
HAL Id: hal-01142411
https://hal.science/hal-01142411v1

Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactive Embedded Device Driver Synthesis using
Logical Timed Models

Julien Tanguy, Jean-Luc Béchennec, Mikaël Briday, Olivier-H Roux

To cite this version:
Julien Tanguy, Jean-Luc Béchennec, Mikaël Briday, Olivier-H Roux. Reactive Embedded Device
Driver Synthesis using Logical Timed Models. 4th International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications (SIMULTECH 2014), Aug 2014, Vienne, Austria.
�10.5220/0005040101630169�. �hal-01142411�

https://hal.science/hal-01142411v1
https://hal.archives-ouvertes.fr


Reactive embedded device driver synthesis
using logical timed models

Julien Tanguy1,2, Jean-Luc Béchennec2, Mikaël Briday2, Olivier-H Roux2
1See4sys Technologie,

Espace Performance La Fleuriaye,
44481 Carquefou CEDEX, France

2LUNAM Université, Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597
1 rue de la Noë,

44321 Nantes, France
julien.tanguy@see4sys.com, {jean-luc.bechennec, mikael.briday, olivier-h.roux}@irccyn.ec-nantes.fr

Keywords:
Real-Time Systems, Formal Modeling, Control, Logical Time, Software Synthesis

Abstract:
The critical nature of hard real-time embedded systems leads to an increased usage of Model Based
Design to generate a correct-by-construction code from a formal specification. If Model Based
Design is widely used at application level, most of the low level code, like the device drivers, remains
written by hand. Timed Automata are an appropriate formalism to model real time embedded
systems but are not easy to use in practice for two reasons i) both hardware and software timings
are difficult to obtain, ii) a complex infrastructure is needed for their implementation. This paper
introduces an extension of untimed automata with logical time. The new semantics introduces two
new types of actions: delayed action which are possibly avoidable, and ineluctable action which will
happen eventually. The controller synthesis problem is adapted to this new semantics. This paper
focuses specifically on the reachability problem and gives an algorithm to generate a controller.

1 Motivation

Nowadays embedded systems realize many
critical functions. From avionics to automo-
tive electronics control systems, the software has
grown in size and its complexity has become more
important.

The increasing number of functions and com-
plexity of such systems make software develop-
ment very difficult due to a high level of concur-
rency and to the hard real-time context. Many
safety-critical systems now cooperate in real-time
on several ECUs across many communication
links.

Due to the critical nature of these systems,
software vendors have to prove the functional
safety of their systems. Unit and functional tests
are common requirements, but they do not guar-
antee the software is bug free. The automotive
community is now pushing for a more formal ver-
ification of the systems’ behavior.

Model Based Design (MBD) methodologies

are now widely used in the industry and are a
way to address the complexity of these systems.
Instead of writing the code by hand the engineer
models the system to control and builds a model
of the application. The models can be tested and
simulated. They can also be verified if their spa-
tial and temporal complexity and their size re-
main practicable. At last the code is generated
automatically from the model.

In the automotive industry the AUTOSAR
standard (Kirschke-Biller, 2011) proposes a
framework for MBD. It specifies an architecture
and a methodology for the design of such systems,
based on current development methods, design
best practices and applicable international stan-
dards (such as the ISO26262 norm (The Interna-
tional Organization for Standardization, 2011)).

However if MBD is used at the application
level, basic software especially device drivers re-
main coded by hand and are more prone to have
bugs. For example in the AUTOSAR standard
the basic software is a set of modules. These mod-



Core Model Cfg Model

Core Cfg+

bin Dead code

Figure 1: Current development methodology

ules are usually defined as a core of basic function-
alities which can do everything and some configu-
ration code which selects or refines the previously
defined behaviors and wrapper code to encapsu-
late the module functionalities in APIs — see Fig-
ure 1. The configuration code is usually generated
at compile-time and compiled along the core code,
but the specification allows a post-compilation
configuration which is passed to the core code by
pointers.

This high level of configurability at every level
increases greatly the complexity of such systems;
they usually require multiple modules and ab-
straction levels. It can also result in a lot of
dead code and if the configuration is not per-
fectly tuned to the application demands, so that
unnecessary behaviors make it into the code and
may be executed. This comes at the cost of de-
creased performance and greater memory foot-
print, in terms of stack size, ROM and RAM us-
age. The consistency of the configuration must
also be checked in order to be sure that the driver
cannot behave in an unspecified way.

