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We study the rates of estimation of finite mixing distributions, that is, the parameters of the mixture. We prove that under some regularity and strong identifiability conditions, around a given mixing distribution with m0 components, the optimal local minimax rate of estimation of a mixing distribution with m components is n -1/(4(m-m 0 )+2) . This corrects a previous paper by Chen (1995) in The Annals of Statistics.

By contrast, it turns out that there are estimators with a (nonuniform) pointwise rate of estimation of n -1/2 for all mixing distributions with a finite number of components.

1. Introduction. Finite mixture models have been applied since [START_REF] Pearson | Contributions to the theory of mathematical evolution[END_REF] in various fields including astronomy, biology, genetics, economy, social sciences and engineering [START_REF] Mclachlan | Finite mixture models[END_REF].

Finite mixtures and their estimation naturally arise mostly in three cases. One is model-based clustering. Here the aim is to divide the data into k clusters and assign (new) data to a cluster. A possible approach is to consider that data point from each cluster is generated according to a probability distribution, so that the whole data is generated by mixture with k components [START_REF] Mclachlan | Finite mixture models[END_REF][START_REF] Teh | Dirichlet Process[END_REF].

The second, more traditional case, is the statistical description of possibly heterogeneous data where the underlying mixing distribution has no particular meaning. In that case, mixtures are a tool to describe efficiently the "true" probability distribution and control the convergence rate of mixture estimators to it (van [START_REF] Van De Geer | Rates of convergence for the maximum likelihood estimator in mixture models[END_REF][START_REF] Ghosal | Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities[END_REF][START_REF] Genovese | Rates of convergence for the Gaussian mixture sieve[END_REF].

In the third case, the goal is the mixing distribution itself: its support points and proportions are the parameters we want to estimate. They typically correspond to the phenomenon that is studied. This is the case we are interested in, on the basis of observations drawn from the mixture.

Some works try to bridge the gap between the estimation of the mixture and the one of the mixing distribution, usually at least through estimation of the number of components -the order -in the finite mixture. In particular, [START_REF] Rousseau | Asymptotic behaviour of the posterior distribution in overfitted mixture models[END_REF] have proved that their Bayesian estimator of an overfitted mixture tends to empty the extra components, and [START_REF] Gassiat | Consistent order estimation and minimal penalties[END_REF] have given the minimal penalty on the maximumlikelihood estimator of the order that yields strong consistency.

One could expect that a good estimator for the mixture would be a good estimator for the mixing model. However, this is not so clear. The situation is reminiscent of the difference between estimation and identification in model selection, where [START_REF] Yang | Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation[END_REF] has proved that no procedure can be optimal for both. Moreover, rates of convergence can be very different, as illustrated in an infinite-dimensional case by [START_REF] Bontemps | Bayesian methods for the shape invariant model[END_REF].

Optimal rates are a key information in estimating the mixture parameters. These were unknown (see e.g. [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF] till the work of [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF], who established a n -1/4 local minimax rate, under reasonable identifiability conditions, for one-dimensional-parameter mixtures. This result is somewhat surprising since the rate does not depend on the number of components. It turns out to be erroneous, because of its Lemma 2.

Our article aims at giving correct statements and proofs and its consequences.

The main part consists in finding the correct exponent in the local minimax rate; we do so in Theorem 3.2 and Theorem 3.3. The rate gets worse with more components, which is consistent with the behaviour when there are infinitely many components, such as deconvolution: [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] had proved that the L 2 -convergence rate was polylogarithmic in general, and [START_REF] Caillerie | Deconvolution for the Wasserstein metric and geometric inference[END_REF] and [START_REF] Dedecker | Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension[END_REF] have generalized this kind of rates to the more relevant (for us) Wasserstein metrics. The most original technical tool we shall use is a coarse-graining tree on the parameter indices.

In addition, the optimal local minimax rate and the optimal pointwise rate of estimation everywhere are not the same. This discrepancy is unusual in statistics, and probably the reason why the n -1/4 rate went unchallenged for twenty years. Specifically, if instead of comparing all pairs of mixtures in a ball, we allow only one mixture in it, we get (21) which corrects Lemma 2 of Chen. As a consequence, Theorem 2 of Chen is valid by dropping uniformity: for any fixed mixing distribution say G, the estimator considered there will converge at rate n -1/4 , but with a multiplicative constant that depends on G. It then becomes a statement on the optimal pointwise rate of estimation everywhere, and can even be strengthened to n -1/2 as we show in Theorem 4.1.

The paper by [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF] has been widely cited and used. Apart from applied papers citing it that may have relied on the theoretical guarantees (see e.g. [START_REF] Kuhn | The Spatial Structure of Young Stellar Clusters. I. Subclusters[END_REF][START_REF] Liu | Unrestricted Mixture Models for Class Identification in Growth Mixture Modeling[END_REF], there are essentially two ways it could play a role. Firstly, when it is used as part of a proof, secondly when it is used as a benchmark.

The first case covers papers that generalize Chen's result in other settings, and re-use its theorems and proofs. For example, [START_REF] Ishwaran | Bayesian model selection in finite mixtures by marginal density decompositions[END_REF] propose a Bayesian estimator that achieves the n -1/4 frequentist rate, and use Chen (1995, Lemma 2) in their analysis. More recently, [START_REF] Nguyen | Convergence of latent mixing measures in finite and infinite mixture models[END_REF] generalizes those results to mixtures with an abstract parameter space and indefinite number of components. But Nguyen (2013, Theorem 1) generalizes Chen (1995, Lemma 2) while transposing the proof with the mistake. The main results of both these articles hold however: they do not need the full strength of Chen (1995, Lemma 2), but merely the weaker version (21). Ho and Nguyen (2016) prove such a sufficient version.

These two papers also use [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF] article as a benchmark. However, the optimal pointwise rate everywhere would probably be a better reference point in their case, as in many others. In particular, it seems likely that a Bayesian estimator could converge pointwise at speed n -1/2 everywhere. We have not checked whether the proof by [START_REF] Ishwaran | Bayesian model selection in finite mixtures by marginal density decompositions[END_REF] can be improved, or if another prior is necessary.

This use as a benchmark is very usual, as expected for this kind of optimality result (see e.g. Zhu andZhang, 2006, 2004). Let us point in particular to a result by [START_REF] Martin | Convergence rate for predictive recursion estimation of finite mixtures[END_REF]. He achieves almost n -1/2 rate for the predictive recursion algorithm, and tries to explain the discrepancy with [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF] by the fact that the parameters are constrained to live in a finite space for his algorithm. In fact, since his rate is pointwise, it fits with the continuous case.

Since early versions of this article have been made available, there have been interesting new developments: Ho et al. (2016); [START_REF] Ho | Identifiability and optimal rates of convergence for parameters of multiple types in finite mixtures[END_REF] have made explicit the system of equations underlying the minimax argument, for any finite number of parameters, and solved important special cases. The strong identifiability conditions we shall use in this article ensure that the system of equations is generic.

In Section 2, we give the notations and define and discuss the regularity assumptions we use. In Section 3, we state and discuss the main theorem, giving the optimal local minimax rate. In Section 4, pointwise rate everywhere is investigated. We try to give some intuition in both of these sections. In Section 5, we also dwell on the interpretation and practical consequences of having different rates, and conclude with open questions. In Section 6, we give and explain the meaning of the key intermediate results and prove the main theorems from here. In Section 7, we prove those key intermediate results. In particular, we introduce the most original tool of our proofs: the coarse-graining tree that allows to patch the mistake in the article by [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF].

