26 E. grandis Aux/IAA genes were identified. We named them according to their putative Arabidopsis orthologs (henceforth referred to as EgrIAA genes) based on their phylogenetic relationships (Supplementary Fig. S2). Two genes, EgrIAA29A and 29B, encode protein sequences very similar to that encoded by EgrIAA29 but both lack domains III and IV that are crucial for Aux/IAA protein activity (Supplementary Fig. S3).

The coding sequences of the vast majority (83%) of the EgrIAA genes are disrupted by three or four introns, and the intron positions and phases are well conserved (Fig. 1). Variations were observed for some members, however, involving mainly loss of one or more introns (EgrIAA3A, 19 and 33A) and, in one case, gain of one additional intron (EgrIAA9B). The EgrIAA exon-intron patterns are similar to those of their orthologs in Arabidopsis (Supplementary Fig. S2).

The predicted EgrIAA proteins range in size from 154 (EgrIAA20) to 370 amino acids (EgrIAA26B) with corresponding molecular masses ranging from 17 to 41 kDa (Table 1). The theoretical isoelectric points also vary widely from 4.7 (EgrIAA33B) to 9.5 (EgrIAA31), indicating that they may function in different microenvironments. Pair-wise analysis of EgrIAA protein sequences showed that the identity levels vary greatly from 83.7% (EgrIAA3A and 3B) to 26.4% (EgrIAA9A and 28) (Supplementary Table S1). A similar wide variation of identity values was reported in Arabidopsis [START_REF] Overvoorde | Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana[END_REF]) and tomato [START_REF] Audran-Delalande | Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[END_REF]. Sequence alignment of the predicted proteins and MEME protein motif analyses showed that 17 of the 24 EgrIAA proteins have the typical four highly conserved domains of canonical Aux/IAA proteins (Fig. 1; Supplementary Fig. S4), comprising (i) an N-terminal repressor domain I with a conserved leucine repeat motif (LxLxLx), which can recruit the co-repressor TOPLESS; (ii) a degron domain II, which is responsible for the stability of Aux/IAA proteins; and (iii) a C-terminal dimerization (CTD) domain, consisting of two highly conserved dimerization subdomains III and IV, similar to those found in ARFs [START_REF] Reed | Roles and activities of Aux/IAA proteins in Arabidopsis[END_REF]. Some members, however, had poorly conserved or missing domains I and/or II. For instance, the consensus sequence T/ LELrLGLPG in domain I is not well conserved in EgrIAA11, 20 and 33B, and is absent in EgrIAA 29, 32 and 33A (Fig. 1; Supplementary Fig. S4), and the conserved degron sequence VGWPP in domain II is not well conserved in EgrIAA31 (QDWPP) and is missing in EgrIAA20, 32, 33A and 33B (Fig. 1; Supplementary Fig. S4). Rapid degradation of Aux/ IAA proteins is essential for auxin signaling, and an amino acid substitution in the degron sequence was shown to cause Aux/IAA protein accumulation leading to auxin response defects in Arabidopsis [START_REF] Woodward | Auxin: regulation, action, and interaction[END_REF]. Therefore, the Aux/IAA proteins with either no degron sequence or a degenerate sequence are likely to be more stable, and their molecular properties may be distinct from those of canonical Aux/IAA proteins.

Two types of putative nuclear localization signal (NLS) were detected in most of the E. grandis Aux/IAA proteins. The first has a bipartite structure comprising a conserved basic doublet, KR, between domains I and II and is associated with the presence of basic amino acids in domain II (Supplementary Fig. S4). The second one is a basic residuerich region located in domain IV that resembles SV40-type NLSs (Supplementary Fig. S4). Most of the EgrIAA proteins contain both types of NLS and are therefore most probably targeted to the nucleus, consistent with their transcriptional activity. Family members such as EgrIAA29 and 33B, however, contain a degenerate SV40-type NLS, whereas EgrIAA20, EgrIAA32, EgrIAA33A and EgrIAA33B lack the bipartite NLS. Using transient expression assays with tomato Aux/IAA, Audran-Delalande et al. ( 2012) have shown that despite having a degenerate NLS, Sl-IAA29 protein was specifically targeted to the nucleus. In contrast, in the absence of the bipartite structure, for instance in Sl-IAA32, the accumulation of the protein was not restricted to the nuclear compartment [START_REF] Audran-Delalande | Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[END_REF].

Comparative phylogenetics and chromosomal distribution of EgrIAA genes

The Aux/IAA family in E. grandis with only 24 members is slightly contracted compared with the 29 members in Arabidopsis and 35 in Populus. Its size is quite similar to that of tomato, which contains only 25 members (Table 2).

To investigate the phylogenetic relationships of Aux/IAA family members in various species, we constructed a phylogenetic tree by using the predicted full-length amino acid sequences of Aux/IAA from Eucalyptus, Arabidopsis and Populus. The Aux/IAA members fell into 11 groups named A-K (Fig. 2); and EgrIAAs were distributed among all groups and had representatives even within the four groups of non-canonical Aux/IAAs (groups H, I, J and K) lacking domain I and/or II [START_REF] Overvoorde | Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana[END_REF]. When compared with Arabidopsis and Populus, Eucalyptus had fewer members in each group except in group E, which notably contains two Eucalyptus members (EgrIAA15A and 15B).