The proposed approach. Instead of doing
complex verification on existing systems, we pro-
pose to use an MBD approach to generate the
device driver. However, to reduce the flaws of
the current methodology, we combine the use of
formal models, the lifting of configuration at the
model level and well-known controller synthesis
techniques (Ramadge and Wonham, 1989) to gen-
erate correct-by-construction software.

Given the real-time nature of these systems,
the model of timed automata (Alur and Dill,
1994) and timed games (De Alfaro et al., 2003)
is an appropriate formalism to express and model
the required timed properties. In a timed game,
we model two players, the controller and the en-
vironment, playing moves at a certain time on a

shared model called the board. The board rep-
resents all possible states of the two players and
the possible actions available at all times. In this
case, the controller is the device driver, and the
environment is the hardware device along with its
environment (communication bus, analog signals,
etc.). Moves played by the device driver are also
known as controllable actions and moves played
by the hardware device and its environment are
known as uncontrollable actions.

Their level of expressiveness and well-
known controller synthesis techniques and
tools (Behrmann et al., 2007) allow the modeling
of complex systems, while providing a formal
proof on the behavior of the systems.

However, these timed models require a good
understanding of all the components, including
the knowledge of the timings of both players.
These timings are rarely known: the hardware
timings are not always described exhaustively,
and the software execution times are rarely known
precisely.

In addition, embedded systems hardware re-
sources (computing power, memory, etc.) are
limited. The basis of timed controlled, namely
explicit clocks, are very expensive to use in a
critical embedded environment. Implementation
wise, the infrastructure needed to implement
these clocks in a timed controller is not accept-
able for implementing real-time systems at low
level such as device drivers. In order to func-
tion properly, a timed driver may need an exact
timing. These exacts timings do translate into
low-level software to hardware clocks triggering
interrupts each time a controller needs to wait
during an arbitrary amount of time. Even with
this, a controller cannot guarantee all the timing
constraints, because interrupts might have been
masked for a certain computation.

Our contribution. In this paper, we explore
another way of modeling embedded systems,
starting from peripheral devices. We would like
to derive a controller — a device driver — with-
out explicit timed models. However, the untimed
automata framework does not have the necessary
level of expressiveness in order to generate useful
drivers.

Beside the controllable and uncontrollable ac-
tions used in untimed games, device drivers rely
on additional behavior of the device in order to
work. This behavior can be reduced into two
types of uncontrollable actions:

• Delayed actions, which take time to complete



or cannot happen immediately, such as writ-
ing to an external memory, sending a message
on a bus, performing a specific computation
on a hardware dedicated unit, etc. These ac-
tions come usually with some kind of abortion
mechanism, so they are avoidable in a certain
point of view. They are modeled in an explicit
timed context by guards with lower bounds on
clocks as constraints.

• Ineluctable actions, which are known to hap-
pen in a nominal context: the end of a trans-
mission or a conversion, or more generally an
acknowledgement of the reception of a com-
mand. These can be modeled using invari-
ants on states, however in the explicit timed
context we need to know an upper bound on
the delay, which is not always possible with a
quantitative approach.
We propose to extend the semantics of un-

timed games with two properties of uncontrol-
lable actions: avoidability — an avoidable action
cannot disrupt the behavior of the driver — and
ineluctability — the driver can rely on these ac-
tions to happen.

We will derive the traditional controller syn-
thesis problem for reachability games in this con-
text.

2 Logical timed game automata

In this section we propose a variant of the
traditional untimed game automata with new
logical-timed semantics. The modified semantics
of actions let us express two important notions
of timed automata: delay and urgency. Without
these notions, it is impossible to write an untimed
controller while keeping the element of surprise.
The element of surprise is necessary in this con-
text: a device driver should be able to react to
any hardware interrupt when it happens.