Some auxiliary and technical results are detailed in appendices grouped in a supplemental part [START_REF] Heinrich | Supplement to 'Minimax rates for finite mixture estimation[END_REF].

Notations and regularity conditions.

2.1. Basic notations. Throughout the paper, the parameter set Θ, of diameter Diam Θ, is always assumed to be a compact subset of R with nonempty interior. Let G m (resp. G m ) be the set of (resp. at most) m-mixing or m-point support distributions G on Θ. We set also G <∞ = ∪ 1 G .

As usual, we compare two mixing distributions G and G using transportation distances, or L q -Wasserstein metrics, with q ≥ 1. They completely bypass identifiability issues that would arise with the square error on parameters. The definition is:

(1) W q (G, G ) = inf Π Θ 2 |θ -θ | q dΠ(θ, θ ) 1/q
where the infimum is taken over probability measures Π on Θ × Θ with marginals G and G . By Jensen's inequality, W q ≥ W q if q > q and moreover, W q q ≤ W q q (Diam Θ) q-q . We will usually work with the strongest available Wasserstein metric for our results. Endowed with the metric W q , the space G m is compact.

In the special case of W 1 , we will also use its dual representation, where |f | Lip stands for the Lipschitz seminorm of f (e.g. Dudley, 2002, section 11.8):

(2)

W 1 (G, G ) = sup |f | Lip 1 Θ f (θ)d(G -G )(θ).
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Given G = m j=1 π j δ θ j ∈ G m and a family {f (x, θ)} θ∈Θ of probability densities on R w.r.t. some σ-finite measure λ, we can define a finite mixture with m components:

(3) f (x, G) = Θ f (x, θ)dG(θ) = m j=1 π j f (x, θ j ).
To compare mixture distribution functions F (x, G) and F (x, G ), we will use the Kolmogorov metric

F (•, G) -F (•, G ) ∞ .
Here of course we have by definition F (x, θ) =

x -∞ f (y, θ)dλ(y), which extends to F (x, G) by linearity provided that f (y, δ θ ) = f (y, θ) where δ θ denotes the Dirac measure at θ.

Regularity conditions.

(p, α)-smoothness. Hereafter, f (p) (x, θ) or f (p) (•, θ) denote the p-th derivative of f always taken w.r.t. the variable θ.

Definition 2.1. The family {f (•, θ), θ ∈ Θ} w.r.t. some σ-finite measure λ is (p, α)-smooth if E p,α θ, θ , θ = R f (p) (x, θ ) f (x, θ ) α f (x, θ) dλ(x) (4)
is a well-defined [0, ∞]-valued continuous function on Θ 3 , and if there exists

ε > 0 such that |θ -θ | < ε =⇒ ∀θ ∈ Θ, E p,α (θ, θ , θ ) < ∞. (5)
These smoothness conditions are easy to check in practice, and general enough. For example, all exponential families satisfy them, as shown in the supplemental part (Heinrich and Kahn, 2015, E.2). They will be useful for proving local asymptotic normality [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF] of relevant families. k-strong identifiability (k ∈ N). Chen (1995) introduced a notion of strong identifiability. We will need a slightly more general version.

Definition 2.2. The family {F (•, θ), θ ∈ Θ} of distribution functions is k-strongly identifiable if for any finite set of say m distinct points

θ j ∈ Θ, k p=0 m j=1 a p,j F (p) (•, θ j ) ∞ = 0 =⇒ a = max p,j |a p,j | = 0,
where • ∞ denotes the supremum norm with respect to the variable x.

Chen's strong identifiability corresponds to 2-strong identifiability. Let us show why this notion is useful. Consider

G n = 1 2 (δ n -1 + δ -n -1 ) in G 2 . We see that F (•, G n ) = F (•, 0)+n -2 F (2) (•, 0)/2+o(n -2 ), provided we can expand around θ = 0. Then 2-strong identifiability ensures that F (•, 0) -F (•, G n ) ∞ is of order n -2 ,
as shown in Proposition 2.3 below, whereas simple (1-strong) identifiability would say nothing. We will need k-strong identifiability with a higher k if more terms cancel.

Proposition 2.3. Let {F (•, θ), θ ∈ Θ} be k-strongly identifiable family of distribution functions with

F (k) (x, θ) continuous in θ. Set for ε > 0 Θ m ε = (θ j ) 1 j m ⊂ Θ : min j =j |θ j -θ j | ε .
Then for all a = (a p,j ) 0 p k

1 j m , inf Θ m ε k p=0 m j=1 a p,j F (p) (•, θ j ) ∞ ε,k,m a , where ε,k,m
means "more than", up to some constant C(ε, k, m) > 0.

Proof. The function (a, (θ j )

1 j m ) → k p=0 m j=1 a p,j F (p) (•, θ j )
∞ is lower semi-continuous on the compact set {a : a = 1} × Θ m ε , so that it admits a minimum. By k-strong identifiability, it is nonzero.

We expect the strong identifiability to be rather generic, and hence the statements of this paper often meaningful. In particular, Chen (1995, Theorem 3) has proved that location and scale families with smooth densities are 2-strongly identifiable. The theorem and the proof straightforwardly generalize to our setting. We merely state the result.

Theorem 2.4. Let k 1. Let f be a probability density w.r.t. the Lebesgue measure on R. Assume that f is k -1 times differentiable with

lim x→±∞ f (p) (x) = 0 for p ∈ [[0, k -1]]. Consider f (x, θ) = f (x -θ), with θ ∈ Θ ⊂ R. Then the corresponding distributions family {F (•, θ), θ ∈ Θ} is k-strongly identifiable. If Θ ⊂ (0, ∞), the result stays true with f (x, θ) = 1 θ f x θ .
For more general conditions see the article by [START_REF] Holzmann | Identifiability of finite mixtureswith applications to circular distributions[END_REF], that also generalize well to k-strong identifiability. 

d 0 = m -m 0 .
Lower bounds on local asymptotic minimax rates. 1,4]], the family of densities {f (•, θ)} θ∈Θ is (p, α)-smooth and satisfies, for some point θ 0 in the interior of Θ,

Assumption A(k, θ 0 ). For all (p, α) ∈ [[1, 2k + 2]] × [[
|f (2k+1) (•, θ 0 )|dλ > 0.
Typically, k will be d 0 and θ 0 a support point of G 0 . These conditions allow to prove local asymptotic normality (Le [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF] for relevant families. This will give some insight on the reason why the lower bound on the rate holds, and on how the mixtures behave when we change the parameters in the least sensitive direction. The condition on the support point guarantees identifiability locally for the families, and we need more derivatives than usual, since there will be cancellations in the first terms. In what follows, E G will denote the expectation w.r.t. the measure dP G = f (•, G)dλ. And all the mixing distribution estimators denoted by G n below will be based on i.i.d. n-samples.

