
HAL Id: hal-01142471
https://hal.science/hal-01142471

Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating verifiable Assume/Guarantee contracts in
UML/SysML

Iulia Dragomir, Iulian Ober, Christian Percebois

To cite this version:
Iulia Dragomir, Iulian Ober, Christian Percebois. Integrating verifiable Assume/Guarantee contracts
in UML/SysML. International Workshop on Model Based Architecting and Construction of Embedded
Systems - ACESMB 2013, Sep 2013, Miami, United States. pp. 1-10. �hal-01142471�

https://hal.science/hal-01142471
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12666

To cite this version : Dragomir, Iulia and Ober, Iulian and Percebois,
Christian Integrating verifiable Assume/Guarantee contracts in
UML/SysML. (2013) In: International Workshop on Model Based
Architecting and Construction of Embedded Systems - ACESMB 2013,
29 September 2013 - 29 September 2013 (Miami, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12666/
http://oatao.univ-toulouse.fr/12666/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Integrating Verifiable Assume/Guarantee Contracts
in UML/SysML

Iulia Dragomir, Iulian Ober, and Christian Percebois

Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

{iulia.dragomir,iulian.ober,christian.percebois}@irit.fr

Abstract The compositional approach based on components and driven by
requirements is a common method used in the development of critical real-
time embedded systems. Since the satisfaction of a requirement is subject to
the composition of several components, defining abstract and partial behaviors
for components with respect to the point of view of the requirement allows for
a manageable design of systems. In this paper we consider such specifications
in the form of contracts. A contract for a component is a pair (assumption,
guarantee) where the assumption is an abstraction of the component’s en-
vironment behavior and the guarantee is an abstraction of the component’s
behavior given that the environment behaves like the assumption. In previous
work we have defined a formal contract-based theory for Timed Input/Output
Automata with the aim of using it to express the semantics of UML/SysML
models. In this paper we propose an extension of the UML/SysML language
with a syntax and semantics for contracts and for the relations they must sat-
isfy. Besides the important role that contracts have in design, they can also be
used for the verification of requirement satisfaction and for their traceability.

1 Introduction

Nowadays critical real-time embedded systems grow larger in size and more complex.
Their development is a challenging task and is often error-prone. A way for system
designers to tackle this issue is to use a compositional approach driven by require-
ments. For example, process-oriented standards such as DO-178C [14] highlight the
need to model requirements at different levels of abstractions during development
and to ensure their traceability at each design iteration step.

However, requirements are often difficult to be mapped to components: several
components combine together to satisfy a requirement and a component may be
involved in the satisfaction of several requirements. In order to achieve provably
correct compositional design, one needs a way to abstractly specify how a particular
component K participates in fulfilling a requirement ϕ. Such a specification can take
the form of a contract : a pair (assumption, guarantee) where the assumption is an
abstraction of K’s environment behavior and the guarantee is an abstraction of K’s
behavior given that the environment behaves according to the assumption. Such a
contract can then be used to model the point of view of the component with respect
to the requirement ϕ. Contracts for reactive and real-time components have received
a lot of attention from the research community recently, as discussed in §5.

Besides the important role contracts can play in system design, they can also be
used as basic blocks for compositional verification of requirement satisfaction. In [11]
we have introduced a contract-based theory for compositional verification of systems
of communicating Timed Input/Output Automata (TIOA) with the intention to use
it as underlying semantics for contract-based UML/SysML [19, 18] modeling and
verification.

This paper complements the theory from [11] by extending UML/SysML with
the language elements needed for modeling contracts and their relations. The paper

is structured as follows: in §2 we summarize the contract-based reasoning theory we
have defined and we present the OMEGA UML/SysML profile [8] on which we want
to apply the formal theory. In §3 we propose a meta-model for the contract theory
and a set of constraints and well-formedness rules needed to make the system model
verifiable with contracts. Then, an instantiation of the meta-model for the OMEGA
UML/SysML profile is discussed. §4 presents the application of our approach to an
industry-grade system model, the ATV SGS case study previously described without
contracts in [9], before concluding.