Without delays, we cannot express the fact
that an hardware action (such as analog conver-
sions, or emitting a message on a com bus) takes
times, and as such the device driver can perform
actions, even aborting the current operation (see
Figure 3). Without urgency, we cannot model
any predicted behavior of the device. In these
kind of games, the device is expected to play ev-
ery move at its disposal to make the controller
fail, including choosing not to play, even if the
controller cannot play any move in the current
state. As such, it would not make sense to wait
for something to happen (see Figure 4).

As we do not want real-valued clocks, we
define a logical time semantics for game au-
tomata. It is based on the classical definition
G = (Q, q0, AC , AU , δ) where

• Q is a set of states

• q0 ∈ Q is the initial state

• AC and AU are two disjoint sets of actions
for the controller and the environment, respec-
tively.

• δ : Q× (AC ∪AU )×Q a set of edges between
states. We denote q a−→ q′ for (q, a, q′) ∈ E.

In addition to this definition, we also define
Aa

U ⊆ AU and A�U ⊆ AU the subsets of avoidable
and ineluctable actions, respectively. Note that
these subsets are independent, and may or may
not intersect.

These subsets reflect a finer model of the en-
vironment: avoidable actions are actions which
cannot happen instantaneously, such that we are
able to avoid or abort them before they have a
chance to happen. Ineluctable actions, on the
other hand, can reasonably expected to happen,
unless a major failure occurs.

For the rest of this paper, we will consider an
arbitrary game G = (Q, q0, AC , AU , δ). For the
following figures, we will use the following nota-
tions:

• States are represented in circles, and the ini-
tial state is denoted q0.

• Controllable transitions are represented in
solid arrows.

• Uncontrollable transitions are represented in
dashed arrows.

• Avoidable transitions start with a circle.

• Ineluctable transitions end with a double ar-
rowhead.

2.1 Definitions

For X ⊆ Q and Σ ⊆ AC ∪ AU , we define
the predecessor and successor functions preΣ :
2Q → 2Q, sucΣ : 2Q → 2Q: ∀q ∈ Q, q ∈
preΣ(X) iff ∃a ∈ Σ and q′ ∈ X, s.t. q a−→ q′,
and ∀q ∈ Q, q ∈ sucΣ(X) iff ∃a ∈ Σ and q′ ∈
X, s.t. q′ a−→ q. If Σ = AC ∪AU , we note pre(X)
and suc(X)

For i = C,U , we define Γi : Q → 2Ai ∪ {⊥},
with ⊥ /∈ Ai the enabling conditions. For q ∈ Q,
Γi(q) is the set of available moves for player i. The



q0 q1

q2

q3

q4

q5

c

u

ua

ui
uai

Figure 2: Graphical notation example: Here q0 is the
initial state, and c ∈ AC , u ∈ Aa�

U , ua ∈ Aa�
U , ui ∈

Aa�
U and uai ∈ Aa�

U .

q0 q1 q2

q3

start recv

recv

recv

read

read

Figure 3: Rx part of a communication device: the
uncontrollable actions recv represent the reception of
a message. In q1 the data register is empty, in q2 it
is full and in q3 it is overwritten. Because the trans-
mission of a message takes time, two immediate and
consecutive receptions cannot happen. In this situa-
tion, we are able to express the ability for the driver
to perform a read action between two recv, and avoid
q3.

special action ⊥ represents the act of choosing not
to play in this state.

We denote by ∆ the set {0, •}. It represents
the logical time at which an action is played. It
can be instantaneous (0), or unknown (•).

A run of a game structure is the sequence
q0, 〈a1, t1〉, q1, 〈a2, t2〉, q2, . . . with ti ∈ ∆, such

q0 q1

send

end

Figure 4: Tx part of a communication device: the
uncontrollable action end represent the end of trans-
mission interrupt. Because of the way the bus may
be structured, or saturated, we do not know an upper
bound on the reaction time, only that it will happen
eventually.

that qi ∈ Q and qi
ai−→ qi+1 for all i >= 0. Se-

mantically, 〈a,0〉 means that the action a is per-
formed immediately, whereas in 〈a, •〉, the action
is performed at an unknown time, possibly zero.
We denote by R the set of runs, and by R the set
of finite runs.

For r ∈ R, we define First(r) the first state of
r, States(r) the set of states which appear in r,
and Act(r) the set of actions which appear in r.
If r ∈ R, we define Last(r) the last state of r.