Theorem 3.2. Recall (6) and set ε n = n -1/(4d 0 +2)+κ for some κ > 0. Let θ 0 be a support point of G 0 . Under Assumption A(d 0 , θ 0 ), for any sequence of estimators G n , we have

sup G∈Gm W 1 (G,G 0 )<εn E G W 1 (G, G n ) n -1/(4d 0 +2) .
Let us give some intuition. The data we have access to is the empirical distribution F n where n is the sample size, and which gets closer to the true mixture F (•, G) at rate n -1/2 . Hence two mixing distributions G and G can be told apart only if

F (•, G) -F (•, G ) ∞ is at least of order n -1/2 .
As an example, let G 0 = δ 0 and consider two-component mixing distributions around, say

G n = 1 2 δ -2n -1/6 + δ 2n -1/6 and G n = 4 5 δ -n -1/6 + 1 5 δ 4n -1/6
. Both have 0 as first moment, and 4n -1/3 as second moment but the third moment is zero for G n and 12n -1/2 for G n . A Taylor expansion in θ = 0 up to the third order gives then

F (•, G n ) = o(n -1/6 ) and F (•, G n ) = o(n -1/6 ).
So that no test can reliably tell G n from G n with an n-sample. On the other hand, we clearly have W 1 (G n , G n ) = n -1/6 for all n. So that the minimax rate for two-mixing distributions cannot be better than n -1/6 . This moment matching argument can be made rigorous and precise with two tools. One is Lindsay's Hankel trick (Lindsay, 1989, Theorem 2A), also used by [START_REF] Dacunha-Castelle | The estimation of the order of a mixture model[END_REF] to estimate the order of a mixture. The other is local asymptotic normality property (LAN) developed by [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF]. Section 6 uses them to build a LAN family with scale factor n 1/(4d 0 +2) which gives Theorem 3.2 via Theorem 6.1.

Upper bounds on local asymptotic minimax rates.

Assumption B(k). The family of densities

{f (•, θ)} θ∈Θ satisfies • For all x, F (x, θ) = x -∞ f (•, θ)dλ is k-differentiable w.r.t. θ, • {F (•, θ), θ ∈ Θ} is k-strongly identifiable,
• There is a uniform continuity modulus ω(•) such that

sup x F (k) (x, θ) -F (k) (x, θ ) ω(θ -θ ) with lim h→0 ω(h) = 0.
The latter condition holds if sup x,θ |F (k+1) (x, θ)| exists and is finite. These differentiability conditions should be compared with the usual parametric case, where differentiability in quadratic mean, or twice differentiability in θ for a less technical condition, is enough to get n -1/2 local minimax rate. We will need B(2m) to prove a global minimax rate of n -1/(4m-2) (see ( 9) in Theorem 3.3), and B(1) for a pointwise rate of n -1/2 everywhere (Theorem 4.1).

Theorem 3.3. Let G n (m) be "the" minimum distance estimator, that is any mixing distribution in G m such that (7) F (•, G n (m)) -F n ∞ = inf G∈G m F (•, G) -F n ∞ .
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Under Assumption B(2m), there is ε > 0 such that, with q = 2d 0 + 1:

sup G∈G m Wq(G,G 0 )<ε E G W q ( G n (m), G) n -1/(2q) , (8) 
and more globally, with r = 2m -1:

sup G∈G m E G W r ( G n (m), G) n -1/(2r) . (9) Remark 3.4. Since G → F (•, G) -F n ∞ is lower semi-continuous on the compact metric space (G m , W q ),
the infimum in (7) is attained . The minimum distance estimator is discussed by [START_REF] Deely | Construction of Sequences Estimating the Mixing Distribution[END_REF] and Chen.

Theorem 3.3 is proved it by establishing a uniform control of the ratio

F (•, G) -F (•, G ) ∞ /W q (G
, G ) q in Theorem 6.3. To do so, we consider sequences of couples (G n , G n ) minimizing the relevant ratios, and expand

F (•, G n )-F (•, G n ) as a weighted sum on the relevant derivatives F (p) (•, θ j,n ).
A difficulty arises since distinct support points θ j,n may converge to the same θ j , leading to cancellations in the sums. Forgetting this case was the mistake in the proof of Chen (1995, Lemma 2). We overcome the issue in Section 7: we build clusters of support points whose pairwise distances decrease at a given rate and structured as nodes of a coarse-graining tree. We may then use Taylor expansions on each node and its descendants (Lemma 7.4).

Remarks 3.5. It is worth noticing the following from Theorems 3.2-3.3:

• They together imply that the optimal local asymptotic minimax rate is n -1/(4d 0 +2) for estimating a mixture with at most m components around a mixture with m 0 components, for any transportation distance

W p with p ∈ [[1, 2d 0 + 1]].
• The rate is driven by d 0 , that is, it gets harder to estimate the parameters of a mixture when it is close to a mixture with less components. • The worst case is when m 0 = 1, yielding a global minimax rate of estimation n -1/(4m-2) . The rate gets worse when more components are allowed. So that the nonparametric rates for estimating mixtures with an infinite number of components like in deconvolution appear natural. • On the other hand, when the number of components is known, that is m = m 0 , we have the usual local minimax rate n -1/2 . • The global minimax rate on the mixtures with exactly m components stays at n -1/(4m-2) , because G m is not compact, and Theorem 3.2 still apply in the vicinity of m 0 -component mixtures.

4. On pointwise rate and superefficiency. The slow rate n -1/(4m-2) in ( 9) might be a little surprising when for example some Bayesian estimators have n -1/4 rate of convergence [START_REF] Ishwaran | Bayesian model selection in finite mixtures by marginal density decompositions[END_REF]. However this convergence rate is not the local minimax rate, but is closer to a pointwise rate of convergence, that is the speed at which an estimator converges to a fixed G when n increases. The difference with local minimax may be viewed as the loss of uniformity in G. We study here the optimal pointwise rates everywhere.

One motivation for local minimax results was to make clear how the Hodges' estimator (van der Vaart, 1998, ch.8) and other superefficient estimators could cohabit with Cramér-Rao bound, and how much they could improve on it.

Specifically, a superefficient estimator can have a better pointwise convergence rate than any regular estimator, but not a better local minimax convergence rate [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF]. Moreover, it turns out that they can only have a better pointwise rate on a Lebesgue-null set (van der Vaart, 1998, ch.8). Now, the set of parameters (weights and support points) defining G <m is a Lebesgue-null w.r.t. the one defining G m . Hence, we might expect that, by biasing the estimators toward the low numbers of components, we might attain better pointwise rates on G <m , up to n -1/2 , which is the value when the number of components is known. By letting m go to infinity, we would have this pointwise rate for all finite mixing distributions. It turns out this is indeed the case.

Theorem 4.1. Consider for each m 1 the minimum distance estimator G n (m) in G m as defined in Theorem 3.3, with G n (∞) arbitrary. Fix κ ∈ (0, 1/2) and set

(10) m n = min m 1 : F (•, G n (m)) -F n ∞ n -1/2+κ . Under Assumption B(1), for any finite mixing distribution G ∈ G <∞ , E G W 1 ( G n ( m n ), G) G,κ n -1/2 .
Remarks 4.2.

• Since the typical distance between empirical and theoretical distribution functions is n -1/2 , this m n in (10) is the lowest number of components that is not clearly insufficient.