In silico mapping of the gene loci showed that the 24 EgrIAA genes and the two truncated genes were unevenly distributed among six of the 11 E. grandis chromosomes, with 1-8 genes per chromosome; chromosomes 1, 4, 5, 7 and 9 were devoid of Aux/IAA genes (Table 1; Supplementary Fig. S5). Similarly, in Populus, the PtrIAA genes were present on only 10 of the 19 chromosomes, with 1-5 genes per chromosome [START_REF] Kalluri | Genomewide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[END_REF], whereas Arabidopsis Aux/IAA genes were scattered on all five chromosomes [START_REF] Overvoorde | Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana[END_REF]). Notably, one cluster of tandem duplicated EgrIAA genes was detected on chromosome 3: EgrIAA29, 29A and 29B were located within a 45 kb fragment on chromosome 3 and resulted from a recent tandem duplication event, which led to two truncated versions and probably inactive versions of EgrIAA29 (Supplementary Fig. S3). Three pairs of EgrIAA genes were found to result from segmental duplications [START_REF] Myburg | The genome of Eucalyptus grandis[END_REF] although they are located very close to each other (within a distance of <25 kb) on chromosomes 8 (EgrIAA4/16 and EgrIAA3A/14) and 11 (EgrIAA1/17) (Supplementary Fig. S5). These six genes are phylogenetically related, the more distant genes encoding protein sequences with 61% identical residues. Members of protein pairs have identity levels higher than 63% (Supplementary Table S1), although each member of a pair belongs to a distinct phylogenetic group. EgrIAA1, 3A and 4 belong to group A, whereas EgrIAA17, 14 and 16 belong to group C (Supplementary Figs. S2,S5). Altogether, these data suggest that one ancestor gene underwent tandem duplication to give a first pair of EgrIAA genes that subsequently underwent segmental duplication events to generate the other two pairs. It seems that tandem duplication events occurred prior to the chromosomal block duplication in the Eucalyptus Aux/IAA family, in a similar way to the events proposed for Arabidopsis [START_REF] Remington | Contrasting modes of diversification in the Aux/IAA and ARF gene families[END_REF].

As duplication and alternative splicing are the two main mechanisms involved in diversification of function within gene families, we performed an in silico survey of the alternative transcripts predicted by the E. grandis genome JGI assembly v1.0, annotation v1.1 (http://www.phytozome.net/eucalyptus). Among the 24 EgrIAA genes, eight are predicted to have more than one splice variant (Table 1). This proportion of alternative transcripts is similar to that found in Arabidopsis. In Eucalyptus, most of the alternative transcripts arise from members of groups B and F, whereas in Arabidopsis the majority of them belong to groups B and G (Fig. 2; Supplementary Table S2). Some alternative transcripts are lacking domains III and/or IV (Fig. 1; Supplementary Fig. S6), probably contributing to shape the functional diversity of the family.

Expression profiling of EgrIAA genes in different tissues/organs and in response to environmental cues

To gain insights into the developmental patterns of expression of EgrIAA genes, we assessed their transcript levels by qRT-PCR in 13 different organs and tissues. The 24 EgrIAA genes could be detected in all the tissues tested, and most of them were preferentially expressed in certain tissues (Fig. 3). The relative transcript accumulation of all the EgrIAA genes is presented as a heat Oryza sativa map, and hierarchical clustering allowed us to group all the expression patterns into three distinct clusters (Fig. 3). Many members of the three clusters were differentially expressed in young and mature leaves. Most of them were more highly expressed in young leaves; only EgrIAA14 was more highly expressed in mature leaves. Members of both cluster I and II were most highly expressed in non-vascular tissues, but they diverged regarding their differential expression in leaves: members of cluster I were highly expressed whereas those of cluster II were expressed at very low levels in leaves. Cluster III was the largest cluster, containing 11 members that were preferentially expressed in vascular tissues (phloem, cambium and xylem). Within cluster III, EgrIAA13, 20 and 31 were relatively highly expressed in all three vascular tissues, whereas EgrIAA4 and 33A were expressed at higher levels in cambium and xylem than in phloem. EgrIAA29 was preferentially expressed in cambium as compared with phloem and xylem. Most of the members of cluster III were expressed at higher levels in juvenile xylem than in mature xylem (Fig. 4A), whereas no obvious differences in their expression patterns were detected between juvenile and mature cambium (Fig. 3). Of particular note, EgrIAA4 was the only gene that was more highly expressed in mature xylem than in juvenile xylem (Fig. 4A). Most EgrIAA genes from cluster III were responsive to mechanical stress due to bending (Fig. 4B). Four EgrIAA genes were down-regulated (EgrIAA4, 11, 13 and 20) and two (EgrIAA31 and 33A) were up-regulated in tension wood as compared with straight wood (Fig. 4B). Interestingly, EgrIAA11 and 20 were down-regulated in both tension and opposite woods, whereas EgrIAA33A was up-regulated in these tissues (Fig. 4B).

