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Laboratoire Paul Painlevé Bdt. M2
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59655 Villeneuve d’Ascq, FRANCE

Abstract We study the rates of estimation of finite mixing distri-
butions, that is, the parameters of the mixture. We prove that under
some regularity and strong identifiability conditions, around a given
mixing distribution with mo components, the optimal local minimax
rate of estimation of a mixing distribution with m components is
n "1/ (4m=mo)+2) Thig corrects a previous paper by Chen (1995) in
The Annals of Statistics.

By contrast, it turns out that there are estimators with a (non-
uniform) pointwise rate of estimation of n~/2 for all mixing distri-
butions with a finite number of components.

1. Introduction. Finite mixture models have been applied since Pear-
son (1894) in various fields including astronomy, biology, genetics, economy,
social sciences and engineering (McLachlan and Peel, 2000).

Finite mixtures and their estimation naturally arise mostly in three cases.
One is model-based clustering. Here the aim is to divide the data into k clus-
ters and assign (new) data to a cluster. A possible approach is to consider
that data point from each cluster is generated according to a probability dis-
tribution, so that the whole data is generated by mixture with k£ components
(McLachlan and Peel, 2000; Teh, 2010).

The second, more traditional case, is the statistical description of pos-
sibly heterogeneous data where the underlying mixing distribution has no
particular meaning. In that case, mixtures are a tool to describe efficiently
the “true” probability distribution and control the convergence rate of mix-
ture estimators to it (van de Geer, 1996; Ghosal and van der Vaart, 2001;
Genovese and Wasserman, 2000).

MSC 2010 subject classifications: Primary 62G05; secondary 62G20.

Keywords and phrases: Local asymptotic normality, convergence of experiments, maxi-
mum likelihood estimate, Wasserstein metric, mixing distribution, mixture model, rate of
convergence, strong identifiability, pointwise rate, superefficiency.

1
imsart-aos ver. 2014/10/16 file: papierAOSv18.tex date: July 8, 2017



2 P. HEINRICH AND J. KAHN

In the third case, the goal is the mixing distribution itself: its support
points and proportions are the parameters we want to estimate. They typi-
cally correspond to the phenomenon that is studied. This is the case we are
interested in, on the basis of observations drawn from the mixture.

Some works try to bridge the gap between the estimation of the mixture
and the one of the mixing distribution, usually at least through estimation of
the number of components — the order — in the finite mixture. In particular,
Rousseau and Mengersen (2011) have proved that their Bayesian estimator
of an overfitted mixture tends to empty the extra components, and Gassiat
and van Handel (2013) have given the minimal penalty on the maximum-
likelihood estimator of the order that yields strong consistency.

One could expect that a good estimator for the mixture would be a good
estimator for the mixing model. However, this is not so clear. The situation is
reminiscent of the difference between estimation and identification in model
selection, where Yang (2005) has proved that no procedure can be optimal
for both. Moreover, rates of convergence can be very different, as illustrated
in an infinite-dimensional case by Bontemps and Gadat (2014).

Optimal rates are a key information in estimating the mixture parame-
ters. These were unknown (see e.g. Titterington, Smith and Makov, 1985)
till the work of Chen (1995), who established a n~1/4 local minimax rate,
under reasonable identifiability conditions, for one-dimensional-parameter
mixtures. This result is somewhat surprising since the rate does not depend
on the number of components. It turns out to be erroneous, because of its
Lemma 2.

Our article aims at giving correct statements and proofs and its conse-
quences.

The main part consists in finding the correct exponent in the local min-
imax rate; we do so in Theorem 3.2 and Theorem 3.3. The rate gets worse
with more components, which is consistent with the behaviour when there are
infinitely many components, such as deconvolution: Fan (1991) had proved
that the L?-convergence rate was polylogarithmic in general, and Caillerie
et al. (2013) and Dedecker and Michel (2013) have generalized this kind of
rates to the more relevant (for us) Wasserstein metrics. The most original
technical tool we shall use is a coarse-graining tree on the parameter indices.

In addition, the optimal local minimax rate and the optimal pointwise
rate of estimation everywhere are not the same. This discrepancy is unusual
in statistics, and probably the reason why the n~'/4 rate went unchallenged
for twenty years. Specifically, if instead of comparing all pairs of mixtures in
a ball, we allow only one mixture in it, we get (21) which corrects Lemma 2
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 3

of Chen. As a consequence, Theorem 2 of Chen is valid by dropping uni-
formity: for any fixed mixing distribution say G, the estimator considered
there will converge at rate n='/4, but with a multiplicative constant that
depends on G. It then becomes a statement on the optimal pointwise rate of
estimation everywhere, and can even be strengthened to n=1/2
in Theorem 4.1.

as we show

The paper by Chen (1995) has been widely cited and used. Apart from
applied papers citing it that may have relied on the theoretical guarantees
(see e.g. Kuhn et al., 2014; Liu and Hancock, 2014), there are essentially two
ways it could play a role. Firstly, when it is used as part of a proof, secondly
when it is used as a benchmark.

The first case covers papers that generalize Chen’s result in other set-
tings, and re-use its theorems and proofs. For example, Ishwaran, James and
Sun (2001) propose a Bayesian estimator that achieves the n=1/* frequentist
rate, and use Chen (1995, Lemma 2) in their analysis. More recently, Nguyen
(2013) generalizes those results to mixtures with an abstract parameter space
and indefinite number of components. But Nguyen (2013, Theorem 1) gener-
alizes Chen (1995, Lemma 2) while transposing the proof with the mistake.
The main results of both these articles hold however: they do not need the
full strength of Chen (1995, Lemma 2), but merely the weaker version (21).
Ho and Nguyen (2016) prove such a sufficient version.

These two papers also use Chen’s (1995) article as a benchmark. However,
the optimal pointwise rate everywhere would probably be a better reference
point in their case, as in many others. In particular, it seems likely that a
Bayesian estimator could converge pointwise at speed n=1/2 everywhere. We
have not checked whether the proof by Ishwaran, James and Sun (2001) can
be improved, or if another prior is necessary.

This use as a benchmark is very usual, as expected for this kind of opti-
mality result (see e.g. Zhu and Zhang, 2006, 2004). Let us point in particular
to a result by Martin (2012). He achieves almost n /2 rate for the predictive
recursion algorithm, and tries to explain the discrepancy with Chen (1995)
by the fact that the parameters are constrained to live in a finite space for
his algorithm. In fact, since his rate is pointwise, it fits with the continuous
case.

Since early versions of this article have been made available, there have
been interesting new developments: Ho et al. (2016); Ho and Nguyen (2015)
have made explicit the system of equations underlying the minimax argu-
ment, for any finite number of parameters, and solved important special
cases. The strong identifiability conditions we shall use in this article ensure

imsart-aos ver. 2014/10/16 file: papierAOSv18.tex date: July 8, 2017



4 P. HEINRICH AND J. KAHN

that the system of equations is generic.