• The rate n -1/2 cannot be improved since it is the rate if the number of components is known beforehand.
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• This is slightly stronger than just checking that we find the right number of components and then applying Theorem 3.3, because we need much less regularity. Only Assumption B(1) is required, instead of B(2m).

That is, we do not need more smoothness when the number of components increases. Under the hood we rely on the bound (20) instead of Theorem 6.3. • The estimation of the number of components m n and the estimation of G within G mn are not associated. For example, we may estimate m n with Equation (10), and then use the maximum likelihood estimator G on G mn . Conversely, we may estimate the number of components using Gassiat and van Handel's (2013) penalized maximum likelihood estimator.

5. Practical consequences and perspectives. Disagreement between local minimax rate and pointwise rate everywhere might be rare enough that it is worth recalling first what it means.

The asymptotic rate of convergence to a given G will be the pointwise rate C G n -1/2 where C G is some positive constant. However, the estimator will enter this asymptotic regime only after a long time. More precisely, it enters this regime when G is not any more in any of the balls used in the local minimax bound. Alternatively, we may view this situation as the constant C G exploding when G is close to specific G 0 .

In our case, imagine we have a mixing distribution with three components, with all support points within distance δ > 0 of some θ 0 . Then about δ -(4(3-1)+2) = δ -10 observations are necessary to get an estimator with an error of δ. In particular, if G and G are two such three-component mixing distributions, chosen to have the same first four moments, and G and G are the same mixing distributions, rescaled to be ten times closer, we will need 10 10 as many data points to tell them apart as for G and G .

As a consequence, if the components of the mixing distribution to be estimated are not far apart one from the other, it is quite often impossible to get enough data points to get an appropriate estimate. An experimentalist with any leeway in what he measures (use of different markers, say) might then wish to ensure that the peaks are far apart, even at the cost of many data points.

We end the section by some thoughts on possible further work. This article contains the proof that the optimal local minimax rate of estimation around a mixing distribution with m 0 components among mixing distributions with m components is n -1/(4(m-m 0 )+2) , when the parameter space Θ is a compact subset of R.

We think that extension to a multivariate Θ should be workable, much like Nguyen (2013) did for the former erroneous result. On the other hand, non-compactness of Θ would probably bring about technical difficulties, and cases where the result would not hold. Stronger forms of identifiability would probably be required in general, to avoid problems with limits. Moreover, for many natural higher-dimensional families, strong identifiability does not hold, so that the results would be different.

Finally, another line of inquiry are the results that might be expected in a Bayesian framework. The most natural equivalent to the convergence rate of the a posteriori distribution to the real parameter is the pointwise rate of convergence. Hence the question: can we build Bayesian estimators where the a posteriori distributions converge at rate n -1/2 everywhere? Of course, the convergence would not be uniform.

6. Key tools and proofs.

6.1. Local asymptotic normality for Theorem 3.2. All the densities considered in the sequel are w.r.t. some given dominating σ-finite measure on R. We call experiment a family E of densities. Theorem 6.1. Let G 0 ∈ G m 0 with a support point θ 0 in the interior of Θ. There is a family {G n (u)} n 0,u∈R in G m with the following properties: a. For all distinct u, u in R, we have together

W 1 (G n (u), G n (u )) u,u n -1/(4d 0 +2) u W 1 (G n (u), G 0 ); b. Assume A(d 0 , θ 0 ) for the family {f (•, θ)} θ∈Θ and set the product density f n,u = ⊗ n i=1 f (•, G n (u)).
There is an increasing real sequence U n → ∞ such that the sequence of experiments E n = (f n,u ) u∈[-Un,Un] is locally asymptotically normal (LAN) : there are random variables Z n , asymptotically N (0, 1), and numbers Γ n > 0 such that for all u ∈ R,

Log f n,u (X) f n,0 (X) -uZ n Γ n + u 2 2 Γ n P ---→ n→∞ 0 (11)
where X is a n-sample of density f n,0 . In addition, we have lim inf n Γ n > 0 and lim sup n Γ n < ∞. Remark 6.2. We want only an example of this slow convergence, and it should be somewhat typical. That is why we have chosen the regularity imsart-aos ver. 2014/10/16 file: papierAOSv18.tex date: July 8, 2017 conditions to make the proof easy, while still being easy to check, in particular for exponential families.

In particular, in Assumption A(d 0 , θ 0 ), it could probably be possible to lower α in (p, α)-smoothness to 2 + ε and still get the uniform bound we use in the law of large numbers below. Similarly, less differentiability might be necessary if we tried to imitate differentiability in quadratic mean.

Conversely, under possibly more stringent regularity conditions, Γ n is ex-

pected to converge to E G 0 f (2d 0 +1) (•,θ 0 ) f (•,G 0 )
2 up to a multiplicative constant.

Proof of Theorem 6.1. Write the mixing distribution G 0 as ( 12)

G 0 = m 0 -1 j=1 π j δ θ j + π 0 δ θ 0
with θ 0 in the interior of Θ. Let u ∈ R and replace the Dirac measure δ θ 0 in (12) with a mixing distribution H n (u):

(13) G n (u) = m 0 -1 j=1 π j δ θ j + π 0 H n (u).
We want to choose H n (u) close to δ θ 0 . To this end, set µ 0 = 1 and µ 2d-1 = u with d = d 0 + 1,. Choose in addition numbers µ 1 , . . . , µ 2d-2 such that the

k × k-Hankel matrices (M k ) i,j = µ i+j-2 satisfy det M k > 0 for k ∈ [[1, d -1]].
Then, by Lindsay's Theorem 2A (1989), there is a unique mixing distribution H(u) = m j=m 0 π j (u)δ h j (u) with exactly d support-points h j (u) and first moments µ k up to order 2d -1 satisfying ( 14)

m j=m 0 π j (u)h j (u) k = µ k , k ∈ [[0, 2d -1]].
Define then H n (u) by shifting and rescaling the support points of H(u):

H n (u) = m j=m 0 π j (u)δ θ 0 +εnh j (u) with ε n = n -1/(4d-2) .
Now, using the dual representation (1) of W 1 , we see that

W 1 (G n (u), G 0 ) = π 0 W 1 (H n (u), δ θ 0 ) = π 0 ε n W 1 (H(u), δ 0 ) and likewise, W 1 (G n (u), G n (u )) equals π 0 ε n W 1 (H(u), H(u )
) so that Theorem 6.1.a follows.