2 Background

2.1 Timed Input/Output Automata

Many mathematical formalisms have been proposed in the literature for modeling
communicating timed reactive components. Our work is based on a variant of Timed
Input/Output Automata of [13] since it is one of the most general formalisms, thor-
oughly defined and for which several interesting compositionality results are already
available. A TIOA specifies a state space and a set of admitted timed behaviors for a
component. The parallel composition of TIOAs (denoted ‖ in the following) is based
on synchronization of corresponding inputs/outputs and the interleaving of other ac-
tions. The main differences between our variant and that of [13] are that (1) matched
input-outputs resulting from a composition of two automata result in a visible I/O
action which is not involved in synchronizations thereafter (in [13] the result is an
output, which is not consistent with the semantics of signals in UML or SysML) and
(2) continuous variables are restricted to Alur-Dill-style linear clocks [1] in order to
allow the use of known symbolic simulation and verification methods (unavailable
for the more general model of [13]). For the full definition of the formal model, the
reader is referred to [11].

2.2 A UML/SysML Profile Based on Timed Input/Output Automata

In previous work [5] we have considered the high-level modeling of embedded real-
time systems in UML/SysML with a semantics provided in terms of TIOA. The result
of this work is a semantic profile for UML and SysML called OMEGA and a set of
tools for simulation and model-checking, the IFx-OMEGA toolset1.

In OMEGA, the architecture of a system is expressed in the usual way in UML
(class diagrams) and in SysML (block definition diagrams and internal block dia-
grams). Classes/blocks may use most of their features: properties (attributes and
parts), signals receptions, interconnection elements (port, connector, interface) and
relations (association, composition and generalization). The hierarchical architecture
of components (and systems) is specified through composite structures.

The behavior of atomic components is modeled by state machines with standard
UML actions on transitions. The operational semantics of each component instance
is a timed input/output automaton. The TIOAs corresponding to components are
composed in parallel and communicate by asynchronous signal exchanges. This im-
poses that all communications between objects/block instances are defined as signal
outputs and receptions that are transferred via ports and connectors. Ports need to
be typed with interfaces that contain the list of signals transferred to or from the
component’s environment. With respect to the actions described on transitions, the
semantics supports a significant part of the UML action meta-model, including sig-
nal output, assignment, expression valuation and control flow structuring statements.
The translation between OMEGA modeling concepts and the underlying TIOA se-
mantics is automatic in IFx-OMEGA.
1 http://www.irit.fr/ifx

� �

� ������� ���

���	��
	���������������

�� ��

��

�
 �

�

�� �

��������������

�� ��

��

��

�����������	
�

���	�	��
�

��	����	��
�

������������

������������

�������������

�

�

��

���

Figure 1: Contract-based reasoning for a subsystem with three components [21].

The temporal elements of TIOA, such as clocks, clock actions and timed guards
actions have corresponding language constructs in the OMEGA profile. The elapsing
of time is constrained by transition urgency stereotypes inspired from timed automata
with urgency [4]: time delay is blocked if one of the active transitions in the current
state is stereotyped «eager», it is upper-bounded if an active transition is stereotyped
«delayable» and is unbounded otherwise (i.e., if all active transitions are stereotyped
«lazy», which is by default).

The profile also proposes mechanisms for formalizing requirements, in particular
in the form of real-time safety properties described by observer classes (identified by a
stereotype «observer»). The state machine of these classes uses special primitives for
monitoring the system state and events and gives verdicts about the (non-)satisfaction
of a property by using labels (e.g., stereotype «error») on states.

For a more complete description of the UML/SysML component model used in
OMEGA and of the mapping of notions, the reader is referred to [17].

2.3 A Theory of Contracts for Timed Input/Output Automata

In [11] we defined a theory for modeling and reasoning with contracts for TIOA. The
theory is an extension of a meta-theory defined in [22, 21]. A contract for a TIOA
component K is a pair of TIOAs that model the assumption (A) and the guarantee
(G). The satisfaction of the contract is defined formally by a relation based on trace
inclusion between K ‖ A and G ‖ A modulo the set of actions that are of interest for
the contract. The theory also provides the necessary mechanisms for compositional
reasoning with contracts, explained in the following.