In Section 2, we give the notations and define and discuss the regularity
assumptions we use. In Section 3, we state and discuss the main theorem,
giving the optimal local minimax rate. In Section 4, pointwise rate every-
where is investigated. We try to give some intuition in both of these sections.
In Section 5, we also dwell on the interpretation and practical consequences
of having different rates, and conclude with open questions. In Section 6,
we give and explain the meaning of the key intermediate results and prove
the main theorems from here. In Section 7, we prove those key intermediate
results. In particular, we introduce the most original tool of our proofs: the
coarse-graining tree that allows to patch the mistake in the article by Chen
(1995).

Some auxiliary and technical results are detailed in appendices grouped
in a supplemental part (Heinrich and Kahn, 2015).

2. Notations and regularity conditions.

2.1. Basic notations. Throughout the paper, the parameter set ©, of
diameter Diam O, is always assumed to be a compact subset of R with non-
empty interior. Let G,, (resp. G<p,) be the set of (resp. at most) m-mixing
or m-point support distributions G' on ©. We set also Goo = Ur>1Gy.

As usual, we compare two mixing distributions G' and G’ using trans-
portation distances, or L4-Wasserstein metrics, with ¢ > 1. They completely
bypass identifiability issues that would arise with the square error on param-
eters. The definition is:

1/q
(1) W,(G,G") = inf [/ |60 — 0'|9d11(6,0")
II o2

where the infimum is taken over probability measures II on © x © with
marginals G and G’. By Jensen’s inequality, W, > W if ¢ > ¢’ and moreover,
Wi < W;,/(Diam ©)77. We will usually work with the strongest available
Wasserstein metric for our results. Endowed with the metric W, the space
G<m is compact.

In the special case of Wi, we will also use its dual representation, where

|flLip stands for the Lipschitz seminorm of f (e.g. Dudley, 2002, section
11.8):

2) Wi(G.G') = sup /@ F(0)AG — G')(0).

|f|L1p<1
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 5

Given G = 377" m;0p; € Gy and a family {f(z,0)}4cq of probability
densities on R w.r.t. some o-finite measure A, we can define a finite mizture
with m components:

3) f(.G) = /e F(,00AG(0) = S (2, 65)
j=1

To compare mixture distribution functions F(z,G) and F(z,G’), we will
use the Kolmogorov metric HF( G) — F(-,G")|| - Here of course we have by
definition F(z,0) = [*_ f(y,0)dA(y), which extends to F(x,G) by linearity
provided that f (y, do) = f(y, 9) where 0y denotes the Dirac measure at 6.

2.2. Regularity conditions.
(p, a)-smoothness. Hereafter, f®)(z,6) or f®) (. #) denote the p-th deriva-

tive of f always taken w.r.t. the variable 6.

DEFINITION 2.1.  The family { f(-,0),0 € O} w.r.t. some o-finite measure

A is (p, a)-smooth if
F® (2,00 |
f($7 6//)

is a well-defined [0, 00]-valued continuous function on ©3, and if there exists
€ > 0 such that

(4) Epo (0,60',0") = /R fx,0)d\(z)

(5) 0/ —0"|<e = VOO, E,.0,0,0") <o

These smoothness conditions are easy to check in practice, and general
enough. For example, all exponential families satisfy them, as shown in the
supplemental part (Heinrich and Kahn, 2015, E.2). They will be useful for
proving local asymptotic normality (Le Cam, 1986) of relevant families.

k-strong identifiability (k € N). Chen (1995) introduced a notion of strong

identifiability. We will need a slightly more general version.

DEFINITION 2.2.  The family {F(-,0),0 € ©} of distribution functions is
k-strongly identifiable if for any finite set of say m distinct points 0; € O,

k. m
22 angF V0| =0 = lloll = maxlap| =0,
o P.j
[ee]
where || - ||oo denotes the supremum norm with respect to the variable x.
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6 P. HEINRICH AND J. KAHN

Chen’s strong identifiability corresponds to 2-strong identifiability. Let us
show why this notion is useful. Consider G,, = 3(6,-1 +_,-1) in Go. We
see that F(-,Gp) = F(-,0)+n"2F®)(-,0)/240(n"2), provided we can expand
around ¢ = 0. Then 2-strong identifiability ensures that ||F'(-,0) — F'(-, Gpn)|| -}
is of order n~2, as shown in Proposition 2.3 below, whereas simple (1-strong)
identifiability would say nothing. We will need k-strong identifiability with
a higher k if more terms cancel.

PROPOSITION 2.3. Let {F(-,0),0 € ©} be k-strongly identifiable family
of distribution functions with F®)(x,0) continuous in 0. Set for e > 0

o = {(ej)1<j<m C O :min|f; — 6| > 6} -
J#5’

Then for all a = (ap, ;) o<p<k ;
1<j<m

kK m
inf 1> > ap FOC0)| = lall
or ||— — e,k,m
p=0 j=1 oo

where = means “more than”, up to some constant C(e, k,m) > 0.
e,k,m

ProoF. The function (a, (0j)1<j<m) — HZ’;ZO > it apij(p)(-,Gj)H is
oo

lower semi-continuous on the compact set {a : |ja| = 1} x ©, so that it

admits a minimum. By k-strong identifiability, it is nonzero. O

We expect the strong identifiability to be rather generic, and hence the
statements of this paper often meaningful. In particular, Chen (1995, Theo-
rem 3) has proved that location and scale families with smooth densities are
2-strongly identifiable. The theorem and the proof straightforwardly gener-
alize to our setting. We merely state the result.

THEOREM 2.4. Let k > 1. Let f be a probability density w.r.t. the
Lebesgue measure on R. Assume that f is k — 1 times differentiable with

lim f®(z) =0 forp e [0,k —1].

r—+o0

Consider f(x,0) = f(x —0), with § € © C R. Then the corresponding
distributions family {F(-,0),0 € ©} is k-strongly identifiable. If © C (0, 00),
the result stays true with f(x,0) = %f (%)

For more general conditions see the article by Holzmann, Munk and Strat-
mann (2004), that also generalize well to k-strong identifiability.
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 7

3. Assumptions and main results on local asymptotic minimax
rate. The statistical estimation will always be done in the model Gy, and,
for local statements, around a fixed mixture Gy € G, with my < m. Set
once and for all

(6) do = 1m — my.
Lower bounds on local asymptotic minimazx rates.

ASSUMPTION A(k,6y). For all (p,a) € [1,2k+ 2] x [1,4], the family of
densities {f(-,0) }oco is (p, a)-smooth and satisfies, for some point 0y in the
interior of ©,

/ | £, 05)[dN > 0.

Typically, k will be dy and 8y a support point of Gy. These conditions allow
to prove local asymptotic normality (Le Cam, 1986) for relevant families.
This will give some insight on the reason why the lower bound on the rate
holds, and on how the mixtures behave when we change the parameters in
the least sensitive direction. The condition on the support point guarantees
identifiability locally for the families, and we need more derivatives than
usual, since there will be cancellations in the first terms.