To guarantee that the points θ 0 + ε n h j (u) involved in G n (u) stay inside Θ uniformly in u, let us show that the functions h j (•) are continuous. Consider the map

ϕ(π 1 , . . . , π d , h 1 , . . . , h d ) = d 1 π j , d 1 π j h j , d 1 π j h 2 j , . . . , d 1 π j h 2d-1 j on the set {(π 1 , . . . , π d , h 1 , . . . , h d ) : π 1 > 0, . . . , π d > 0, h 1 < • • • < h d }.
The uniqueness in Theorem 2A by [START_REF] Lindsay | Moment matrices: applications in mixtures[END_REF] implies that ϕ is injective. Moreover, its Jacobian is non-zero, as it can be seen by recurrence on d:

J(ϕ) = (-1) (d-1)d 2 π 1 • • • π d 1 j<k d (h j -h k ) 4 .
Thus the inverse of ϕ is locally continuous, so that, in particular, the h j (u) are all continuous. Set now

(15) h(U ) = max j d max |u| U |h j (u)|
which is finite for any U > 0 and choose a positive sequence (U n ) such that

U n → ∞ and ε n h(U n ) → 0.
We can now prove local asymptotic normality (11). Let X = (X 1,n , . . . , X n,n ) be an i.i.d. sample with density f n,0 . Since we proceed along the lines of Chen (1995), the proof is only sketched here. Write the log-likelihood ratio as

Log f n,u (X) f n,0 (X) = n i=1 Log (1 + Y i,n (u)) with Y i,n (u) = f (X i,n , G n (u)) -f (X i,n , G n (0)) f (X i,n , G n (0)) .
The main steps are as follows, see Heinrich and Kahn (2015, Sections A.1, A.2 and A.3) for the details:

Step 1. Use linearity of G → f (•, G) and Taylor expansions up to the order 2d -1 with remainder on Y i,n (u) at θ 0 to show that the r.v.'s

Z i,n = π 0 f (2d-1) (X i,n , θ 0 ) f (X i,n , G n (0))
are centered under f n,0 .
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Step 2. Define

Γ n = E Gn(0) |Z 1,n | 2 and Z n = n -1/2 Γ -1/2 n n
i=1 Z i,n and prove that Z n is asymptotically N (0, 1) via Lyapunov Theorem for triangular arrays.

Step 3. Show the following convergences for all u:

A n (u) := n i=1 Y i,n (u) -uZ n Γ n L 2 -→ 0, B n (u) := n i=1 Y i,n (u) 2 -u 2 Γ n L 1 -→ 0, C n (u) := n i=1 |Y i,n (u)| 3 L 1 -→ 0.
Then derive the LAN property from the equality

Log f n,u (X) f n,0 (X) -uZ n Γ n + u 2 2 Γ n = A n (u)+ 1 2 B n (u)+O P (C n (u)).
6.2. Proof ofTheorem 3.2. Let us show how Theorem 6.1 entails Theorem 3.2 using just two points and contiguity [START_REF] Cam | Locally asymptotically normal families of distributions[END_REF]. Consider any sequence of estimators G n , and G n (u) for u = 0, 1 as defined in Theorem 6.1. It's enough to show that for large n, (16) sup

G∈{Gn(0),Gn(1)} E G [W 1 (G, G n )] n -1/(4d 0 +2) .
Recall that we set here ε n = n -1/(4d 0 +2)+κ and note that G n (0) and G n (1) are in the ball {G : W 1 (G, G 0 ) < ε n } for large n, by Theorem 6.1.a. Consider the probability measures P n,u with the densities f n,u of Theorem 6.1.b for u = 0, 1 and set

g n = f n,1 (X) f n,0 (X) exp(-Z n √ Γ n + Γ n /2). Then, P n,1 (A) = e -Γn 2 A e Zn √ Γn g n dP n,0 e -Γn 2 2 A∩{Zn>0}∩{gn>1/2}
dP n,0 .

We have g n P n,0 --→ 1 by ( 11) so that P n,0 (g n 1/2) 1/16 for large n. Since Z n is asymptotically N (0, 1), we also have P n,0 (Z n 0) 1/2 + 1/16. Thus P n,0 ({Z n > 0} ∩ {g n > 1/2}) is at least 3/8 for n large enough and ( 17) ) , by Theorem 6.1.a. By the triangle's inequality, the complement A c is included in {W 1 (G n (0), G n ) an -1/(4d 0 +2) }. Now, either we have P n,0 (A c ) 1 4 and, for G = G n (0), we get

P n,0 (A) 3 4 =⇒ P n,1 (A) e -Γn/2 . Now, choose A = {W 1 (G n (1), G n ) an -1/(4d 0 +2) } where a > 0 is such that W 1 (G n (1), G n (0)) 2an -1/(4d 0 +2
E G [W 1 (G, G n )1 A c ] a 4 n -1/(4d 0 +2) ,
or we have P n,0 (A) 3 4 and by using ( 17), for G = G n (1), we get

E G [W 1 (G, G n )1 A ] e -Γn/2 an -1/(4d 0 +2) ,
so that ( 16) is proved since lim sup n Γ n < ∞.

6.3.

Comparison between distances for Theorem 3.3 and Theorem 4.1. The key technical tool is Theorem 6.3.

• Let G 0 ∈ G m 0 . Under Assumption B(2m), there are ε > 0 and δ > 0 such that, with q = 2d 0 + 1: inf

G =G ∈G m Wq(G,G 0 )<ε Wq(G ,G 0 )<ε F (•, G) -F (•, G ) ∞ W q (G, G ) q > δ, (18) 
and more globally, with r = 2m -1:

(19) inf G =G ∈G m F (•, G) -F (•, G ) ∞ W r (G, G ) r > δ. • Let G 0 ∈ G m 0 . Under Assumption B(1), there are ε > 0 and δ > 0 such that inf G =G ∈G m 0 W 1 (G,G 0 )<ε W 1 (G ,G 0 )<ε F (•, G) -F (•, G ) ∞ W 1 (G, G ) > δ. (20) • Let now G 0 ∈ G m 0 . Under Assumption B(2), there are ε > 0 and δ > 0 such that inf G∈G m 0 W 1 (G,G 0 )<ε F (•, G) -F (•, G 0 ) ∞ W 1 (G, G 0 ) 2 > δ. ( 21 
)
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The proof of Theorem 6.3 is postponed to Section 7 where the novel ingredient, a coarse-graining tree, is constructed to prove ( 18) and ( 19), the most difficult points. These one entail Theorem 3.3. The two related bounds ( 20) and ( 21) hold under weaker differentiability assumptions, but are less general. Bound (20) covers the case where the number of components in the mixture is known, and is used for the proof of Theorem 4.1. Bound ( 21) is the valid weaker version of Lemma 2 by [START_REF] Chen | Optimal Rate of Convergence for Finite Mixture Models[END_REF], which is sufficient for the use other authors have made of it. Here, we only compare mixtures in a ball with the mixture at the center of the ball.

For the proofs of Theorem 3.3 and Theorem 4.1, we need in addition:

Lemma 6.4. Let q, d 1 and G ∈ G m . Assume that the minimum distance estimators G n := G n (m) defined in Theorem 3.3 satisfy for some constant C > 0 and on some event A,

W q ( G n , G) d C F (•, G n ) -F (•, G) ∞ . Then E G W q ( G n , G) 2πC 2 1/2d n -1/2d + Diam(Θ)P G (A c ). Moreover, P G (A c ) is at most 2e -2nz 2 if A is either { F n -F (•, G) ∞ z} or { F (•, G n ) -F (•, G) ∞ 2z}.
Sketch of proof. Bound W q ( G n , G) by Diam(Θ) on A c , use the definition (7) and the triangle's inequality to bound P G (A c )) by applying DKW's inequality [START_REF] Massart | The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality[END_REF].

F (•, G n ) -F (•, G) ∞ by 2 F n -F (•, G) ∞ , then use Jensen's inequality on A and bound E G 1 F n - F (•, G) ∞ (and
6.4. Proof of Theorem 3.3. Let ε, δ > 0 such (18) holds. Set z = 1 2 inf G,G ∈G m Wq(G,G 0 ) ε/2 Wq(G ,G 0 ) ε F (•, G) -F (•, G ) ∞ .
The infimum is taken over a compact set and is thus attained. We have z > 0 by identifiability (coming from Assumption B(2m)).