We define Rs the set of reliable runs, which
do not depend on uncontrollable actions:

r ∈ Rs ⇔ Act(r) ∩A�U = ∅

For R ⊆ R and X ⊆ Q, we denote by R|X the
subset of R such that ∀r ∈ R|X ,States(r) ⊆ X.

3 Controller synthesis

In this section, we will solve the controller syn-
thesis problem using our modified semantics. The
goal is to derive a strategy for the controller to
restrict the behavior of the game.

A strategy si for player i is a function si : R →
2Ai ∪ {⊥} ×∆. It is said to be memoryless if it
only depends on the current state of the run, i.e.
si : Q→ 2Ai ∪ {⊥} ×∆.

Let G = (Q, q0, AC , AU , δ) be a game struc-
ture, and sC a strategy for the controller. We
define the outcome Outcome(q, sC) of a strategy
the subset of R defined inductively by:

• q ∈ Outcome(q, sC)

• If r ∈ Outcome(q, sC) is finite, r′ = r
a−→ q′ ∈

Outcome(q, sC) if r′ ∈ R and
– a ∈ Aa

U ;

– a ∈ Aa
U and @(r

a′−→ q′′ s.t. 〈a′, 0〉 ∈ sC(r)).
– a ∈ sC(r).
• An infinite run belongs to Outcome(q, sC)

if all its finite prefixes also belong to
Outcome(q, sc)

If q = q0, we simply write Outcome(sC). The
control synthesis problem can be declined into ob-
jectives, or winning conditions. For a given game
G, a winning condition CW is a set of allowed
runs. A strategy s for the controller is winning if
Outcome(s) ⊆ CW .

The result of applying a strategy on a game is
also a game whose set of runs is exactly the out-
come of the strategy. We will use both definitions
indifferently.



Relation to timed Games It is possible to ex-
press some of our semantics using timed games,
as in (De Alfaro et al., 2003; Behrmann et al.,
2007). The avoidable actions for example, trans-
late directly into guards with a lower bound on
clocks and vice versa. However, the ineluctability
cannot be translated as-is into and from timed
automata. We can use invariants on states to
force the environment to play, but as the model
uses explicit clocks, we have to express an upper
bound on the invariants. Our extension here re-
moves this need for explicits values or parameters.
It restricts only the behavior of the environment,
not of the controller, as it is in timed automata
because invariants apply to all players including
the controller.

4 Reachability games

A reachability objective of the controller is to
force the game to reach a certain set of states.
Formally:
Definition 1 (Reachability objective). Let G =
(Q, q0, AC , AU , δ) be a game, and Goal ⊆ Q a set
of goal states. A run r ∈ R is winning if it has a
finite prefix r′ such that Last(r′) ∈ Goal. The set
of winning runs is denoted Reach(Goal).

q0 q1 G
w s

Figure 5: Example reachability game. The objective
is to reach the state G.

4.1 Computing the strategy

The computation of the strategy is obtained from
the set of winning states. A state is winning
for the controller if it is possible to reach a goal
state. The main algorithm for computing win-
ning strategies for reachability games is a back-
wards fixed-point algorithm over the controllable
predecessor function.

Intuitively, a state s is a controllable predeces-
sor of X if the following conditions are met:

• there is an action which is guaranteed to hap-
pen (either controllable or uncontrollable in-
eluctable);

• all other actions of the environment cannot
prevent the game to reach a state in X.

Definition 2 (Controllable predecessors). Let
G = (Q, q0, AC , AU , δ) be a game, and X ⊆ Q a

set of states. The controllable predecessors π(X)
of X is the subset of Q defined by:

π(X) = preC(X) \ preUa(X)

∪ preU�(X) \ preU (X)
(1)

The two parts of the formula represent two
different ways to win:
• if there is a controllable action from s to a

state in X, all uncontrollable actions must ei-
ther be avoidable, or also lead to states in X

• if there is an ineluctable uncontrollable action,
all other uncontrollable actions must also lead
to a state in X.
The set of winning states is computed using a

backwards fixed-point algorithm.