REMARK 3.1.  When comparing sequences we will write a, < b, or a, =
O(by,) for a, < Cby, where C > 0 does not depend on n. We will furthermore
use an < b, for by, < an <X by. If needed, the dependence of C' on other

parameters, say u,0 will be stressed by subscripts: a, < by or a, xe bn.
u,d u,

In what follows, E¢ will denote the expectation w.r.t. the measure dP¢g =
f(-,G)dA. And all the mixing distribution estimators denoted by G,, below
will be based on i.i.d. n-samples.

THEOREM 3.2.  Recall (6) and set &, = n~ /40245 for some s > 0. Let
0o be a support point of Go. Under Assumption A(dy,06y), for any sequence
of estimators G,,, we have

sup  Eq [Wi(G,Gy)| = n7 /0052,
GeGm
W1 (G,Go)<en

Let us give some intuition. The data we have access to is the empirical
distribution Fj, where n is the sample size, and which gets closer to the true
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8 P. HEINRICH AND J. KAHN

mixture F(-,G) at rate n~'/2. Hence two mixing distributions G and G’ can
be told apart only if ||[F(-,G) — F(-,G")|, is at least of order n=1/2,

As an example, let Gg = dp and consider two-component mixing distribu-
tions around, say Gy, = 3 (0_g,,-1/6 + 09,176 ) and G, = %6_n—1/6 +%64n—1/6-
Both have 0 as first moment, and 4n~/3 as second moment but the third
moment is zero for G, and 12n~1/2 for G!,. A Taylor expansion in § = 0 up
to the third order gives then F(-,G,) = o(n~'/%) and F(-,G) = o(n=1/9).
So that no test can reliably tell Gy, from G}, with an n-sample. On the other
hand, we clearly have W1(G,,,G’) = n~/6 for all n. So that the minimax
rate for two-mixing distributions cannot be better than n~/6.

This moment matching argument can be made rigorous and precise with
two tools. One is Lindsay’s Hankel trick (Lindsay, 1989, Theorem 2A), also
used by Dacunha-Castelle and Gassiat (1997) to estimate the order of a
mixture. The other is local asymptotic normality property (LAN) developed
by Le Cam (1986). Section 6 uses them to build a LAN family with scale
factor n!/(44+2) which gives Theorem 3.2 via Theorem 6.1.

Upper bounds on local asymptotic minimaz rates.

AssuMPTION B(k). The family of densities {f(-,0)}gco satisfies

o Forallz, F(z,0) = [*__ f(-,0)d\ is k-differentiable w.r.t. 0,
o {F(-,0),0 € ©} is k-strongly identifiable,
e There is a uniform continuity modulus w(-) such that

sup |F(k) (2,0) — F®) (z, 0| <w(@—0) with }llir% w(h) =0.
T —

The latter condition holds if sup, g | F' (k+1) (2, 0)| exists and is finite. These
differentiability conditions should be compared with the usual parametric
case, where differentiability in quadratic mean, or twice differentiability in
0 for a less technical condition, is enough to get n=/2 local minimax rate.
We will need B(2m) to prove a global minimax rate of n=1/(4m=2) (see (9)
in Theorem 3.3), and B(1) for a pointwise rate of n~'/2 everywhere (Theo-
rem 4.1).

THEOREM 3.3. Let Gy,(m) be “the” minimum distance estimator, that is
any mizing distribution in G<m such that

F'An _Fnoo: inf F'7 _Fnoo-
(7) | F(-, Gn(m)) I GélglgmH (,G) |
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 9
Under Assumption B(2m), there is ¢ > 0 such that, with ¢ = 2dg + 1:

(8) sup  Eg [Wy(Go(m), G)] < n /20,
Wq(G,Go)<e

and more globally, with r = 2m — 1:

9) sup Eq [Wr(@n(m),G)} < V@),
Geggm

REMARK 3.4. Since G — |F(-,G) — Fy||0c is lower semi-continuous on
the compact metric space (G<m, Wy), the infimum in (7) is attained . The
minimum distance estimator is discussed by Deely and Kruse (1968) and

Chen.

Theorem 3.3 is proved it by establishing a uniform control of the ratio
|F(-,G) — F(-,G")|| o /W4(G,G")? in Theorem 6.3. To do so, we consider
sequences of couples (G, G’ ) minimizing the relevant ratios, and expand
F(-,G,)—F(-,G) as a weighted sum on the relevant derivatives F(P)(-,6;,).
A difficulty arises since distinct support points 6;, may converge to the same
0;, leading to cancellations in the sums. Forgetting this case was the mistake
in the proof of Chen (1995, Lemma 2). We overcome the issue in Section 7:
we build clusters of support points whose pairwise distances decrease at a
given rate and structured as nodes of a coarse-graining tree. We may then
use Taylor expansions on each node and its descendants (Lemma 7.4).

REMARKS 3.5. It is worth noticing the following from Theorems 3.2-3.3:

o They together imply that the optimal local asymptotic minimaz rate
is n~1/(4do+2) for estimating a mizture with at most m components
around a mizture with mg components, for any transportation distance
W, with p € [1,2dy + 1].

e The rate is driven by dy, that is, it gets harder to estimate the param-
eters of a mixture when it is close to a mizture with less components.

e The worst case is when mqg = 1, yielding a global minimax rate of
estimation n~Y(4M=2)  The rate gets worse when more components are
allowed. So that the nonparametric rates for estimating mixtures with
an infinite number of components like in deconvolution appear natural.

o On the other hand, when the number of components is known, that is
m = mg, we have the usual local minimaz rate n~Y/2.

o The global minimaz rate on the mixtures with exactly m components
stays at n=1/4mM=2) “becquse G, is not compact, and Theorem 3.2 still
apply in the vicinity of mqg-component mixtures.
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10 P. HEINRICH AND J. KAHN

4. On pointwise rate and superefficiency. The slow rate n~/(#m=2)
in (9) might be a little surprising when for example some Bayesian estimators
~1/4 rate of convergence (Ishwaran, James and Sun, 2001). However
this convergence rate is not the local minimax rate, but is closer to a point-
wise rate of convergence, that is the speed at which an estimator converges
to a fixed G when n increases. The difference with local minimax may be
viewed as the loss of uniformity in G. We study here the optimal pointwise
rates everywhere.

One motivation for local minimax results was to make clear how the
Hodges’ estimator (van der Vaart, 1998, ch.8) and other superefficient es-
timators could cohabit with Cramér-Rao bound, and how much they could
improve on it.

Specifically, a superefficient estimator can have a better pointwise con-
vergence rate than any regular estimator, but not a better local minimax
convergence rate (Hajek, 1972). Moreover, it turns out that they can only
have a better pointwise rate on a Lebesgue-null set (van der Vaart, 1998,
ch.8).