Consider that the objective is to prove that a system S composed of several com-
ponents K1,K2, · · · ,Kn satisfies a property ϕ (see Fig. 1) under a certain hypothesis
A on the behavior of its environment. The method consists in defining a more ab-
stract specification G of the system such that A ‖ G satisfies ϕ (conformance step
in Fig. 1). Once this step performed, one will be inclined to verify that the sys-
tem S satisfies the contract C = (A,G). However, it is often impossible to verify
directly (i.e. by checking trace set inclusion) that the composite system S satisfies
the contract because of the combinatorial explosion of the state space. To avoid this
problem, the method defined in [11, 21] uses a decomposition of the proof in inde-
pendent steps based on the definition of a set of individual contracts C1, C2... for

Figure 2: UML meta-model extended with contracts.

the components K1,K2..., which, when put together, ensure the global contract C.
We say that {C1, C2, · · · } dominates C (dominance step in Fig. 1). The theory in
[11, 21] provides a set of sufficient conditions for dominance which can be checked
independently with lesser combinatorial complexity. In addition to the conditions for
dominance, one also has to check that each component Ki satisfies the contract Ci

(satisfaction step in Fig. 1).

3 Extending UML and SysML for Modeling Contracts

In this section we present the UML and SysML extensions that we propose in or-
der to support modeling and reasoning with contracts. In §3.1 we describe a domain
meta-model of the contract-related concepts which extends the UML meta-model.
The adaptation for SysML is discussed briefly at the end, as is relatively straightfor-
ward. We then discuss in §3.2 the constraints and well-formedness rules imposed on
the key notions in order to make models with contracts compliant with the theory
from [11] and thus verifiable. Finally, in §3.3 we discuss the mapping of the meta-
model concepts as a UML/SysML profile, using the standard extension mechanisms
(stereotypes).

3.1 A Meta-Model for Contracts in UML

Within the contract theory we have presented there are two categories of concepts:
(1) those related to contract modeling represented in the upper part of the meta-
model given in Fig. 2 and (2) those related to modeling relations between contracts,
used for example in verification, represented in the lower part of Fig. 2.

The requirement ϕ that the component model has to satisfy is represented by
the meta-class SafetyProperty. This meta-class is left unspecified at this point since

different formalisms could be used to model a requirement, such as temporal logics,
automata-based languages, etc. In §3.3 we instantiate the meta-model in the OMEGA
profile, which uses an observer for modeling a SafetyProperty.

The assumption/guarantee of a contract is modeled by the corresponding meta-
class Assumption/Guarantee type of Class. Each of these two elements is modeled by
a class that has a behavior expressed by a state machine and communicates (only)
through ports. Assumptions/guarantees are thus described in the same language
as the system components. In order to have a clear semantics in terms of TIOA,
they are subject to few restrictions: they should not be involved in associations,
generalizations, realizations (except the interface realizations demanded by ports)
and dependencies. An assumption or guarantee may define a composite sub-structure.
Such an example is provided in the case study of §4.

A contract is represented by the meta-class Contract as a composite structure,
containing exactly one assumption and one guarantee (i.e. any other properties are
forbidden) and does not exhibit any behavior. The only relations a contract may be
involved in are those that represent the verification relations used in our theory, as
described below.

If a contract serves in the conformance step in the methodology depicted in Fig. 1,
this is modeled using a Conformance relation (a kind of Dependency) between the
Contract and the corresponding SafetyProperty. One can use the same contract for
several safety properties.

The dominance relation is represented by the meta-class Refinement type of De-
pendency. One contract is refined by a set of contracts. Note that this is possible since
UML defines Dependency from n clients to n suppliers. To ensure that no cycles may
be modeled, the following constraint is imposed: the target of a Refinement is not a
member of the source set.

Finally, the relation between a component and the contract that it must satisfy
is represented by two relations: one at the level of the type of the component and
one at the level of the instance (the part which participates in a composite structure
where the contract is relevant and which is modeled by the meta-class Property). On
the level of the type, an Implementation relation (a kind of Dependency) between
a class and a contract models the fact that the class satisfies the contract. One
class can satisfy several distinct contracts. On the level of instances, a ContractUse
relation (also a kind of Dependency) between a Property, which is part of a composite
structure, and a Contract models the fact that the contract is used for verification
within the context of that composite structure. A Property may use a contract if and
only if its class implements that contract.