Consider A = { F (•, G) -F (•, G n (m)) ∞ z}. If G is in G m with W q (G, G 0 ) ε/2 then G n (m) must satisfy W q ( G n (m), G 0 ) < ε on the event A so that by (18), On A, W q ( G n (m), G) q < 1 δ F (•, G n (m)) -F (•, G) ∞ .
Applying Lemma 6.4 with d = q = 2d 0 + 1 and C = 1/δ yields

E G [W q ( G n (m), G)] 2π δ 2 1/2q
n -1/2q + 2 Diam(Θ)e -nz 2 /2 so that bound (8) is proved. Bound ( 9) is obtained likewise from (19).

6.5. Proof of Theorem 4.1. Consider a mixing distribution G 0 ∈ G m 0 . Under Assumption B(1), let ε, δ > 0 such (20) holds. Fix κ ∈ (0, 1 2 ) and set

z = n -1/2+κ ∧ 1 4 inf G∈G m 0 W 1 (G,G 0 ) ε F (•, G) -F (•, G 0 ) ∞ .
By compactness and identifiability, the infimum in z is attained and positive. On the event

A = { F (•, G 0 ) -F n ∞ z}, the minimum distance estimator G n (m 0 ) in G m 0 , defined in Theorem 3.3, satisfies F (•, G n (m 0 )) -F n ∞ F (•, G 0 ) -F n ∞ z n -1/2+κ .
so that mn is at most m 0 by ( 10); thus we have

G n ( mn ) ∈ G m 0 . Next, G n ( mn ) must satisfy W 1 ( G n ( mn ), G 0 ) < ε on A since F (•, G n ( mn )) -F (•, G 0 ) ∞ 2 F (•, G 0 ) -F n ∞ 2z,
by the triangle's inequality. Applying then (20) on A, we get

W 1 ( G n ( mn ), G 0 ) < 1 δ F (•, G n ( mn )) -F (•, G 0 ) ∞ .
Now, apply Lemma 6.4 with q = d = 1, C = 1/δ and A as above, so that

E G 0 [W 1 ( G n ( mn ), G 0 )] 2π δ n -1/2 + 2 Diam(Θ) exp(-2n 2κ ).
7. The coarse-graining tree and the proof of Theorem 6.3.

7.1. Proof of (18): the coarse graining tree. Let G 0 ∈ G m 0 . We have to show that, under Assumption B(2m), there is ε > 0 such that

L := inf G =G ∈G m Wq(G,G 0 )<ε Wq(G ,G 0 )<ε F (•, G) -F (•, G ) ∞ W q (G, G ) q > 0 with q = 2d 0 + 1. (22)
Assume on the contrary that L = 0 and choose mixing distributions

G n and G n in G m with W q (G n , G 0 ) ∨ W q (G n , G 0 ) < 1/n such that for each n 1, the ratios F (•, G n ) -F (•, G n ) ∞ /W q (G n , G n ) q are
less than 1/n. We shall prove, up to selecting subsequences, the following contradiction:

(23) F (•, G n ) -F (•, G n ) ∞ W q (G n , G n ) q .
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( j,n , ϑ j,n ) = (π j,n , θ j,n ) if j m (-π j-m,n , θ j-m,n ) if j > m ,
so that the signed measure G n -G n = m+m j=1 j,n δ ϑ j,n has total mass zero.

The discrepancy orders of the ϑ j,n 's. We shall first classify the differences between the ϑ j,n 's in an intrinsic way:

Lemma 7.1. For a suitable subsequence of G n -G n , there is a finite number S of "scaling" sequences

0 ≡ ε 0 (n) < ε 1 (n) < • • • < ε S (n) ≡ 1 with ε s (n) = o ε s+1 (n) , such that for all j, j ∈ [[1, m+m ]] there is a unique s(j, j ) ∈ [[0, S]] satisfying ϑ j,n -ϑ j ,n ε s(j,j ) (n).
The proof is given in Heinrich and Kahn (2015, Appendix C). It follows from the definition of s(j, j ) that s(j, j ) max(s(j, j"), s(j , j")) and thus s(•, •) defines an ultrametric on [[1, m + m ]]. The ultrametric makes any two balls either included one into the other, or disjoint, and allows us to build a coarse-graining tree : Definition 7.2. The coarse-graining tree T is the collection of distinct balls J = {s(•, j) s}, called nodes, when j ranges over [[1, m + m ]] and s over [[0, S]]. Moreover:

• The root of T is J r = [[1, m + m ]],
• The parent J ↑ of a node J is defined by

(J ⊂ I J ↑ , I ∈ T ) =⇒ I = J, • The set of children of a node J is Child(J) = {I ∈ T : I ↑ = J}, • The set of descendants of a node J is Desc(J) = {I ∈ T : I ↑ ⊂ J},
• The diameter of a node J is s(J) = max j,j ∈J s(j, j ).

Let us show how the tree T looks like with a partial representation :
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diameter N S s(J r ) s(J r ) s(J) s(K) s(K ) 1 0 • 1 • 2 • • • • j • • • • j • • • • m+m root J r • • • • j • • • • j • • • J |ϑ j,n -ϑ j ,n | ε s(J) (n) • • • • j • • • K • • • • j • • • K • j • • • j • ends of s-diameter zero
Note that the ends are not necessarily singletons since the ultrametric s(•, •) does not separate points. Note also that j and j are in different children K and K so that |ϑ j,n -ϑ j ,n | is actually exactly of order ε s(J) (n).

The Wassertsein distances W q (G n , G n ) through the coarse graining tree T . In what follows n is skipped in the ϑ j 's, j 's and ε s 's. Set for short (24) J = j∈J j and ε J = ε s(J) .

Lemma 7.3. For any q 1, we have

W q G n , G n q max J∈Desc(Jr) | J | ε q J ↑ .
Proof. Consider any coupling Π between G n and G n and set

Π(J, J ) = Π {ϑ j } j∈J∩[[1,m]] × {ϑ j } j∈J ∩[[m+1,m+m ]] ,
w q (J, J ) = Set also π J = j∈J∩ [[1,m]] j and π J = -j∈J∩ [[m+1,m+m ]] j . These define the marginal distributions of Π and we have Π(J, J) π J ∧ π J . Note also that

| J | = π J ∨ π J -π J ∧ π J . With J c = J r \ J, this gives Π(J, J c ) ∨ Π(J c , J) | J |.
Notice moreover that if (j, j ) ∈ J × J c , then |ϑ j -ϑ j | ε J ↑ . Hence the lower bound of Lemma 7.3 follows from w q (J r , J r ) w q (J, J c ) + w q (J c , J)

| J | ε q J ↑ .
Conversely, for the upper bound, we show recursively that for all node J, w q (J, J) max K∈Desc(J)

| K |ε q K ↑ . ( 26 
)
This is obviously true if J is an end node, with the value of zero. Assume that (26) holds for children K of a given node J. We may develop J on its children:

w q (J, J) = K∈Child(J) w q (K, K) + K ∈Child(J) K =K w q (K, K ) .
Furthermore, we get w q (K, K ) Π(K, K ) ε q J from (25) and

Π(K, K ) Π(K, K c ) π K -Π(K, K),
and if the coupling Π is chosen (see Heinrich and Kahn (2015, Lemma B.2) for a construction) such that Π(K, K) = π K ∧ π K for all node K, then it follows that

Π(K, K ) | K |,
and thus w q (J, J)

K∈Child(J) w q (K, K) + | K |ε q J .
The recurrence hypothesis on children K yields then (26).