Now, the set of parameters (weights and support points) defining Gy, is
a Lebesgue-null w.r.t. the one defining G<p,. Hence, we might expect that,
by biasing the estimators toward the low numbers of components, we might
attain better pointwise rates on Gem, up to n~/2, which is the value when
the number of components is known. By letting m go to infinity, we would
have this pointwise rate for all finite mixing distributions. It turns out this
is indeed the case.

have n

TEEOREM 4.1.  Consider for each m > 1 the mim‘rﬁum distance estima-
tor Gp(m) in G<m as defined in Theorem 3.3, with Gy (c0) arbitrary. Fix
k€ (0,1/2) and set

(10) My, = min {m >1: HF(,én(m)) Pl < n_1/2+’””} ‘
Under Assumption B(1), for any finite mizing distribution G € G,

Ec [Wl(én(mn),e)] < n=12,

REMARKS 4.2. o Since the typical distance between empirical and
theoretical distribution functions is =2, this M, in (10) is the lowest
number of components that is not clearly insufficient.

o The rate n=/2 cannot be improved since it is the rate if the number of
components is known beforehand.
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 11

o This is slightly stronger than just checking that we find the right number
of components and then applying Theorem 3.3, because we need much
less regularity. Only Assumption B(1) is required, instead of B(2m).
That is, we do not need more smoothness when the number of compo-
nents increases. Under the hood we rely on the bound (20) instead of
Theorem 6.35.

e The estimation of the number of components m,, and the estimation of
G within G, are not associated. For example, we may estimate my,
with Equation (10), and then use the maximum likelithood estimator
G on G, - Conversely, we may estimate the number of components
using Gassiat and van Handel’s (2013) penalized mazimum likelihood
estimator.

5. Practical consequences and perspectives. Disagreement betweenl]]
local minimax rate and pointwise rate everywhere might be rare enough that
it is worth recalling first what it means.

The asymptotic rate of convergence to a given G will be the pointwise rate
Can~ 2 where Cg is some positive constant. However, the estimator will
enter this asymptotic regime only after a long time. More precisely, it enters
this regime when G is not any more in any of the balls used in the local
minimax bound. Alternatively, we may view this situation as the constant
C¢ exploding when G is close to specific Gy.

In our case, imagine we have a mixing distribution with three compo-
nents, with all support points within distance 6 > 0 of some 6y. Then about
6~ (4B-1+2) — 5-10 ghgervations are necessary to get an estimator with an
error of §. In particular, if G and G’ are two such three-component mixing
distributions, chosen to have the same first four moments, and G and G’ are
the same mixing distributions, rescaled to be ten times closer, we will need
10'9 as many data points to tell them apart as for G and G’.

As a consequence, if the components of the mixing distribution to be
estimated are not far apart one from the other, it is quite often impossible to
get enough data points to get an appropriate estimate. An experimentalist
with any leeway in what he measures (use of different markers, say) might
then wish to ensure that the peaks are far apart, even at the cost of many
data points.

We end the section by some thoughts on possible further work. This article
contains the proof that the optimal local minimax rate of estimation around
a mixing distribution with mg components among mixing distributions with
m components is n~ Y/ (4(m=m0)+2) "when the parameter space © is a compact
subset of R.
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12 P. HEINRICH AND J. KAHN

We think that extension to a multivariate © should be workable, much
like Nguyen (2013) did for the former erroneous result. On the other hand,
non-compactness of © would probably bring about technical difficulties, and
cases where the result would not hold. Stronger forms of identifiability would
probably be required in general, to avoid problems with limits. Moreover,
for many natural higher-dimensional families, strong identifiability does not
hold, so that the results would be different.

Finally, another line of inquiry are the results that might be expected in
a Bayesian framework. The most natural equivalent to the convergence rate
of the a posteriori distribution to the real parameter is the pointwise rate
of convergence. Hence the question: can we build Bayesian estimators where
the a posteriori distributions converge at rate n=1/2 everywhere? Of course,
the convergence would not be uniform.

6. Key tools and proofs.

6.1. Local asymptotic normality for Theorem 3.2. All the densities con-
sidered in the sequel are w.r.t. some given dominating o-finite measure on
R. We call ezperiment a family £ of densities.

THEOREM 6.1. Let Gy € G, with a support point Oy in the interior of
©. There is a family {Gy(u)}n>0uecr N Gm with the following properties:

a. For all distinct u,u’ in R, we have together

Wi (G (u),Gn(u)) = n~ Y0¥ o Wy (G (u), Go);

b. Assume A(do,0o) for the family {f(-,0)}gce and set the product density
Jfouw = @1 f(-,Gn(u)). There is an increasing real sequence U, — 00
such that the sequence of experiments &, = (f”»")ue[—Un U] is locally

asymptotically normal (LAN) : there are random variables Z,, asymptot-
ically N'(0,1), and numbers Ty, > 0 such that for all u € R,

fnm()() U2 P
(11) Log (fn,()()()> - UZn\/ﬁ‘i‘ ?Fn m 0

where X is a n-sample of density f, 0.
In addition, we have liminf, I'), > 0 and limsup,, I';, < oo.

REMARK 6.2.  We want only an example of this slow convergence, and
it should be somewhat typical. That is why we have chosen the reqularity
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 13

conditions to make the proof easy, while still being easy to check, in particular
for exponential families.

In particular, in Assumption A(dy,6p), it could probably be possible to
lower o in (p, )-smoothness to 2 + € and still get the uniform bound we use
in the law of large numbers below. Similarly, less differentiability might be
necessary if we tried to imitate differentiability in quadratic mean.

Conversely, under possibly more stringent reqularity conditions, I'y, is ex-

(2dg+1) (. 2 o .
% up to a multiplicative constant.

pected to converge to Eg,

PROOF OF THEOREM 6.1. Write the mixing distribution Gg as

mo—1

(12) Go= Y _ miby, + mode,
j=1

with 6y in the interior of ©. Let u € R and replace the Dirac measure dy, in

(12) with a mixing distribution H,,(u):

mo—1

(13) Gn(u) = Y m;09, + moHn(u).

j=1

We want to choose H,,(u) close to dg,. To this end, set 1o = 1 and pog—1 = u
with d = dg + 1,. Choose in addition numbers p1,..., og—o such that the
k x k-Hankel matrices (M},); j = pitj—2 satisfy det My, > 0 for k € [1,d—1].
Then, by Lindsay’s Theorem 2A (1989), there is a unique mixing distribution
H(u) = 3752 mj(u)dy, ) with exactly d support-points h;(u) and first
moments p up to order 2d — 1 satisfying

(14) > mi(why () = e, ke [0,2d 1]
Jj=mo

Define then H,(u) by shifting and rescaling the support points of H(u):

m

Hu(w) = Y mj(w)dgyepny) With e, = n~ /01472,

Jj=mo
Now, using the dual representation (1) of Wy, we see that
Wi(Gn(u), Go) = moW1(Hn(u), dg,) = moen W1 (H (u), do)

and likewise, W1 (Gy,(u), G, (u)) equals moe,, W1 (H (u), H(u')) so that Theo-
rem 6.1.a follows.
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14 P. HEINRICH AND J. KAHN

To guarantee that the points 0y + €, h;j(u) involved in Gy, (u) stay inside ©
uniformly in u, let us show that the functions h;(-) are continuous. Consider
the map

d d d d
(1, ..o Ty hy ..o hg) = <Z ), Zthj, Zth?, R Zﬂjh?d_1>
1 1 1 1

on the set {(my,...,mg,h1,...,hqg) :7m1 >0,...,mg>0,h; <--- < hg}. The
uniqueness in Theorem 2A by Lindsay (1989) implies that ¢ is injective.
Moreover, its Jacobian is non-zero, as it can be seen by recurrence on d:

J(p) = (1) Ty T II (hj — hi)*.