All constraints have been formalized with OCL [20]. Their code can be found in
an extended version of this paper [10]. This meta-model can be easily adapted for the
SysML language by defining the meta-classes Contract, Assumption andGuarantee as
extensions of the stereotype block applied on the meta-class Class from UML4SysML
package. Similarly, the meta-class Dependency belongs to the same package.

3.2 Well-Formedness Rules for Verifiable Contracts

In order to be able to apply the contract-based verification theory from [11] we need
to make sure that the hypotheses and constraints imposed by the formal framework
are satisfied by the system model. In the following we formalize these constraints at
the meta-model level by a set of well-formedness rules.

Within the formal framework, a contract is modeled by a pair (A,G) of TIOA
such that the set of inputs/outputs of G is a subset of the set of inputs/outputs
of the component implementing the contract and the composition of A and G is a
closed system. To ensure this, the set of ports of a Guarantee must correspond to
a subset of the set of ports of the component for which the guarantee is defined.
The correspondence is based on the port name and the port type and direction

must coincide. We consider that when a port is present in the guarantee, all the
corresponding signal receptions defined by the port type are handled in the guarantee.
Moreover, as the composition between an Assumption and a Guarantee must be
closed, every port of the Guarantee must have a corresponding conjugated port on
the side of the Assumption, with the same type and reversed direction.

The dominance relation is also subject to the refinement of provided/required re-
quests. This rule is also expressed with respect to ports: a port of the guarantee which
is the target of the refinement must be matched (by name and type) by a port of one
of the refining guarantees and must not be matched by a corresponding conjugated
port (i.e. with reversed directionality) of another from the refining guarantees.

The theory from [11] also induces some constraints on the state machines of as-
sumptions and guarantees. In particular, the behavior of an assumption or guarantee
should not impose constraints on time progress. This is realized on the UML/SysML
level ensuring that all transitions in these state machines are stereotyped «lazy» and
that there is at most one output action on any transition.

Furthermore, for a model with contracts to be used in compositional verification
according to the methodology described in §2, the model must describe a unique and
complete proof tree: all implemented contracts are used within a context and for all
SafetyProperty there is a contract conforming to it. The rules described above have
been formalized in OCL and can be found in [10].

3.3 Instantiating the Meta-Model in the OMEGA Profile

In order to use contracts in a standard UML or SysML model, one needs to cap-
ture the information from the meta-model described in the previous section in the
form of standard extensions, namely using stereotypes. Since all the new concepts
introduced in the meta-model inherit from an existing meta-class (either Class or
Dependency), we choose to represent them as stereotypes of these base meta-classes.
Thus, we use for the meta-class Class the stereotypes «contract», «assumption»,
«guarantee», and «observer» (which already exists in OMEGA and is reused for
representing SafetyProperty). For contract relations, the stereotypes of Dependency
that correspond to the meta-model elements are «contractImplementation», «con-
tractUse», «contractRefinement» and «contractConformance».

As explained before, from the semantic point of view, Contracts are not handled in
the same way as usual classes/blocks as they are not considered executable elements
of the system. Contracts are only used by the verification tools to check the validity
of the conformance, dominance and satisfaction relations. The choice to describe
contracts as classes is due to the fact that the syntax of contracts reuses much of
the standard syntax of classes: we need to represent a contract as a closed composite
structure with ports and links for the communication between the assumption and the
guarantee and between the assumption and the component which uses the contract,
interfaces to statically type the sets of inputs and outputs of each sub-component
and behavior in the form of state machines.

4 The ATV Solar Generation System Case Study

The concepts and the reasoning method previously described have been applied on
a case study, an industrial-grade system model of a subsystem of the Automated
Transfer Vehicle (ATV). The ATV, developed by Astrium Space Transportation for
the European Space Agency, is a spacecraft put into orbit by the European heavy
launcher Ariane-5 with the aim of supplying the International Space Station. This
case study consists of the Solar Wing Generation System (SGS) [9] responsible for
the deployment and management of the solar wings of the vehicle. The SysML model

used in the following, provided by Astrium Space Transportation, was obtained by
reverse engineering the actual SGS system for the purpose of this study.