Candidate EgrIAA genes potentially involved in wood formation

To identify the best candidate gene(s) potentially involved in wood formation for further functional characterization in planta, we defined several criteria: transcript abundance in vascular tissues; high expression in cambium and/or xylem and low expression in phloem; responsiveness to bending (given that the response to bending involves dramatic changes in both xylem development and SCW structure and composition); and differential expression in mature and juvenile xylem, which are known to exhibit different biochemical and physical properties. The combination of all these criteria when presented as a Venn diagram (Supplementary Fig. S7) identified EgrIAA4 and EgrIAA33A as the most suitable candidates matching the first three and main criteria. Ultimately, EgrIAA4 was selected for further functional characterization because it was the only gene that was more highly expressed in mature than in juvenile xylem (Supplementary Fig. S7).

Nuclear localization and transcriptional activity of EgrIAA4

When transiently expressed as a green fluorescent protein (GFP) fusion protein in BY-2 tobacco protoplasts, EgrIAA4 protein was located exclusively in the nucleus (Fig. 5A) as predicted by the presence of two well-conserved NLSs (Supplementary Fig. S4). The impact of EgrIAA4 on the transcriptional activity of target genes was assessed in tobacco protoplasts co-transfected with an effector construct expressing the full-length coding sequence of EgrIAA4 under the 35S Cauliflower mosaic virus (CaMV) promoter and a reporter construct carrying DR5::GFP, an auxin-responsive promoter fused to the GFP coding sequence. The DR5::GFP reporter construct is commonly used to assess auxin-dependent transcriptional activity in planta [START_REF] Ulmasov | Activation and repression of transcription by auxin-response factors[END_REF], Audran-Delalande et al. 2012). Basal DR5-driven GFP expression was low, but was induced up to 9-fold by exogenous auxin treatment (Fig. 5B). Co-transfection with the effector plasmid EgrIAA4 resulted in strong repression (87%) of this auxininduced expression of the reporter gene (Fig. 5B), indicating that EgrIAA4 is able to mediate an auxin response in vivo and that it functions as a strong transcriptional repressor.

Overexpression of EgrIAA4m affects plant growth and development

To gain insights into the role of EgrIAA4, we overexpressed in Arabidopsis a mutated version of the gene, referred to as EgrIAA4m (see the Materials and Methods; Supplementary Fig. S8A), encoding a stabilized form of the protein. We hypothesized that the mutation introduced in the degron domain would prevent auxin-mediated EgrIAA4 protein degradation. Thus EgrIAA4m was cloned under the control of the 35SCaMV promoter into the Gateway pFAST-G02 expression vector and transformed into Arabidopsis thaliana Col-0. This pFAST-G02 vector contains an OLE1-GFP selection marker that allows direct screening of transformed seeds that are fluorescent under UV light [START_REF] Shimada | A rapid and nondestructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana[END_REF]. Of 10 seeds sown, six germinated giving independent EgrIAA4m transformants, all of similar and dramatically reduced size as compared with controls. We selected two phenotypically representative transformants (EgrIAA4m_1.3 and ErIAA4m_2.3) overexpressing EgrIAA4m (Supplementary Fig. S8B) for further characterization. T 2 seeds from both lines germinated and half of the seedlings had the drastic phenotype, with leaf rosettes of only about 1 cm diameter and very small, curled-down leaves that turned yellow or brown just before the plants died without flowering. (Supplementary Fig. S8C). The surviving transgenic plants (T 2 ) had several distinctive phenotypes in their aerial parts (Fig. 6A,B). During the seedling stage, the cotyledons were curled up, whereas the leaves were curled down and had very short petioles (Fig. 6A). During the vegetative stage, the EgrIAA4m transgenic plants from both lines were significantly shorter and had smaller leaf rosettes (Fig. 6B), and the inflorescence stems were thinner than those of wild-type plants. In addition, EgrIAA4m plants had smaller siliques and much lower fertility (i.e. no seeds or <20 seeds per plant) than wild-type plants.

EgrIAA4m affects root development and gravitropism

To examine the root phenotype of the transgenic plants, seeds collected from T 1 plants were grown in vitro on 1/2 Murashige and Skoog (MS) medium and the primary root length and the number of lateral roots were compared 10 d after germination with those of wild-type plants. The primary roots of EgrIAA4m seedlings were significantly shorter (around 15 mm) than those of wild-type seedlings (around 50 mm long; Fig. 6C). In addition, no lateral roots were observed in EgrIAA4m transgenic seedlings, whereas wild-type seedlings had well-developed lateral roots of 6.9 mm (Fig. 6D). Seventeen days after germination, there was still no lateral root emergence in EgrIAA4m transgenic plants. These findings indicate that EgrIAA4m overexpression inhibits both primary root elongation and lateral root emergence.

The gravitropic response is a typical auxin-related phenotype, and several Aux/IAA Arabidopsis mutants, such as axr5/ IAA1, axr2/IAA7, slr/IAA14, axr3/IAA17and msg2/IAA19, showed agravitropism in roots and/or hypocotyls [START_REF] Watahiki | The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf[END_REF][START_REF] Rouse | Changes in auxin response from mutations in an AUX/IAA gene[END_REF][START_REF] Nagpal | AXR2 encodes a member of the Aux/IAA protein family[END_REF][START_REF] Fukaki | Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis[END_REF][START_REF] Yang | The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1)[END_REF]). To assess the gravitropic response of EgrIAA4m transgenic plants, we grew them on vertically oriented 1/2 MS plates. Ten days after germination, the hypocotyls and roots of the EgrIAA4m transgenic plants grew in random directions (agravitropically), whereas the wildtype seedlings all grew vertically (Fig. 6E). We then returned the plates to the horizontal and checked the roots' response. After 48 h, the wild-type Arabidopsis roots had changed their growth direction by 90 , whereas the EgrIAA4m transgenic plants did not respond to the change in orientation (data not shown), indicating that the transgenic roots had lost their ability to perceive gravity.