Algorithm 3 Reachability computation algo-
rithm
Require: Goal
Ensure: W
W ← Goal
while π(W) 6=W do
W ←W ∪ π(W)

end while
if initial ∈ W then return Success
else return Failure
end if

From the set of winning and goal states, we
can derive a non-deterministic, memoryless strat-
egy for the controller. The canonical memoryless
strategy smc :W → (2AC ∪ ⊥,∆) is defined by:

smc (q) =

{
⊥if @a ∈ AC , q

a−→ q′, q′ ∈ W,

{〈a, d〉|a ∈ AC , q
a−→ q′, q′ ∈ W},

where

d =


0 if ∃a′ ∈ Aa

U , q
′′ ∈ Q \W

such that q a′−→ q′′,

• otherwise.

(2)

4.2 Correctness of the computed
strategy

The partial definition of smc on W makes sense
because the strategy does not allow leaving W
(Lemma 5). Note that in the first case, the con-
troller waits for an uncontrollable ineluctable ac-
tion to occur, which is bound to happen by defi-



nition of ineluctable actions, and because the cur-
rent state is in W. The second case just cuts off
transitions which would lead to loosing states.

The following lemmas and theorems hold if
Algorithm 3 returns successfully. To simplify the
formulation of the results we will always assume
that it returns successfully. For our game G, let
us consider a reachability condition in the form
of Goal ⊆ Q. We will assume that the algorithm
returns successfully and computes the set W of
winning states.
Lemma 4 (Winning states). From all states in
W, there is a sure run to a state in Goal, i.e. ∀s ∈
W,∃r ∈ Rs such thatFirst(r) = s and Last(r) ∈
Goal.

Proof. We will proceed by induction. We define
the following sequence:

Wk =

{
Goal if i = 0,

Wi−1 ∪ πWi−1 otherwise.

It is trivial to see that for all states in W0, there
is a sure run for a state in Goal. If the property
holds for n ∈ N, we can show that it holds for n+1
by finding a run from Wn+1 to a state in Wn,
from which we have a sure winning run. From
the definition of π, we can see that, for all states
q ∈ Wn+1:

∃a ∈ AC , q
′ ∈ Wn such that ∃q a−→ q′and

@a′ ∈ Aa
U , q

′′ ∈ Wn, q
a′−→ q′′,

(3)

or

∃a ∈ A�U , q′ ∈ Wn such that ∃q a−→ q′and

@a′ ∈ AU , q
′′ ∈ Wn, q

a′−→ q′′.
(4)

Because the sequence is monotonic and the set of
states is finite, it necessarily converges to a limit,
W.

Lemma 5. Given smc defined by Equation 2, we
have Outcome(smc |W) = Outcome(smc ). That is,
the application of the strategy does not leave W.

Proof. Let us procede by contradiction. Let’s
suppose that there is a run r ∈ Outcome(smc ) \
Outcome(smc )|W . Assuming our hypotheses, that
means that there are one or several intermediate
states in r which are not an element ofW. It can-
not be first because q0 ⊆ W by definition. Let’s
take q the first of these states, and denote by p
the state just before q, and a the action such that
p

a−→ q is an infix of r. We have q ∈ W and p ∈ W.

By definition, we also have a /∈ A�U . By definition
of the outcome, we have one of the following cases:

a ∈ Aa
U (5)

a ∈ Aa
U and @(p

a′−→ q′ s.t. 〈a′, 0〉 ∈ smc (p)) (6)
a ∈ smc (r). (7)

The case of 7 is not possible by definition of smc ,
and because q /∈ W. This would lead to a contra-
diction of the hypothesis.

If a ∈ Aa
U (5), then by definition we have p ∈

preUa(W), and p ∈ preU (W). By definition of π,
we have p /∈ π(W), thus p /∈ W by definition of
W. We would have a contradiction too.

Let’s consider the case (6). The fact that there
is no possible move 〈a′, 0〉 ∈ smc (p) implies that
smc (p) = ⊥. Thus, we have p /∈ preC(W). Be-
cause a ∈ AU , we have p /∈ π(W), thus p /∈ W by
definition of W.

Since all possible cases lead to a contradiction,
the hymothesis is false and thus the lemma holds.

Lemma 4, proves that the game is possibly
winning for the controller, with the right strategy.