The SGS system model2 illustrated in Fig. 3 summarizes the three main compo-
nents involved in the case study: the mission and vehicle management (MVM) part
that initiates SGS wing deployment, the SOFTWARE part of the SGS that based on
requests received from the MVM executes the corresponding automated procedures
and the HARDWARE part that models the four physical wings. The communica-
tion between components is realized via asynchronous signals transported through
ports and connectors. Due to the large number of ports (661) and connectors (504),
Fig. 3 presents a simplified architectural view of SGS and only shows a link between
two parts where several connectors and ports are involved in the actual model. Let
us mention that the verification steps presented below have been performed on the
initial system model.

Under the hypothesis that at most one hardware failure may occur during a run,
which is embedded in the HARDWARE model, the main goal of the case study is to
verify the following property ϕ: after 10 minutes from system start-up, all four wings
are deployed.

Due to the size and the complexity of the model, applying model-checking di-
rectly leads to combinatorial explosion and the verification of ϕ does not finish. We
explain in the following how the property ϕ was verified using the contract-based
reasoning methodology. We start by modeling the property ϕ. This implies identify-
ing what the observer corresponding to the safety property ϕ must monitor. In our
case, the block phi must observe the answer that each wing provides with respect
to its status (deployed or not deployed) when interrogated by the software. So, the
property ϕ expressed with respect to wing behavior must be satisfied by the HARD-
WARE block instance that contains them. With regard to Fig. 1, the HARDWARE
is the subsystem S and WINGi, i = 1, 4, are the components Ki. The environment of
the subsystem is given by the parts with which it communicates: bidirectional com-
munication is directly established between SOFTWARE and HARDWARE, while
SOFTWARE depends on the behavior of MVM. Thus, the environment E of Fig. 1
is represented here by the composition of MVM and SOFTWARE.

Next, we provide a contract C = (A,G) such that it conforms to ϕ. In order to
comply to the contract methodology, C is implemented by HARDWARE ’s type and
it is used by this part within the proof tree. We use as assumption A the concrete
environment of HARDWARE, the composition between MVM and SOFTWARE it-
self, which thus satisfies by construction the mirror contract C−1 = (G,A). Keeping
this composition as assumption is not problematic since its state space has a man-
ageable size. As guarantee G we use the following abstraction derived (manually)
from the individual behavior of wings: for each wing status interrogation, the target
wing answers either as not deployed for at most 400 seconds or as deployed after
at least 130 seconds. In order to ensure that the contract defines a closed system,
since MVM ‖SOFTWARE sends all possible requests to HARDWARE, we equip G
with all ports defined by HARDWARE and we enrich the behavior of G to ignore all
other requests. Then G and HARDWARE have the same set of ports: no refinement
of requests is performed and the corresponding rule is satisfied.

The third step consists in modeling a set of contracts {C1, C2, C3, C4} that refine
C and proving that each contract Ci = (Ai, Gi) is implemented by WINGi ’s type,
i = 1, 4. The environment for WINGi is given by the environment of the subsystem
HARDWARE and all WINGj, j 6= i. We use the following abstraction WAj for
WINGj : the wing is either not deployed for at most 400 seconds or deployed from at
least 130 seconds while all other received requests are consumed. The assumption Ai

is the parallel composition of MVM, SOFTWARE and WAj, j 6= i. The guarantee Gi

2 The case study is represented using the notation conventions of IBM Rhapsody: http:
//www-03.ibm.com/software/products/us/en/ratirhap/.

BL_ATV

«block,root»

SGS:SGS1

HARDWARE:HARDWARE1

WING2:WING1

WING3:WING1

WING4:WING1

WING1:WING1

SOFTWARE:SOFTWARE1MVM:MVM1

C1

«block,contract»

«contractUse»

C2

«block,contract»

«contractUse»

C3

«block,contract»

«contractUse»

C4

«block,contract»

«contractUse»

C

«block,contract»

«contractUse»

«contractRefinement»

phi

«block,observer»

«contractConformance»

Figure 3: Architecture of the SGS system including contracts (simplified view).

is the projection of G on WINGi. Again the refinement of requests is not considered
and since the ports of HARDWARE with respect to WINGi are identical to the ports
of WINGi, both rules on port set inclusion for implementation and refinement are
satisfied. Moreover, each Ci defines a closed system.