EgrIAA4m negatively regulates xylem differentiation in Arabidopsis stem

Next, we investigated the impact of EgrIAA4m overexpression on xylem and interfascicular fiber development in Arabidopsis inflorescence stems (Fig. 7). The lignification patterns were obtained by staining stem cross-sections from plants grown for 37 d (Fig. 7A-D) or 47 d (Fig. 7E,F) with phloroglucinol-HCl. When compared with 37-day-old wild-type plants (Fig. 7A,C), the proportion of lignified tissues stained red by phloroglucinol was dramatically reduced in transgenic lines (Fig. 7B,D) suggesting that, at the same age, the activity of both fascicular and interfascicular cambium was greatly reduced and/or delayed in the transgenic plants (Fig. 7A-F). Closer examination revealed the virtual absence of lignified interfascicular fibers in 37-day-old EgrIAA4m transgenic Arabidopsis (Fig. 7D) as compared with control (Fig. 7C). A very weak and discontinuous light reddish staining appeared in the interfascicular zone of 47-day-old transgenic plants (Fig. 7F), however, suggesting that very limited lignification had occurred. In addition, the xylem fibers in the vascular bundle regions were completely absent and the xylem vessels were much smaller than in control plants (Fig. 7C-F). These results indicate that overexpression of EgrIAA4m strongly and negatively affected xylem bundle and interfascicular fiber development.

Discussion

The Aux/IAA family in E. grandis contains 24 members and therefore is slightly contracted as compared with most angiosperm Aux/IAA families studied hitherto (Table 2). With 25 members, the gene family in tomato is the closest to Eucalyptus but it lacks non-canonical members in phylogenetic group I (Audran-Delalande et al. 2012), which we show here are present in Eucalyptus. All 11 phylogenetic groups defined in Arabidopsis are present in Eucalyptus, but Eucalyptus has fewer members in each group, except in group E, which has two members whereas Arabidopsis and Populus have only one member each. In Arabidopsis, transcripts of AtIAA15, the unique member of group E, have never been detected, suggesting that it may be a pseudogene [START_REF] Remington | Contrasting modes of diversification in the Aux/IAA and ARF gene families[END_REF]). In contrast, in E. grandis, the transcripts of both EgrIAA15A and 15B were detected by qRT-PCR, indicating they are probably functional genes. Whereas in Arabidopsis and Populus members of the Aux/IAA family arose predominantly through large-scale genomic duplication events [START_REF] Remington | Contrasting modes of diversification in the Aux/IAA and ARF gene families[END_REF][START_REF] Kalluri | Genomewide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[END_REF], Aux/IAA family members in the E. grandis genome show evidence of only very few segmental duplication events. One cluster of recent tandem duplications was found on chromosome 3, but duplication of EgrIAA29 led to two truncated genes lacking both domains III and IV. To the best of our knowledge, such a structure had never been reported in other species and these truncated genes are most probably not functional.

On the one hand, the virtual absence of tandem duplication in the Eucalyptus Aux/IAA family is especially striking because the E. grandis genome overall has the largest number of genes in tandem repeats reported among sequenced plant genomes (34% of the total number of genes; [START_REF] Myburg | The genome of Eucalyptus grandis[END_REF]) and tandem duplication shaped functional diversity in many gene families in Eucalyptus such as the MYB [START_REF] Soler | The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth related evolution and function[END_REF] and NAC [START_REF] Hussey | Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus[END_REF]) transcription factor families. On the other hand, this situation is quite similar to the ARF family in E. grandis whose size is also slightly contracted as compared with other angiosperm genomes [START_REF] Yu | Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF) gene family in Eucalyptus grandis[END_REF]. Because Aux/IAA proteins regulate auxin-mediated gene expression through interaction with ARF proteins, a corresponding dosage relationship is probably needed [START_REF] Remington | Contrasting modes of diversification in the Aux/IAA and ARF gene families[END_REF].

The expression profiles of EgrIAA genes in various tissues and organs showed that some have preferential expression patterns, in contrast to ARF family members that were more constitutivly expressed in the same panel of samples [START_REF] Yu | Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF) gene family in Eucalyptus grandis[END_REF]. According to the current model, Aux/IAA proteins regulate auxin-mediated gene expression by protein-protein interactions with ARFs, so the preferential expression pattern of Aux/IAA genes may have a primary role in their physiological functions [START_REF] Muto | Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14[END_REF]. All the EgrIAA genes in groups G, H and I were preferentially expressed in vascular tissue, and most of their orthologs in Arabidopsis and/or Populus also showed high/preferential expression in xylem cells (Supplementary Table S3) [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF][START_REF] Kalluri | Genomewide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[END_REF][START_REF] Hruz | Genevestigator v3: a reference expression database for the metaanalysis of transcriptomes[END_REF][START_REF] Nilsson | Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen[END_REF], and/or induce vascular defects in transgenic plants (Nilsson et al. 2008, Sato and[START_REF] Sato | Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis[END_REF], suggesting that these phylogenetic groups regulate cambium activity and/or xylem development. Overexpression of AtIAA20, 30 and 31 in Arabidopsis resulted in fewer and discontinuous vascular strands in cotyledons [START_REF] Sato | Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis[END_REF]. Alteration of auxin responsiveness through overexpression of a stabilized version of PttIAA3 (the putative ortholog of EgrIAA20) in transgenic aspen reduced cambial cell division, caused spatial deregulation of cell division of the cambial initials and led to reductions not only in the radial but also in the axial dimensions of fibers and vessels [START_REF] Nilsson | Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen[END_REF]).