We cannot prove that our generated controller
includes all and only the winning runs, since it
allows infinite runs (see Figure 6).

q0 G

a

b

Figure 6: Possibly infinite game: the canonical strat-
egy allows to do a infinitely many times before b.

We must however assure that the strategy is
safe and sound, in that it does not capture loosing
runs, and all winning runs are captured.
Theorem 6. For all r ∈ Outcome(smc ), r ∈
R =⇒ ∃ρ ∈ Rs s.t. rρ ∈ Reach(Goal)and rρ ∈
Outcome(smc )

Proof. If any finite run r does not leave W, we
have Last(r) ∈ W. Thus, by Lemmas 4 and 5
there is a finite winning run r′ ∈ Rs such that r′ ∈
Reach(Goal), and rr′ ∈ Outcome(smc ). Formally,
∀r ∈ Outcome(smc ),States(r) ∩W = ∅.

Lemma 7. For all r ∈ (Reach(Goal) ∩Rs) |W ,
we have either

r ∈ Outcome(smc ), or
∃r′ ∈ Outcome(smc ),

such that r ∈ (Reach(Goal) ∩Rs) |W .



Sketch of proof. From Theorem 6, we know that
Outcome(smc ) ⊆ Rs|W . For a given run
r ∈ (Reach(Goal) ∩Rs) |W , it can either be in
Outcome(smc ) or not. In the latter case, the run
has been cut at a certain point because a different
action from the environment could have spoiled
the outcome of the game (see Figure 7).

q0 q1

Wq2

a
c

b

d

Figure 7: Example of a winning run cut by our strat-
egy. The winning run bc is cut because the controller
takes a immediately in order to prevent the environ-
ment to take d.

Because Algorithm 3 returns successfully, we
can construct a sure winning run from every state
in W, so there is another winning run.

As a consequence, we can state the following
theorem about the existence of solutions and our
ability to capture them.
Theorem 8. If Reach(Goal) 6= ∅, then
Outcome(smc ) 6= ∅.

5 Conclusion

In this paper, we have presented a semantic
extension of untimed automata to introduce the
model based design methodology in the concep-
tion of low level software for embedded systems.
This extension introduces two uncontrollable ac-
tions’ properties that extend the model of the en-
vironment:
• the delayed action cannot happen instanta-

neously so that the device driver can perform
another action if needed.

• the ineluctable action is guaranteed to happen
eventually, and on which the driver can rely.
This model combines some of the expressive-

ness of timed games, with the simplicity of un-
timed automata. It allows an easier implementa-
tion of these models, more suitable to embedded
real-time systems.

We have adapted the notion of control and
reachability games for this extension and defined
and proved an algorithm to solve these problems
in the general case.

However, the generated strategy can be non-
deterministic, and allows infinite runs (one can
switch infinitely many times between two states
before reaching the goal). In practice, we need to
find a deterministic implementation of the strat-
egy that finds the shortest path and eliminating
loops.

The goal of this work is to provide the com-
plete toolchain to model, configure and generate
the device driver code for any given system. In
order to do so, we must extend the controller syn-
thesis to safety games, which deals with avoiding
bad states. We will also propose a generic imple-
mentation of the resulting controller to complete
the methodology.

REFERENCES

Alur, R. and Dill, D. L. (1994). A theory of
timed automata. Theoretical Computer Science,
126(2):183–235.

Behrmann, G., Cougnard, A., David, A., Fleury, E.,
Larsen, K. G., and Lime, D. (2007). Uppaal-
tiga: Time for playing games! In Computer
Aided Verification, pages 121–125. Springer.

De Alfaro, L., Faella, M., Henzinger, T. A., Majum-
dar, R., and Stoelinga, M. (2003). The element
of surprise in timed games. In CONCUR 2003-
Concurrency Theory, pages 144–158. Springer.

Kirschke-Biller, F. (2011). Autosar – A worldwide
standard current developments, roll-out and out-
look. www.autosar.org.

Ramadge, P. J. and Wonham, W. M. (1989). The
control of discrete event systems. Proceedings of
the IEEE, 77(1):81–98.

The International Organization for Standardization
(2011). ISO/DIS 26262 - Road vehicles - Func-
tional safety.