After this step the proof obligation tree is complete. The verification involves
10 intermediate steps: 4 for verifying that each wing satisfies its contract, 5 suffi-
cient conditions for dominance between {C1, C2, C3, C4} and C and one for proving
that A ‖ G � ϕ. Each verification step is performed by the OMEGA-IFx model
checker in a few hours. The overall effort of the building the contracts and perform-
ing the verification steps was of about 5 person*days. Even though the translation
and verification algorithm are automated, two intermediate modeling steps - con-
necting assumptions to components via links and transforming the state machine of
guarantees into observer (timed trace inclusion is verified using observers) - remain
manual. The automation of these steps is currently under development. For further
details on contract-based verification of the SGS case study, the reader is referred to
[11].

5 Related Work

Modeling and verifying contracts for components is a long line of research, whose
origins date back to Hoare logic [12]. Syntactical and behavioral contracts, as clas-
sified in [3], have been explored for specifying composition constraints and pre/post
conditions for operations and also for modeling transformation of models and exe-
cution semantics. Contracts as a language construct have emerged with the Eiffel
programming language [16] and have since been explored for various programming
and specification models. In this section we concentrate on work aiming to introduce
contracts in high-level modeling languages. For a discussion of more theoretical works
on contracts and contract-based verification the reader is referred to [11].

Weis et al. [23] propose to model a contract for a component in UML by an inter-
face and to specify its role: it can be either a required contract on which the component
depends or a provided contract that is realized by the component. Syntactically, this
representation of contracts is similar to ours: we also make the distinction between
the required behavior of the environment and the provided behavior of the component
by taking into account the assumption over the environment. However, our contracts
are richer since they model a behavior that can be used for component validation,

while the contracts of [23] can be used only for composability checking during the
development phases.

The Kmelia component model [15, 2], based on the work described above, pro-
vides means to verify the functional correctness of behavioral contracts for services:
the behavior of an operation is modeled as a Labeled Transition System and formal
verification can be realized within different tools via model transformation. Their
meta-model defines for a contract the source implementing it as an aggregated ele-
ment (operation or interface) and models explicitly the contract satisfaction results.
But this formalism does not describe how the order in which services are called by
and from a component can be verified, order that can be seen similar to our state ma-
chines from components. Furthermore, it does not provide a connection to high-level
modeling languages as UML/SysML.

Contracts modeled as pre/post conditions are used in [7] for the verification of
model transformation: the assumption is represented by an OCL constraint on the
source model and the guarantee is an OCL constraint on the target model. Moreover,
with respect to the syntax of contracts the two approaches are different: while the
one we describe considers contracts only for components, [7] models contracts for all
model elements. The same contracts are used in [6] to model the execution semantics
of UML elements which is seen as a particular case of model transformation.

To the best of our knowledge, this study is the first to consider behavioral con-
tracts at the component level in UML/SysML and to provide verification relations
for property satisfaction by contract-based reasoning. The meta-model we propose is
generic enough to represent all the other meta-models previously described, except-
ing the verification results extension that is based on the dynamical execution of the
model.

6 Conclusion

Based on a theory of contracts and on a methodological approach for reasoning
with contracts introduced in previous work [11], we have proposed an extension of
UML/SysML allowing to model contracts and use them for compositional verification
of requirements. The extension is defined as a meta-model, enriched with constraints
and well-formedness rules to make contracts verifiable. We have instantiated the
extension within the OMEGA UML/SysML profile to make it usable with standard
model editors. The verification method is supported by the OMEGA-IFx toolset and
the approach was validated on an industrial-grade system model.

Although an automatic model transformation from OMEGA system models to
the input language of the IFx Toolset is already available, some of the steps for
generating the intermediate contract-based verification models remain manual. Fu-
ture work consists in automating all the intermediate model generation steps and in
adding functionality for managing the proof obligations and results and for enforcing
the rigorous verification methodology described in §2.3.