Most of the EgrIAA genes in cluster III responded to bending stress, but their behavior seems quite different from that of their potential orthologs in Populus [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF]. For example, EgrIAA20 was down-regulated in tension wood, whereas its Populus orthologs PttIAA3 and 4 were not affected [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF]. In contrast, EgrIAA9A was not affected by long-term bending, whereas its Populus ortholog PttIAA2 was down-regulated in tension wood [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF]. In a previous study, we found that the transcript level of EgrIAA9A increased sharply between 6 and 24 h and then decreased between 24 h and 1 week to reach a level similar to that of the control [START_REF] Paux | Transcript profiling of Eucalyptus xylem genes during tension wood formation[END_REF]). Thus Aux/IAA genes respond to bending in a time-dependent way, which may explain the apparent discrepancies between the responses of Populus and Eucalyptus Aux/IAA orthologs. Indeed, in our study, the plants were exposed to bending stress for 3 weeks, whereas [START_REF] Moyle | Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen[END_REF] analyzed an early response to bending (from 30 min to 11 h). Indeed, our results are more consistent with those of Anderson-Gunneras et al. (2006) who analyzed Populus gene expression after 3 weeks bending. We found that EgrIAA4, 11 and 20 were all down-regulated in tension wood, as were their Populus orthologs (Anderson-Gunneras et al. 2006).

EgrIAA4, which belongs to subgroup A, was considered to be the best candidate to regulate cambium activity and wood formation based on its expression profile, and was chosen for functional characterization in planta. EgrIAA4 is the ortholog of the Arabidopsis gene pair AtIAA3 and AtIAA4. Only the function of AtIAA3 has been studied through gain-of-function experiments. The AtIAA3 mutation shy2 produces plants with shorter hypocotyls, fewer lateral roots and a slower gravitropic response than the wild type (Reed et al. 1998, Tian and[START_REF] Tian | Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene[END_REF]. AtIAA3 was shown recently to be part of the auxin signaling module (SLR/ IAA14-ARF7-ARF19 and SHY2/IAA3-ARFs) regulating lateral root formation [START_REF] Goh | Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling[END_REF]. Likewise the down-regulation of Sl-IAA3, the ortholog of AtIAA3 in tomato, leads to reduced growth of primary roots and inhibition of lateral roots [START_REF] Chaabouni | Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[END_REF]. Overexpression of an auxin-insensitive version of EgrIAA4 in Arabidopsis led to very similar but more severe aberrant auxin response phenotypes. The gravitropic response was lost completely, and growth and development were severely affected, with much reduced height and diameter of the inflorescence stem, reduced leaf size and fertility, and absence of lateral roots. Notably, EgrIAA4m overexpression also led to phenotypic alterations of the vascular system not reported yet for its Arabidopsis ortholog. The development of both xylem and interfascicular fibers was dramatically delayed and reduced, suggesting reduced cambium activity in response to the altered auxin responsiveness induced by EgrIAA4m expression. The lignified secondary walls of the interfascicular fibers appeared very late, whereas that of the xylary fibers was virtually undetectable. This phenotype, together with the expression pattern of EgrIAA4, strongly suggests that auxin signaling and EgrIAA4 are important in fiber development and SCW deposition.

Materials and Methods

Identification of Aux/IAA genes in Eucalyptus

We used 29 Arabidopsis Aux/IAA protein sequences and BLASTP to search for related proteins predicted by the E. grandis genome (JGI assembly v1.0, annotation v1.1, http://www.phytozome.net/eucalyptus), which identified 55 potential E. grandis Aux/IAA proteins. Then, we used the Pfam database (http:// pfam.sanger.ac.uk/search) and NCBI conserved domain database (http://www. ncbi.nlm.nih.gov/cdd) web server to examine the conserved domains [START_REF] Finn | The Pfam protein families database[END_REF][START_REF] Marchler-Bauer | CDD: a Conserved Domain Database for the functional annotation of proteins[END_REF]. The incomplete gene models were completed by FGENESH+ (http://linux1.softberry.com), and redundant and invalid gene models were removed. The corrected E. grandis Aux/IAA protein sequences were used as query sequences in two subsequent searches: first, a BLASTP search of the E. grandis proteome for exhaustive identification of divergent E. grandis gene family members, and, secondly, TBLASTN searches of the E. grandis genome for any possible unpredicted genes. In total, 26 EgrIAA genes were identified in the E. grandis genome (E. grandis genome V1.1, May 2012). For validation, we also used Populus Aux/IAA proteins as queries in the complete search procedure described above, and we obtained exactly the same final 26 EgrAux/IAA genes. Gene information on chromosomal location was retrieved from the E. grandis genome browser (http://www.phytozome.net/eucalyptus) with manual curation, and we mapped their loci using MapChart 2.2 [START_REF] Voorrips | MapChart: software for the graphical presentation of linkage maps and QTLs[END_REF]. Basic physical and chemical parameters of Aux/IAA proteins were calculated by means of the online ProtParam tool (http://web.expasy. org/protparam/).