Expanding F (x, G n ) -F (x, G n ) through the coarse graining tree. The dependence on n is skipped in the following notations. Consider the additive set-function J → F (x, J) = j∈J j F (x, ϑ j ) and note that F (x, J r ) is equal to

F (x, G n ) -F (x, G n ).
Lemma 7.4. Choose ϑ J in {ϑ j : j ∈ J} for each node J of T .

There are a vector a J = (a J (p)) 0 p 2m and a remainder R(x, J) such that

(27) F (x, J) = 2m p=0 a J (p)ε p J F (p) (x, ϑ J ) + R(x, J),
where:

(a) a J (0) = J and a J 1, (b) There is an integer p J < |J| such that a J |a J (p J )|, (c) The norm a J is bounded from below by a quantity linked to W q :

a J max K∈Desc(J) | K | ε K ↑ ε J |J|-1 , (d) R(x, J) = o a J ε 2m J uniformly in x.
As a remark, the lower bound on F (x, J r ) will stem from points (c) and (d). Points (a) and (b) are mainly there for transmitting recurrence hypotheses. They control the size of F (x, J), together with point (c). The behaviour of F (x, J) only depends on the first |J| terms in the sum. However, the sum goes to 2m so that it is useful when J = J r .

Proof. The proof uses Taylor expansions at θ K for a given generation of children K together with separation and order properties of the coarsegraining tree T . Recall notation (24).

If K is an end of the tree T , then all the θ j for j ∈ K are equal, and F (x, K) = K F (x, θ K ). Choose a K (p) = K 1 {p=0} and R(x, K) = 0 so that the equality (27) holds for the end node K with all the desired estimates (a), (b), (c) and (d).

Assume now that J has children K, each of them satisfying ( 27) with all the estimates (a), (b), (c) and (d):

(28) F (x, K) = 2m =0 a K ( )ε K F ( ) (x, ϑ K ) + R(x, K),
We want to transmit (28) and the estimates to the parent J. Suppose without loss of generality that ϑ J ϑ K and apply Taylor's formula with remainder imsart-aos ver. 2014/10/16 file: papierAOSv18.tex date: July 8, 2017

to F ( ) (x, ϑ K ) at ϑ J for all ∈ [[0, 2m]]:

F ( ) (x, ϑ K ) - 2m-1 p= (ϑ K -ϑ J ) p- (p -)! F (p) (x, ϑ J ) = ϑ K ϑ J (ϑ K -θ) 2m-1- (2m -1 -)! F (2m) (x, θ)dθ. Substract the term (ϑ K -ϑ J ) 2m- (2m-)!
F (2m) (x, ϑ J ) from either side so that

F ( ) (x, ϑ K )- 2m p= (ϑ K -ϑ J ) p- (p -)! F (p) (x, ϑ J ) = ϑ K ϑ J (ϑ K -θ) 2m-1- (2m -1 -)! F (2m) (x, θ) -F (2m) (x, ϑ J ) dθ = (ϑ K -ϑ J ) 2m-O sup θ∈[ϑ J ,ϑ K ] |F (2m) (x, θ) -F (2m) (x, ϑ J )| .
The modulus of continuity of F (2m) (x, •) from B(2m) then yields

F ( ) (x, ϑ K ) = 2m p= (ϑ K -ϑ J ) p- (p -)! F (p) (x, ϑ J ) + o (ϑ K -ϑ J ) 2m-.
The normalised discrepancies φ K := (ϑ K -ϑ J )/ε J for K ∈ Child(J) are by definition at most of order 1 so that

F ( ) (x, ϑ K ) = 2m p= ε p- J φ p- K (p -)! F (p) (x, ϑ J ) + ε 2m- J o (1) .
Subtitute in (28) and change the order of summation:

F (x, K) = 2m p=0 p =0 a K ( ) ε K ε J φ p- K (p -)! ε p J F (p) (x, ϑ J ) + R(x, K) + ε 2m J max 0 2m a K ( ) ε K ε J o(1).
Add up over the children K of J to obtain (27) for J, that is

F (x, J) = 2m p=0 a J (p)ε p J F (p) (x, ϑ J ) + R(x, J), with a J (p) = K∈Child(J) p =0 a K ( ) ε K ε J φ p- K (p-)! and (29) R(x, J) = K∈Child(J) R(x, K) + ε 2m J max 0 2m a K ( ) ε K ε J o(1) .
We have now to prove the estimates (a), (b), (c) and (d) for the defined coefficients a J (p) and remainder R(x, J). Keep in mind that these estimates are assumed to be true for the children K and set for short

M p,K := max 0 p a K ( ) ε K ε J .
Proof of (a) for J . It is immediate from the definition of a J (p) that

a J (0) = K∈Child(J) a K (0) = K∈Child(J) K = J ,
and, using (a) for K together with ε K ε J , we get

(30) |a J (p)| max K∈Child(J) M p,K 1.
Proof of (b) for J . It's enough to establish (31) max

|J| p 2m |a J (p)| max K∈Child(J) M |K|-1,K max 0 p<|J| |a J (p)|.
To prove the l.h.s. of (31), note from (30) that |a J (p)| max K∈Child(J) M p,K . Moreover, for all p |K|,

M p,K M |K|-1,K + max |K| p a K ( ) ε K ε J M |K|-1,K + a K ε K ε J |K| and we have a K max 0 <|K| |a K ( )| by (b) so that, even for p < |K|, (32) 
M p,K 1 + ε K ε J M |K|-1,K M |K|-1,K .
Taking the supremum over K ∈ Child(J) and over p give the l.h.s. of (31).

To prove the r.h.s. of (31), write a J (p) = a

(1)

J (p) + a (2) J (p) with a (1) J (p) = K∈Child(J) |K|-1 =0 a K ( ) ε K ε J φ p- K (p -)! 1 p , a (2) 
J (p) = K∈Child(J) p =|K| a K ( ) ε K ε J φ p- K (p -)! 1 p .
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Note that {φ

K } K∈Child(J) is ε-separated since |φ K -φ K | = |ϑ K -ϑ K |/ε J 1 for K = K . Set λ K, = a K ( )(ε K /ε J )
and apply Corollary D.2 of [START_REF] Heinrich | Supplement to 'Minimax rates for finite mixture estimation[END_REF] to A({φ K } K∈Child(J) ) and Λ = (λ K, ) K∈Child(J), 0 <|K| :

(33) max

0 p<|J| |a (1) J (p)| max K∈Child(J) 0 <|K| a K ( ) ε K ε J = max K∈Child(J) M |K|-1,K ,
which is the r.h.s. of (31) with a

(1) J (•) instead of a J (•). We show now that the |a (2) J (p)| are in fact negligible so that the r.h.s. of (31) will follows. Indeed, easy bounds on a

(2)

J (p) yield max 0 p<|J| |a (2) J (p)| max K∈Child(J) a K ε K ε J |K| ,
whereas, as a by-product of (33), using a

K max 0 <|K| |a K ( )|, max 0 p<|J| |a (1) J (p)| max K∈Child(J) a K ε K ε J |K|-1
.