The method described before does not explicitly prescribe how to derive contracts
for the whole system and for its components. In the case study described in §4,
this task was relatively straightforward: since we make no additional assumption (A)
about the environment,G is roughly the same as ϕ, and the component guarantees are
a projection of the desired global guarantee. There may be cases where the definition
of contracts is less obvious and the overhead is significant, and previous attempts to
introduce contracts in programming have not enjoyed a widespread success due to
this kind of overhead. Nevertheless, we believe that the case for contracts in early
phases of system engineering is different than the case for software programming, and
the overhead should be acceptable for certain critical systems. Further work is needed
in order to lower the overhead by finding methods or methodological guidelines for
deriving intermediate contracts from the properties one is trying to prove.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

[2] P. André, A. Gilles, and M. Messabihi. Vérification de contrats logiciels a l’aide de
transformations de modeles. In 7èmes journées sur l’Ingénierie Dirigée par les Modèles
(IDM) 2011, 2011.

[3] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components
Contract Aware. Computer, 32(7):38–45, July 1999.

[4] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Com-
putation, 163, 2000.

[5] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. In Formal Methods
for the Design of Real-Time Systems, volume 3185 of LNCS, pages 237–267. Springer,
2004.

[6] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier. Contracts for model execution
verification. In 7th European conference on Modelling foundations and applications
(ECMFA) 2011, pages 3–18. Springer, 2011.

[7] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL contracts for the verification
of model transformations. ECEASST, 24, 2009.

[8] E. Conquet, F.-X. Dormoy, I. Dragomir, S. Graf, D. Lesens, P. Nienaltowski, and
I. Ober. Formal Model Driven Engineering for Space Onboard Software. In 6th In-
ternational Symposium on Embedded Real Time Software and Systems (ERTS2) 2012.
Online website, 2012.

[9] I. Dragomir, I. Ober, and D. Lesens. A case study in formal system engineering with
SysML. In 17th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS) 2012, pages 189–198. IEEE Computer Society, 2012.

[10] I. Dragomir, I. Ober, and C. Percebois. Integrating verifiable Assume/Guaran-
tee contracts in UML/SysML. Technical report, IRIT, july 2013. Available at
http://www.irit.fr/~Iulian.Ober/docs/TR-Syntax.pdf.

[11] I. Dragomir, I. Ober, and C. Percebois. Safety Contracts for Timed Reactive Com-
ponents in SysML. Technical report, IRIT, june 2013. Submitted for publication.
Available at http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf.

[12] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576–580, 1969.

[13] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata - Second Edition. Morgan & Claypool Publishers, 2010.

[14] RTCA Inc. Software Considerations in Airborne Systems and Equipment Certification.
Document RTCA/DO-178C, 2011.

[15] M. Messabihi, P. André, and C. Attiogbé. Multilevel Contracts for Trusted Com-
ponents. In International Workshop on Component and Service Interoperability, vol-
ume 37 of EPTCS, pages 71–85, 2010.

[16] B. Meyer. Applying Design by Contract. Computer, 25(10):40–51, Oct. 1992.
[17] I. Ober and I. Dragomir. OMEGA2: A New Version of the Profile and the Tools. In

15th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS) 2010, pages 373–378. IEEE Computer Society, 2010.

[18] Object Management Group. Systems Modelling Language (SysML) v1.1, 2008.
[19] Object Management Group. Unified Modelling Language (UML) v2.2, 2009.
[20] Object Management Group. Object Constraint Language (OCL) v2.2, 2010.
[21] S. Quinton. Design, vérification et implémentation de systèmes à composants. PhD

thesis, Université de Grenoble, 2011.
[22] S. Quinton and S. Graf. Contract-based verification of hierarchical systems of compo-

nents. In Sixth IEEE International Conference on Software Engineering and Formal
Methods (SEFM) 2008, pages 377–381, 2008.

[23] T. Weis, C. Becker, K. Geihs, and N. Plouzeau. A UMLMeta-model for Contract Aware
Components. In 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools (UML) 2001, pages 442–456. Springer, 2001.