Sequence, gene structure and phylogenetic analysis

Conserved protein motifs of EgrIAA were determined by use of MEME-MAST programs (http://meme.sdsc.edu/meme) [START_REF] Bailey | MEME SUITE: tools for motif discovery and searching[END_REF]). The exon-intron structures were extracted from Phytozome with manual curation and visualized by Fancy Gene v1.4 (http://bio.ieo.eu/fancygene/). Multiple protein sequence alignments was performed by using the Clustal_X2 program (Version 2.0.11). All predicted protein sequences were used for phylogenetic analysis, and the phylogenetic trees were constructed with the MEGA5 program by using the Neighbor-Joining method with 1,000 bootstrap.

Plant materials and growth conditions

The provenance and preparation of all Eucalyptus organs and tissues were as described in Cassan- Wang et al. (2012). Arabidopsis thaliana ecotype Col-0 plants were grown in a growth chamber under the conditions: 16 h day : 8 h night for long days, 22 : 20 C day : night temperature, 70% relative humidity, 200 mmol photons m À1 s À1 light intensity (intense luminosity). The plants were watered every 2 d and fertilized weekly. Seeds were surface-sterilized for 1 min in 70% ethanol, 10 min in 25% bleach, rinsed five times in sterile water and plated on MS medium containing 1.0% sucrose solidified with 1% agar.

RNA isolation, cDNA synthesis and qRT-PCR

Total RNAs were extracted from 100-200 mg of frozen material as described previously [START_REF] Southerton | Eucalypt MADS-box genes expressed in developing flowers[END_REF], and genomic DNA contamination was removed by using the Turbo DNA-free TM kit (Ambion). RNA concentrations and purity were determined by using a NanoDrop spectrophotometer ND-1000 (Thermo Scientific), and integrity was assessed by using the Agilent 2100 Bioanalyzer. Only samples with RNA integrity number (RIN) >7 were used for reverse transcription. cDNA was reversed transcribed from 2 mg of total RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).

Primers were designed by using the software QuantPrime (qPCR primer design tool: http://www.quantprime.de/; [START_REF] Arvidsson | QuantPrime-a flexible tool for reliable high-throughput primer design for quantitative PCR[END_REF]; the sequences are shown in Supplementary Table S4. Oligonucleotides were synthesized by Sigma Life Science. qRT-PCR was performed by the Genotoul service in Toulouse (http://genomique.genotoul.fr/) using BioMark Õ 96:96 Dynamic Array integrated fluidic circuits (Fluidigm Corporation) as described previously (Cassan- Wang et al. 2012). Only primers that produced linear amplification and qPCR products with single-peak melting curves were used for further analysis. The efficiency of each pair of primers was determined from the data of the amplification Ct value plot with a serial dilution of mixture cDNA and the equation E = 10 (-1/slope) -1. The E -ÁÁCt method was used to calculate relative mRNA fold change compared with a control sample by using the formula (E target ) ÁCt_target (controlÀsample) /(E reference ) ÁCt_reference (controlÀsample) [START_REF] Pfaffl | A new mathematical model for relative quantification in real-time RT-PCR[END_REF], and five reference genes (IDH, PP2A1, PP2A3, EF-1a and SAND, Supplementary Table S4) were used for data normalization. In vitro plantlets were used as control samples.

EgrIAA4 amplification and gain-of-function transgenic Arabidopsis construction

The EgrIAA4 gene was amplified by PCR using Phusion Taq (Thermo) and a gene-specific primer pair: 5 0 -CACCATGGCAGCTCAAGGAGAGGAT-3 0 and 5 0 -AACCTCTGATGACCCTTTCATGATT-3 0 based on sequence prediction from the E. grandis genome v.1.1 (Eucgr.H04336.1). To investigate the function of this gene, we created a mutation in the auxin degradation domain by changing the codon for amino acid residue 80 from one that encodes proline to one that encodes serine (P-to-S) in domain II by using overlap PCR. The overlap primers were 5 0 -ATCGGACCGGACTCCACCCCAC GACTTGTGCCTTA-3 0 and 5 0 -CGTGGGGTGGAGTCCGGTCCGATCCTACCG AAA-3 0 . The underlined sequences indicate the overlap region and the bold bases are the mutated nucleotides. The EgrIAA4m fragment was cloned into the pENTR/D-TOPO vector (Invitrogen) for sequencing. After sequencing, we recombined the EgrIAA4m fragment into the destination vector pFAST-G02 by using LR Clonase (Invitrogen). The vector pFAST-EgIAA4m was transformed into Agrobacterium tumefaciens strain GV3101, and then transformed into A. thaliana ecotype Col-0 by using the floral dip method [START_REF] Clough | Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[END_REF].