1<j<k<d

(d—1)d
2

Thus the inverse of ¢ is locally continuous, so that, in particular, the h;(u)
are all continuous.
Set now

(15) h(U) = max max |h;(u)|

J<d |u|l<U
which is finite for any U > 0 and choose a positive sequence (Uy,) such that
U, — oo and ¢&,h(U,) — 0.

We can now prove local asymptotic normality (11). Let X = (X1,...,Xpn)
be an i.i.d. sample with density f, o. Since we proceed along the lines of Chen
(1995), the proof is only sketched here. Write the log-likelihood ratio as

FauX)\ _ N1, -
Log<fn70(X)> _;L g (14 Yin(uw))

with
[ (Xin, Gn(w)) = f (Xin, Gn(0))
f(Xi,na Gn(o)) .
The main steps are as follows, see Heinrich and Kahn (2015, Sections A.1,
A.2 and A.3) for the details:

Yin(u) =

Step 1. Use linearity of G — f(-, G) and Taylor expansions up to the order
2d — 1 with remainder on Y; ,(u) at 6y to show that the r.v.’s

7. = f(2d71)(Xi,n790)
o 0 f(Xi,mGn(O))

are centered under f, o.
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 15
Step 2. Define I', = Eg, (o) ‘Zl,n’2 and Z, = 71’1/2{‘;1/2 Yoy Ziy and
prove that 7, is asymptotically A/(0,1) via Lyapunov Theorem for

triangular arrays.
Step 3. Show the following convergences for all u:

An(u) =3 Yinlu) —uZu/T, 55 0,
=1

n Ll
Co(u) = [Vin(w)* = 0.
=1

Then derive the LAN property from the equality

o) —U uj = U 1 U U
LOg(fn,O(X)> Zu\/Tn+ =5 Lo = An(u)+ 5 Ba(w) +Op(Cy(u).

O

6.2. Proof ofTheorem 3.2. Let us show how Theorem 6.1 entails Theo-
rem 3.2 using just two points and contiguity (Le Cam, 1960). Consider any
sequence of estimators Gy, and Gy, (u) for u = 0,1 as defined in Theorem 6.1.
It’s enough to show that for large n,

(16) sup  Eg[Wi(G,Gy)] = n~ /ot
Ge{Gn(0),Gn(1)}

Recall that we set here &, = n~1/(4d0+2)+% and note that G, (0) and G, (1)
are in the ball {G : W1 (G, Go) < e,,} for large n, by Theorem 6.1.a.
Consider the probability measures P, , with the densities f,, of Theo-

_ fn,l(X)

rem 6.1.b for u = 0,1 and set g, = exp(—ZnvTy + T /2). Then,
fno(X)
_In
I'n Vo 2
Pn,l(A) =e 2 e?n ann dPn,O = : / dPn,O.
A 2 AN Zp>0}n{gn>1/2}

Pa .
We have g, SN | by (11) so that P, o(gn, < 1/2) < 1/16 for large n. Since
Zy, is asymptotically N(0,1), we also have P, o(Z, < 0) < 1/2+1/16. Thus
P,o({Z, >0} n{gn > 1/2}) is at least 3/8 for n large enough and
3

(17) Poo(4) > 7 = Pua(A) = e /2
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16 P. HEINRICH AND J. KAHN

Now, choose A = {W1(Gn(1),Gy) = an~Y/(4d+2)} where a > 0 is such that
Wi(Gn(1),Gn(0)) > 2an~Y(4d0+2) by Theorem 6.1.a. By the triangle’s in-
equality, the complement A€ is included in {W3(Gp(0), Gp) > an~1/(4do+2)},
Now, either we have P, o(A¢) > % and, for G = G,,(0), we get

Ec[W1(G,Gn)lac]) > Z”_l/(4do+2)’
or we have P, (A) > 2 and by using (17), for G = G, (1), we get
Eq[Wi(G, G,)14] = e Tn/2an =1/ (1do+2),
so that (16) is proved since limsup,, I';, < co.

6.3. Comparison between distances for Theorem 8.3 and Theorem 4.1.
The key technical tool is

THEOREM 6.3. o Let Gy € G- Under Assumption B(2m), there
are € > 0 and § > 0 such that, with ¢ = 2dy + 1:

Hl?Cﬂ(;>__ITC7(;qHOO

18 inf > 0,
(18) G;éGl’pEggm Wy (G,G")1
W,y (G,Go)<e
W, (G ,Go)<e
and more globally, with r = 2m — 1:
F(,G)—F(,@)|oo

G#G'€G<m W (G,G")"

o Let Gy € Gmy. Under Assumption B(1), there are ¢ > 0 and 6 > 0
such that

£, G) = F( Glloo

m
G#G' €G<m Wy (Ga G/)
Wi (G,Go)<e
Wi (G/,G0)<E

(20) > 4.

o Let now Gy € Ggpm,. Under Assumption B(2), there are ¢ > 0 and
0 > 0 such that

> 9.

: |F(,G) — F(, Go)llso
21 f
( ) (?éé;nm LV&((;,(;Q)2
Wl(G,G0)<E
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 17

The proof of Theorem 6.3 is postponed to Section 7 where the novel in-
gredient, a coarse-graining tree, is constructed to prove (18) and (19), the
most difficult points. These one entail Theorem 3.3. The two related bounds
(20) and (21) hold under weaker differentiability assumptions, but are less
general. Bound (20) covers the case where the number of components in the
mixture is known, and is used for the proof of Theorem 4.1. Bound (21) is
the valid weaker version of Lemma 2 by Chen (1995), which is sufficient for
the use other authors have made of it. Here, we only compare mixtures in a
ball with the mixture at the center of the ball.