Proof of (c) for J . From the r.h.s. of (31), and (a) for K, we deduce (34) a J max K∈Child(J)

a K ε K ε J |K|-1 ∨ max K∈Child(J) | K |.
Here we used Note that ( 31) and (32) give max K∈Child(J) M 2m,K a J ; moreover,

M |K|-1,K M 0,K = | K |. Combining (34) with (c) for children K gives a J max K∈Child(J) max F ∈Desc(K) |π F | ε F ↑ ε J |K|-1 ∨ max K∈Child(J) | K |. Now, bound the exponent |K| by |J| to derive (c) for J. Proof of (d) for J . Split (29) as R(x, J) = R (1) (x, J) + R (2) (x, J) with R (1) (x, J) = K∈Child(J) R(x, K), R (2) (x, J) = ε 2m J K∈Child(J) M 2m,K o(1
R (1) (•, J) ∞ max K∈Child(J) o a K ε 2m K
by assumption (d) for K, so that by triangle inequality,

R(•, J) ∞ ε 2m J max K∈Child(J) o a K ε K ε J 2m + a J o(1) .
By (34), a J dominates a K (ε K /ε J ) 2m and thus (d) follows for J.

Concluding the proof of (23). We shall show that ( 35)

F (•, G n ) -F (•, G n ) ∞ max J∈Desc(Jr) | J |ε 2d 0 +1 J ↑ . Recall that F (x, G n ) -F (x, G n ) = F (x, J r
) and distinguish two cases:

Case ε Jr → 0. All the ϑ j,n 's converge to a single support point of G 0 so that m 0 = 1. Apply directly Lemma 7.4 to the root node J := J r : By (b), the optimal p is at most |J| -1, and since |J| 2m, we get

F (x, J) =
F (•, J) ∞ a J ε |J|-1 J .
Now, the estimate (c) for J yields further

F (•, J) ∞ max K∈Desc(J) | K |ε 2m-1 K ↑ .
But this estimate is nothing else than (35) since m 0 = m -d 0 is one. Case ε Jr ≡ 1. This case means either there are more than one support point in the limit G 0 (m 0 > 1) or there is only one support point for G 0 but with possible sequences θ j,n converging to other points (vanishing weights j,n may exist).
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Here, all the ε p Jr 's are of the same order (actually identical), so the scheme used for the case when ε Jr → 0 does not work. It works however for the children J of The optimal p is at most |J| -1 by (b), so that F (•, J r ) ∞ dominates max J∈Child(Jr) a J ε

|J|-1 J

, whereas for p = 0 we get that F (•, J r ) ∞ dominates max J∈Child(Jr) | J |, by (a). Together with ε J ↑ ≡ 1 and (c) for J, we obtain

F (•, J r ) ∞ max J∈Child(Jr) max K∈Desc(J)∪{J} | K |ε |J|-1 K ↑
which is nothing else than (36)

F (•, G n ) -F (•, G n ) ∞ max J∈Desc(Jr) | J |ε |J|-1 J ↑
. Now, note that a descendant J of J r of maximal cardinality must be a child of J r , call it J . Since G n and G n converge to G 0 ∈ G m 0 , the root J r has at least m 0 children, each of them containing at least two points. Thus, we have

|J r | |J | + 2(m 0 -1).
Since |J r | is at most 2m, we deduce further that |J | 2m -2m 0 + 2. From (36), we finally arrive at (35), exacly as in the case ε Jr → 0. Now, recall that q = 2m -2m 0 + 1. Lemma 7.3 together with (35) ensure that, whatever the case, ε Jr → 0 or ε Jr ≡ 1,

F (•, G n ) -F (•, G n ) ∞ W q (G n , G n ) q
which is the stated contradiction (23).

7.2. From local to global: how (18) implies (19). We have to show that, under Assumption B(2m), for r = 2m -1,

L := inf G =G ∈G m F (•, G) -F (•, G ) ∞ W r (G, G ) r > 0.
From the definition of L, we can select mixing distributions G n and G n in

G m such that F (•, G n ) -F (•, G n ) ∞ /W r (G n , G n ) r converges to L. Since the set G m × G m is compact, we can assume that (G n , G n ) converges to some limit (G ∞ , G ∞ ). Set w = W r (G ∞ , G ∞ ).
Case w > 0. This case does not depend on (18). By identifiability, there is

x 0 ∈ R such that ∆ 0 := |F (x 0 , G ∞ ) -F (x 0 , G ∞ )| > 0.
Then, for all n, (37)

F (•, G n ) -F (•, G n ) ∞ W r (G n , G n ) r |F (x 0 , G n ) -F (x 0 , G n )| W r (G n , G n ) r .
The numerator of the r.h.s. of (37) goes to ∆ 0 by the triangle's inequality and since the function θ → F (x 0 , θ) is Lipschitz w.r.t. the metric W 1 and thus also w.r.t. W r . As a consequence, we get L ∆ 0 /w r > 0. Case w = 0. Consider (18) with G 0 = G ∞ . For n larger than some n 0 , all W q (G n , G 0 ) and W q (G n , G 0 ) are less than ε so that by (18),

inf n n 0 F (•, G n ) -F (•, G n ) ∞ W q (G n , G n ) q > δ.
Since we have W q (•, •) q Diam(Θ) r-q W r (•, •) r for r q, we get

inf n n 0 F (•, G n ) -F (•, G n ) ∞ W r (G n , G n ) r > δ Diam(Θ) r-q
which gives L δ/Diam(Θ) r-q in the limit and (19) in that case. 7.3. Completing the proof of Theorem 6.3: the easy cases (20) and (21). For the proof of (20), we can simply make use of Theorem 3.1 of [START_REF] Ho | Identifiability and optimal rates of convergence for parameters of multiple types in finite mixtures[END_REF]. Alternatively, a detailed proof with our notations is available in the supplemental part (Heinrich and Kahn, 2015, B.2).

For the proof of ( 21), we can follow the proof of Chen (1995, Lemma 2) which holds here, because the γ j defined in his paper are all non-negative, and at least one is nonzero.

Remark 3. 1 .

 1 When comparing sequences we will write a n b n or a n = O(b n ) for a n Cb n where C > 0 does not depend on n. We will furthermore use a n b n for b n a n b n . If needed, the dependence of C on other parameters, say u, θ will be stressed by subscripts: a n u,θ b n or a n u,θ b n .

  , {j })|ϑ j -ϑ j | q . (25)imsart-aos ver. 2014/10/16 file: papierAOSv18.tex date: July 8, 2017

  p)ε p J F (p) (x, ϑ J ) + R(x, J),so that by the triangle's inequality, Proposition 2.3 and (d) for J,F (•, J) ∞ max 0 p 2m a J (p)ε p J -o a J ε 2m J .

  the triangle's inequality, Proposition 2.3 and (d) for J,F (•, J r ) ∞ max J∈Child(Jr) max 0 p 2m a J (p)ε p J -max J∈Child(Jr)o a J ε 2m J .
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