Fig. 1

 1 Fig. 1 Gene structures of EgrIAA family members. The sizes of exons and introns are indicated by the scale at the top. The protein domains are indicated by different colors. The numbers 0, 1 and 2 represent the phases of the introns.

Fig. 2

 2 Fig.2Phylogenetic analysis of Eucalyptus, Arabidopsis and Populus Aux/IAA proteins. Full-length protein sequences were aligned by using the Clustal_X program. The phylogenetic tree was constructed by using the MEGA5 program and the Neighbor-Joining method with predicted Aux/ IAA proteins. Bootstrap support is indicated at each node. Each Aux/IAA group (A-K) is indicated by a specific color. EgrIAAs are noted in red and bold. EgrIAA genes that are preferentially expressed in vascular tissue (cluster III, Fig.3) are marked with a red solid circle.

Fig. 3

 3 Fig.3Expression profiles of EgrIAA genes in various organs and tissues. The hierarchically clustered heat map was constructed by using the log 2 ratios of relative expression values normalized to a control sample (in vitro plantlets) for 24 EgrIAA genes (indicated on the right) in 13 tissues and organs (indicated at the top). The genes belonging to cluster III are preferentially expressed in vascular tissues (phloem, cambium and/or xylem) and in stems and roots.

Fig. 4

 4 Fig. 4 Effects of developmental and environmental cues on the transcript levels of 10 EgrIAA genes preferentially expressed in vascular tissues. Ratios of relative mRNA abundance in (A) mature and juvenile xylem, (B) tension vs. straight xylem, and opposite vs. straight xylem. Each relative mRNA abundance was normalized to a control sample (in vitro plantlets). Error bars indicate the SE of mean expression values from three independent experiments. Asterisks indicate values found to be significantly different (Student's t-test, P-value) *P < 0.05; **P < 0.01.

Fig. 5

 5 Fig. 5 Subcellular localization and repressor activity of EgrIAA4 protein on a synthetic DR5 promoter. (A) Subcellular localization of EgrIAA4-GFP fusion protein in BY-2 tobacco protoplasts. The merged images of green fluorescence (left panels) and the corresponding bright-field (middle panels) are shown in the right panels. Scale bar = 10 mm. (B) Repressor activity of EgrIAA4 protein on a synthetic DR5 promoter. Effector and reporter constructs were co-expressed in tobacco protoplasts in the presence or absence of a synthetic auxin (50 mM 2,4-D). A mock effector construct (empty vector) was used as control. In each experiment, protoplast transformations were performed in independent biological triplicates. Three independent experiments were performed and similar results were obtained; the figure indicates the data from one experiment. Error bars represent SEs of mean fluorescence. Significant statistical differences (Student's t-test, P < 0.001) from the control are marked with **.

Fig. 6

 6 Fig. 6 Phenotypic characterization of EgrIAA4m transgenic plants. (A) Nine-day-old plantlets of wild-type and two representative EgrIAA4m lines plantlets. (B) 45-day-old wild-type and EgrIAA4m transgenic plants. (C, D) Primary root length and lateral root numbers in 10-day-old wild-type and EgrIAA4m transgenic seedlings grown on 1/2 MS medium. Error bars represent SEs of the means of primary root length (n > 10). Significant statistical differences (Student's t-test, P < 0.001) from the control are marked with **. (E) Three-day-old seedlings grown on vertical plates with 1/2 MS medium.

Fig. 7

 7 Fig. 7 Histochemical analysis of basal stem cross-sections from transgenic Arabidopsis plants expressing EgrIAA4m. Sections of wild-type and EgrIAA4m transgenic plants were stained with phloroglucinol-HCl. if, interfascicular fiber; xf, xylary fiber; xv, xylem vessel. Scale bar = 50 mm.