For the proofs of Theorem 3.3 and Theorem 4.1, we need in addition:

LEMMA 6.4. Let q,d > 1 and G € Ggp. Assume that the minimum
distance estimators Gy, := Gnp(m) defined in Theorem 3.3 satisfy for some
constant C' > 0 and on some event A,

Then

Eg |[Wa(Gn, G)] < (27C%) "0

~1/2d | Diam(0)Pg(A°).
Moreover,AP(;(AC) is at most 2e~2%" if A is either {||F, — F(-,G)]|oo < 2}
or {||F(-,Gn) — F(-,G) || < 22}

SKETCH OF PROOF. Bound Wq(@n, G) by Diam(©) on A°, use the defi-
nition (7) and the triangle’s inequality to bound ||F(-, @n) — F(-,G)||loo by
2||Fy, — F(-,G)||o, then use Jensen’s inequality on A and bound Eg, ||F}, —
F(-,G)|loo (and P (A€)) by applying DKW'’s inequality (Massart, 1990). [

6.4. Proof of Theorem 3.3. Let £, > 0 such (18) holds. Set

1
— 2 inf | F(G) = F(- G
I R (IR
Wq(G,Go)<e/2
Wq(Gl7Go)28

The infimum is taken over a compact set and is thus attained. We have z > 0
by identifiability (coming from Assumption B(2m)).

Consider A = {||F(-,G) — F(-,Gn(m))|lsc < z}. If G is in Gep with
W4(G,Go) < €/2 then G, (m) must satisfy Wq(@n(m), Go) < € on the event
A so that by (18),

On A, Wy(Gulm), €)1 < [ F(,Gulm) ~ F(,C)
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18 P. HEINRICH AND J. KAHN

Applying Lemma 6.4 with d = ¢ = 2dy + 1 and C = 1/§ yields
~ 2 1/2(1 _1/2 . _ 2/2
Eq[Wy(G,r(m),G)] < ((52> n~ /%1 4+ 2Diam(©)e”"*
so that bound (8) is proved. Bound (9) is obtained likewise from (19).

6.5. Proof of Theorem 4.1. Consider a mixing distribution Gg € Gy,.

Under Assumption B(1), let €,8 > 0 such (20) holds. Fix x € (0, 3) and set
1
Z=n A 4 Gelélgmo H ( 7G> ( 7G0)Hoo
Wi (G,Go)=e

By compactness and identifiability, the infimum in z is attained and positive.
On the event A = {||F (-, Go) — Fy||co < 2}, the minimum distance estimator
Gr(mo) in G<pmy, defined in Theorem 3.3, satisfies

1E(, Gu(m0)) = Fulloo < [1F(Go) — Fulloo < z < n~1/2%.

so that 77, is at most mg by (10); thus we have Gy (1) € Gemy. Next,

-~

Gy (my,) must satisfy Wi (G (my,), Go) < € on A since
[F(-, Gn(hn)) — F(+, Go)lloo < 2||F (-, Go) — Fulleo < 22,
by the triangle’s inequality. Applying then (20) on A, we get
~ 1 ~
Wi(Ga (i), Go) < 5 I1E(, Gulrin)) = F(, Go)lloo-

Now, apply Lemma 6.4 with g =d =1, C =1/§ and A as above, so that

~ 2
Eg, [W1 (G (), Go)] < 1/ %n_l/Q + 2 Diam(0) exp(—2n%).
7. The coarse-graining tree and the proof of Theorem 6.3.

7.1. Proof of (18): the coarse graining tree. Let Gy € Gp,,. We have to
show that, under Assumption B(2m), there is £ > 0 such that

: 1F(G) = F(,G) oo
22 L:= f
(22) GACIEGrm W, (G, Gy
W,(G,Go)<e
W,(G',Go)<e

>0 with ¢ =2dg+ 1.

Assume on the contrary that L = 0 and choose mixing distributions G,, and
G, in Gem with Wy (G, Go) V Wy(G),, Go) < 1/n such that for each n > 1,
the ratios | F'(-,Gn) — F (-, G})|l oo /Wq(Gn, G},)? are less than 1/n. We shall
prove, up to selecting subsequences, the following contradiction:

(23) HF(an> - F(’G;L)Hoo s WQ(GWG;z)q'
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 19

Some notations. We may and do assume that there are integers m, m’ at
most m such that (G,) C gm and (G),) C Gy We can then write G,, =

> i1 Tjndo;,, and G, ZJ 1 ]n59/ and set

(Tjms6n) if j<m
(@jns Vjm) = ]n ]n , o S
( j mn’ej mn) 1f]>m
m+m’
so that the signed measure G,, — G|, = Z wjmégm has total mass zero.
j=1
The discrepancy orders of the ¥;,’s. We shall first classify the differences
between the 9;,,’s in an intrinsic way:

LEMMA 7.1. For a suitable subsequence of G, — G, there is a finite
number S of “scaling” sequences

0=eo(n) <ei(n) <--- <eg(n) =1 with e5(n) = o(es41(n)),

such that for all j,j" € [1,m+m’] there is a unique s(j,j') € [0, S] satisfying
|95 = V| < €sigry ().

The proof is given in Heinrich and Kahn (2015, Appendix C). It follows
from the definition of s(j, j') that s(j, ;") < max(s(4,5”),s(4',5”)) and thus
s(+,-) defines an ultrametric on [1,m + m’]. The ultrametric makes any two
balls either included one into the other, or disjoint, and allows us to build a
coarse-graining tree :

DEFINITION 7.2. The coarse-graining tree T is the collection of distinct
balls J = {s(-,j) < s}, called nodes, when j ranges over [1,m +m'] and s
over [0, S]. Moreover:

e The root of T is J, = [1,m+ m'],
e The parent J' of a node J is defined by
(JcIcJLIeT) = I=1,
e The set of children of a node J is Child(J) = {I € T : I" = J},
e The set of descendants of a node J is Desc(J) ={I € T : I C J},
e The diameter of a node J is s(J) = max; jicys(J, ).

Let us show how the tree 7 looks like with a partial representation :
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20 P. HEINRICH AND J. KAHN

diameter + N

1

OI e ends of s-diameter zero e

Note that the ends are not necessarily singletons since the ultrametric
s(, ) does not separate points. Note also that j and j are in different children
K and K’ so that [J;, — ¥ | is actually exactly of order e,7)(n).

The Wassertsein distances Wq(Gy, GY,) through the coarse graining tree T .
In what follows n is skipped in the ¥;’s, @;’s and e,’s. Set for short

(24) WJ:ZWJ' and €J:€S(J).
jeJ

LEMMA 7.3. For any q > 1, we have

W, (G,,G' ) = ma wylel..
q( v n) JEDSSC)EJT)| J| JT

PRrROOF. Consider any coupling IT between G,, and G, and set
I0(J,J") = T{Y}jesnpm) X {95} jernpmstmem]) -
(25)  we(LJ) = > T({GL Y -9yl

(4,3 eI xJ’
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MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 21

Set also my =} jop1,m) @; and = — > jesnfm+1mtm] @j- These define
the marginal distributions of IT and we have II(J, J) < m; A 7/;. Note also
that |wy| =7y V7, —my A7/, With J¢ = J,. \ J, this gives

T(J, J) VII(JS, J) > |y

Notice moreover that if (j,5") € J x J, then |[0; — 9| = €;1. Hence the
lower bound of Lemma 7.3 follows from