Table 1

 1 Aux/IAA gene family in E. grandis Chromosome c Genome location d ORF e (bp) Deduced polypetide f Exon No.

	Gene name a No. of predicted alternative transcripts	Accession No. Length (aa) Mol. wt (kDa) pI	
	EgrIAA1	2	Eucgr.K03314.1	11	42,167,198-42,168,788	570	189	5.39	4
	EgrIAA3A	2	Eucgr.H03171.1	8	46,743,317-46,744,932	612	203	6.02	3
	EgrIAA3B	1	Eucgr.H00216.1	8	2,425,940-2,428,241	615	204	5.58	4
	EgrIAA4	1	Eucgr.H04336.1	8	62,350,663-62,352,118	576	191	5.63	4
	EgrIAA9A	2	Eucgr.H02407.1	8	32,905,397-32,912,178	1107	368	6.05	5
	EgrIAA9B	4	Eucgr.F02172.1	6	29,479,509-29,487,212	1080	359	6.18	6
	EgrIAA11 g	1	Eucgr.K01426.1	11	17,332,089-17,336,565	930	309	5.88	4
	EgrIAA13	1	Eucgr.H02914.1	8	42,398,802-42,401,976	801	266	8.8	5
	EgrIAA14	1	Eucgr.H03170.1	8	46,720,521-46,722,685	732	243	6.45	5
	EgrIAA15A	1	Eucgr.J03016.1	10	37,360,412-37,362,334	648	215	5.76	5
	EgrIAA15B g	1	Eucgr.C01083.1	3	17,083,069-17,086,237	645	214	7.54	5
	EgrIAA16	1	Eucgr.H04335.1	8	62,338,061-62,341,249	813	270	8.28	5
	EgrIAA17 g	1	Eucgr.K03313.1	11	42,152,995..42,155,812	807	268	6.06	5
	EgrIAA19	1	Eucgr.F02578.1	6	35,331,299..35,341,010	585	194	8.33	3
	EgrIAA20	1	Eucgr.K00561.1	11	6,262,537..6,264,036	465	154	4.99	4
	EgrIAA26A	3	Eucgr.F03080.1	6	40,229,065..40,232,796	990	329	8.38	5
	EgrIAA26B	2	Eucgr.J02934.1	10	36,614,769..36,618,150	1113	370	8.88	5
	EgrIAA27	3	Eucgr.F03050.1	6	39,988,867..39,991,412	1050	349	6.27	4
	EgrIAA28 g	2	Eucgr.C02984.1	3	56,397,825..56,400,087	1044	347	6.72	5
	EgrIAA29	1	Eucgr.C01734.1	3	29,257,063..29,258,993	651	216	6.6	4
	EgrIAA[T]29A h	1	Eucgr.C01731.1	3	29,214,163-29,215,275	390	129	9.87	2
	EgrIAA[T]29B h	1	Eucgr.C01732.1	3	29,230,438-29,231,106	369	122	9.45	2
	EgrIAA31 g	1	Eucgr.H04141.1	8	59,329,525-59,330,844	687	228	9.51	4
	EgrIAA32	1	Eucgr.B02853.1	2	52,269,360-52,271,045	654	217	4.83	4
	EgrIAA33A	1	Eucgr.C02329.1	3	43,423,640-43,424,409	531	176	8.71	2
	EgrIAA33B	1	Eucgr.C01373.1	3	22,002,554-22,005,153	651	216	4.75	4

b a Designation given to E. grandis in this work. b Accession number in phytozome. c, d Location of the EgrIAA genes on the chromosome. e Length of the open reading frame in base pairs. f The number of amino acids, molecular weight (kDa) and isoelectric point (pI) of the deduced polypeptides. g Using FGENESH+ to complete the complete sequence h [T] Truncated gene.

Table 2

 2 Number of Aux/IAA family gene members in angiosperm species

		Aux/IAA	Reference
	Eucalyptus grandis	24	This study
	Solanum lycopersicon	25	Audran-Delalande et al. (2012)
	Arabidopsis thaliana	29	Overvoorde et al. (2005)
	Cucumis sativus	29	Gan et al. (2013)
	Populus trichocarpa	35	Kalluri et al. (2007)
	Zea mays	34	Ludwig et al. (2013)

[START_REF] Jain | Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa)[END_REF] 
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Transient gene expression in protoplasts

Protoplasts for transfection were obtained from suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells according to the method of [START_REF] Leclercq | Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase[END_REF]. They were transfected by a modified polyethylene glycol method as described by [START_REF] Abel | Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression[END_REF]. To study the nuclear localization of selected Aux/IAAs, 'effector' constructs were created by fusing full-length cDNAs in-frame with the GFP sequence to produce a fusion protein at the C-terminus of GFP and under the control of the 35SCaMV promoter in the vector pK7FWG2.0 [START_REF] Karimi | GATEWAY vectors for Agrobacterium-mediated plant transformation[END_REF]. Transfected protoplasts were incubated for 16 h at 25 C and examined for GFP florescence by using a Leica TCS SP2 laser scanning confocal microscope. Images were obtained with a Â40 water-immersion objective. For cotransfection assays, the full-length cDNAs encoding selected Aux/IAA proteins were cloned under the control of the 35SCaMV promoter in the vector pGreen. The 'reporter' constructs used a synthetic auxin-responsive promoter DR5 fused to the GFP reporter gene. Tobacco BY-2 protoplasts were cotransfected with the reporter and effector constructs as described in [START_REF] Audran-Delalande | Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[END_REF]. After 16 h incubation, GFP expression was quantified by flow cytometry (LSR Fortessa, BD Bioscience), and the data were analyzed using BD CellQuest and BD FacsDiva software. Transfection assays were performed with three independent replicates, and 3,000-4,000 protoplasts were gated for each sample. GFP fluorescence corresponds to the average fluorescence intensity of the protoplast population after subtraction of autofluorescence determined with non-transformed protoplasts. 2,4-D (50 mM) was used for auxin treatment.

Microscopy analysis

Arabidopsis hypocotyls and the basal $1 cm of inflorescence stems were harvested from 37-and 47-day-old plants, and stored in 70% ethanol. Sections were prepared by using a vibratome Leica VT1000 S. Lignin polymers are the characteristic components of SCW and are normally absent from primary cell walls; therefore, we used lignin deposition detection techniques to screen for SCW phenotype. Cross-sections of inflorescence stem and hypocotyl ($80 mm thick) were stained with phloroglucinol-HCl, which stains violet-red specifically the lignin polymer precursors coniferaldehyde and p-coumaraldehyde in the SCW. Phloroglucinol-HCl was directly applied on the slide and images were recorded with a CCD camera (Photonic Science; http://www.photonic-science.co.uk).

Supplementary data

Supplementary data are available at PCP online.
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