Wq(Jrs Jr) Z we(J, JO) +we(JC, J) = || 53¢-
Conversely, for the upper bound, we show recursively that for all node J,

q
(26) wy(J,J) < Ker}r)lgs%u) |k |E G-

This is obviously true if J is an end node, with the value of zero. Assume
that (26) holds for children K of a given node J. We may develop J on its
children:

wy(L )= Y [wq(K, )+ Y w(K K|
KeChild(J) K’€Child(J)
K'#K
Furthermore, we get wq(K, K') g II(K, K') ¢, from (25) and
(K, K') < TI(K, K¢) < mx — I(K, K),

and if the coupling IT is chosen (see Heinrich and Kahn (2015, Lemma B.2)
for a construction) such that II(K, K) = g A 7 for all node K, then it
follows that

(K, K') < |wkl,

and thus
we(L )< Y [we(K K) + |wkled] .
K eChild(J)
The recurrence hypothesis on children K yields then (26). Ul

Ezxpanding F(z,Gy) — F(x,G)) through the coarse graining tree. The de-
pendence on n is skipped in the following notations. Consider the additive
set-function J — F(z, J) = >, ; w;F(z,9;) and note that F'(z, J;) is equal
to F(z,Gp) — F(z,G)).
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22 P. HEINRICH AND J. KAHN

LEMMA 7.4.  Choose 9 in {V; : j € J} for each node J of T.
There are a vector ay = (aj(p))o<p<em and a remainder R(x, J) such that

2m
(27) F(z,J) =Y as;(p)ehFP (z,9,) + R(x, J),
p=0

where:

(a) a;(0) =w; and [las| < 1,
(b) There is an integer py < |J| such that ||as|| =< |a;(ps)l,
(c) The norm ||ay|| is bounded from below by a quantity linked to W:

RN
lasl >  max er\(K) ,
KeDesc(J) EJ

(d) R(z,J) = o (||las| €¥™) uniformly in x.

As aremark, the lower bound on F(x, J,) will stem from points (c) and (d).
Points (a) and (b) are mainly there for transmitting recurrence hypotheses.
They control the size of F(z,J), together with point (c). The behaviour of
F(z,J) only depends on the first |J| terms in the sum. However, the sum
goes to 2m so that it is useful when J = J,.

PRrROOF. The proof uses Taylor expansions at 0 for a given generation
of children K together with separation and order properties of the coarse-
graining tree 7. Recall notation (24).

If K is an end of the tree 7, then all the ¢; for j € K are equal, and
F(z,K) = wgF(x,0f). Choose ak(p) = wilip—oy and R(z, K) = 0 so
that the equality (27) holds for the end node K with all the desired estimates
(a), (b), (c) and (d).

Assume now that J has children K, each of them satisfying (27) with all
the estimates (a), (b), (c) and (d):

2m
(28) F(z,K) =Y ax(O)eixFO (2, 9k) + R(z, K),
=0

We want to transmit (28) and the estimates to the parent J. Suppose without
loss of generality that ¥; < 9k and apply Taylor’s formula with remainder
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to FO(2,9x) at 9 for all £ € [0,2m]:
2m-—1 . p—~
FO(z,05) — Z Mp(p)(l«ﬂ%)

= -0
ﬁK(ﬁK o 9)2m717£
= Fm) .
/9J 2m—1—0)! (z,0)dd

Substract the term %F@m) (x,97) from either side so that

2m . p—t
FO@,9)- 3 WK = 9D 2oy (4.9,

= -0
[27e 9 — 0 2m—1—/
7 !

= (Vg — ﬂJ)Qm_KO sup \F(Qm) (x,0) — F(zm)(x, 9] -
9€[19J,’L9K}

The modulus of continuity of F(?™)(z,-) from B(2m) then yields

2m . p—t
FO@,05) =3 m FO (2 9,) + o <(§K B ﬁJ)sze) ‘
p=~L

The normalised discrepancies ¢ := (Vg — Jy)/ey for K € Child(J) are by
definition at most of order 1 so that

p—~L
(@, 0K) = ZEJZ ¢_ F(p)(x,ﬁj)—i—s?]m fo(1).

Subtitute in (28) and change the order of summation:

B 2m [ p ex £ ¢1]){—€
Fe = L;CLK(@(EJ) (p—0)!

+ R(z, K) + 5™ max
0</<2m

eh F®) (2,49,)

o (%)

Add up over the children K of J to obtain (27) for J, that is

o(1).

J) =Y a;(p)hFP (2,9,) + Rz, ),
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L p—L
with a;(p) = 3" kecnia() 2ot=o 9k (£) (%) (ﬁfe)z and
(29) R(z,J)= Y

KeChild(J) () <Z>é 0(1)] '

We have now to prove the estimates (a), (b), (¢) and (d) for the defined
coefficients as(p) and remainder R(x, J). Keep in mind that these estimates
are assumed to be true for the children K and set for short

¢
EK
O =1 1.
a0 () ‘
’ Proof of (a) for J ‘ It is immediate from the definition of a;(p) that

a;0)= Y ax(0)= Y  w@x=w,

KeChild(J) KeChild(J)

R(z,K) + %™ max
0</<2m

M, i := max
’ 0<U<p

and, using (a) for K together with ex < ey, we get

30 < M, < 1.
(30) las(p)| cemax My

’ Proof of (b) for J ‘ It’s enough to establish

31 max |a < max Mg = max |a .
(31) |J|<p<2m| J(p)|\KeChild(J) |K|-1LK 0<P<\J\‘ J(p)|

To prove the Lh.s. of (31), note from (30) that |a;(p)| < maxgecnia(.r)y Mp,x -
Moreover, for all p > |K]|,
EK ¢
Y
x(®) ()

and we have [lax|| < maxococ|k| |ax (£)| by (b) so that, even for p < |K|,

NI
< Mig)-1,x + |lak]] ( )

Mp,K < M|K|,17K + max g

|K|<e<p

ex
(32) M, k < <1 + 5J> Mg -1,k S Mg|-1,K-

Taking the supremum over K € Child(J) and over p give the Lh.s. of (31).
To prove the r.h.s. of (31), write a;(p) = af,l)(p) + af,Q) (p) with

P = B S (3) e
KeChild(J) £=0 7 :

@) p cK 14 ¢pf€

P = XY a0 ()

KeChild(.J) (=| K|
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Note that {¢x } kecnia(s) s e-separated since [¢px —¢r| = [V —V | /ey < 1
for K # K'. Set Arcy = ax (£)(ex /)" and apply Corollary D.2 of Heinrich
and Kahn (2015) to A({¢xk } kechia(s)) and A = (Ak ¢) kecnild(.), 0<e<| K|

w0 ()

which is the r.h.s. of (31) with af,l)(-) instead of ay(-).
We show now that the |a§2) (p)| are in fact negligible so that the r.h.s. of

33 max |a'V =  max
(33) 0<p<\J\‘ ol KeChild(J)
0<U<|K]|

= max MK*IK
KeChild(g) 1 KI7LE

(31) will follows. Indeed, easy bounds on a?(p) yield

| K|
g
max [a?(p)| < max [naKu (K> ]

0<p<|J]| " KeChild(J) £

whereas, as a by-product of (33), using ||ax || < maxoc,<|x| lax (€)[,

|K|—-1
(1) €K
- s .
max |a;’(p)] maX(J) [HCLKH <€J> ]

0<p<|J| KeChild

’Proof of (¢) for J ‘ From the r.h.s. of (31), and (a) for K, we deduce

|K|—1
EK
(34) las|l = max [HGKH <> ]\/ max |wgl|.
KeChild(J) £J KeChild(.J)

Here we used M|k |_1,x = Mok = |wk|. Combining (34) with (c) for children
K gives

RN
las|| = max max ’WF’(F> V  max |wgl.
KeChild(J) FeDesc(K) €J K eChild(J)

Now, bound the exponent |K| by |J| to derive (c) for J.

| Proof of (d) for J|. Split (29) as R(x,.J) = R (x,J) + R®)(, J) with

RV(z,J) = Y  R@K),
KeChild(J)
R(2)(CII,J) = €3m Z MQmJ(O(l).
KeChild(J)
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Note that (31) and (32) give maxgecnid(s) Mam,x < [|a||; moreover,

|6 < mas o (laxl 2]

by assumption (d) for K, so that by triangle inequality,

2m
IRC e <5 {Keglh&}féu) [o(l!aKH(EJ) )

By (34), ||las|| dominates ||lax|| (ex/c)*™ and thus (d) follows for .J. O

+ llal] 0(1)}-

Concluding the proof of (23). We shall show that

. _ el 2dp+1
(35) |F (-, Gn) F(,Gn)HOO>J€g}33C>§JT) |l

Recall that F(z,Gy) — F(x,G)) = F(z,J,) and distinguish two cases:

Case ¢;, — 0. All the ¥;,’s converge to a single support point of G so that
mgo = 1. Apply directly Lemma 7.4 to the root node J := J,:

2m
F(z,J) =Y as(p)eh FP(x,9,) + R(x, J),
p=0

so that by the triangle’s inequality, Proposition 2.3 and (d) for J,

1,

s

max |as(p)eh| — o (llasllF™) .

7 0<p<2m

By (b), the optimal p is at most |J| — 1, and since |J| < 2m, we get

1EC I

oo

Now, the estimate (c) for J yields further

2m—1
KT

S

1EC Il

max )]wK\a

& KeDesc(J

But this estimate is nothing else than (35) since mo = m — dj is one.

Case ¢;. = 1. This case means either there are more than one support point
in the limit Gy (mp > 1) or there is only one support point for Gy
but with possible sequences 6;,, converging to other points (vanishing
weights w; , may exist).
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Here, all the sgr’s are of the same order (actually identical), so the
scheme used for the case when €5, — 0 does not work. It works however
for the children J of J,:

F(z,J;) = Y. Fla,J)

JeChild(Jr)
2m
- Z ZaJ(p)g(p]F(p)(l‘)ﬁJ) + Z R(ﬁ, J)a
JeChild(J,) p=0 JeChild(Jr)

so that by the triangle’s inequality, Proposition 2.3 and (d) for J,

F(- J = max max |a 2l — max o (|lay|l e3™).
1E (s Te) oo rJthﬂd(Jr)ogmel 1(p)eY| Jedhax ([lasl e5™)

The optimal p is at most |J|—1 by (b), so that ||F(-, J,)||,, dominates
max jechild(.J,) ||| 5!}”71, whereas for p = 0 we get that ||F(-,J;)|
dominates max jecnila(s,) [@J|, by (a). Together with €;+ =1 and (c)

for J, we obtain

oo

F(J o |J|—1
1EC I loo 7 5 808365 enimein = i
which is nothing else than
! |J]—1
(36) |F(-,Gn) — F(-, G| = jelax | le

Now, note that a descendant J of J, of maximal cardinality must be
a child of J,, call it J,. Since G,, and G, converge to Gy € Gy, the
root J,. has at least mg children, each of them containing at least two
points. Thus, we have

|Jr| = |J*| + 2(m0 - 1)'

Since |J,| is at most 2m, we deduce further that |J,| < 2m — 2mg + 2.
From (36), we finally arrive at (35), exacly as in the case €5, — 0.

Now, recall that ¢ = 2m — 2mg + 1. Lemma 7.3 together with (35) ensure
that, whatever the case, €5, =+ 0or ey, =1,

HF(,Gn) - F(7Gln)Hoo 7 WQ(GmG;)q

which is the stated contradiction (23).
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7.2. From local to global: how (18) implies (19). We have to show that,
under Assumption B(2m), for r = 2m — 1,

. _ ./
P 1 e B e <]

0.
G#G' €G¢m W.(G,G")" >

From the definition of L, we can select mixing distributions G,, and G/, in
G<m such that |F(-,Gyn) — F(-,G})lo /Wr(Gn,G),)" converges to L. Since
the set Gem X G<m is compact, we can assume that (G, G)) converges to
some limit (Goo, GL). Set w = Wy (Goo, GLy).

Case w > 0. This case does not depend on (18). By identifiability, there is
xo € R such that A := |F(z0,Geo) — F(x0,GL)| > 0. Then, for all n,
1F(Gn) = F(,G)llos o [F(0,Gn) — F(xo, Gy)
W (Gn, G,) g Wi (Gn, G,)" '
The numerator of the r.h.s. of (37) goes to Ay by the triangle’s inequal-
ity and since the function 6 — F(zg,0) is Lipschitz w.r.t. the metric
W1 and thus also w.r.t. W,.. As a consequence, we get L > Ag/w" > 0.

Case w = 0. Consider (18) with Gy = G&. For n larger than some ng, all
Wo(Gr, Go) and W, (G),, Go) are less than e so that by (18),

- IFC.G) ~ F(.GY)
n>ng Wo(Gr, Gh)1
Since we have Wy (-, -)?Diam(©)" "% > W,.(-,-)" for r > ¢, we get

e IFCG) —FeGl 6
nz=ng Wr(Gn, G%)T Diam(@)r_q

which gives L > §/Diam(©)" "7 in the limit and (19) in that case.

(37)

[

7.3. Completing the proof of Theorem 6.3: the easy cases (20) and (21).
For the proof of (20), we can simply make use of Theorem 3.1 of Ho and
Nguyen (2015). Alternatively, a detailed proof with our notations is available
in the supplemental part (Heinrich and Kahn, 2015, B.2).

For the proof of (21), we can follow the proof of Chen (1995, Lemma 2)
which holds here, because the v; defined in his paper are all non-negative,
and at least one is nonzero.
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SUPPLEMENTARY MATERIAL

Auxiliary results and technical details
(doi: 10.1214/00-AOASXXXXSUPP; .pdf). This supplemental part gathers
some proof details on some assertions given in the paper.
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