
HAL Id: hal-01142325
https://hal.science/hal-01142325

Preprint submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spin-flop transition driven by competing magnetoelastic
anisotropy terms in a spin-spiral antiferromagnet

L Benito

To cite this version:
L Benito. Spin-flop transition driven by competing magnetoelastic anisotropy terms in a spin-spiral
antiferromagnet. 2015. �hal-01142325�

https://hal.science/hal-01142325
https://hal.archives-ouvertes.fr


Spin-flop transition driven by competing magnetoelastic anisotropy terms in a
spin-spiral antiferromagnet

L. Benito1, 2, ∗

1Department of Materials Science and Metallurgy, University of Cambridge,
Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

2Departamento de F́ısica de la Materia Condensada,
Universidad de Zaragoza, 50009 Zaragoza, Spain.

(Dated: April 14, 2015˙; )

Holmium, the archetypical system for spin-spiral antiferromagnetism, undergoes an in-plane spin-
flop transition earlier attributed to competing symmetry-breaking and fully symmetric magnetoelas-
tic (MEL) anisotropy terms [Phys. Rev. Lett. 94, 227204 (2005)], which underlines the emergence
of six-fold MEL constants in heavy rare earth (RE) metals, as otherwise later studies suggested
[Phys. Rev. Lett. 98, 267201 (2007) and Phys. Rev. B 89, 134421 (2014)]. A model that en-
compasses MEL contributions to the in-plane sixfold magnetic anisotropy is laid out to elucidate
the mechanism behind the spin-flop transition. The model, which is tested in a Ho-based superlat-
tice, shows that the interplay between competing fully symmetric α-MEL and symmetry-breaking
γ-MEL anisotropy terms triggers the spin-reorientation. This also unveils the dominant role played
by the six-fold exchange magnetostriction constant, where D66

α2'0.32 GPa against its crystal-field
counterpart M 66

α2'−0.2 GPa, in contrast to the crystal-field origin of the symmetry-breaking mag-
netostriction in RE metals.

PACS numbers: 75.30.Gw,75.50.Cc,75.70.Cn
Keywords: spin-flop transition, magnetoelastic anisotropy, magnetoelastic effects, magnetostriction, rare
earth metals, holmium

I. INTRODUCTION

The concept of spin-flop1 transition (SFT) was re-
stricted to field-induced spin-reorientation transitions
in two-sublattice collinear antiferromagnetic (AFM)
systems, wherein the featured threshold-field effect that
accompanies the spin jump-like transition was originally
predicted by Néel2 and later on tested in CuCl22H2O.3

Today, the term SFT is utilized in a broader sense,
which includes a variety of field-driven spin-reorientation
transitions in a wide spectrum of AFM materials4–9.
Heavy rare earth (RE) metals, namely Dy and Ho, are
a model system for spin-spiral magnetic phases10,11,
which result from the intertwined12 interplay between
an oscillating indirect-exchange13–15 and spin-orbit (SO)
couplings16,17. A large spin-lattice18 coupling in heavy
RE metals give rise to huge lattice strictions, ∼1%,
which increases the complexity of non-collinear magnetic
phases, with respect to that upheld by the undistorted
lattice, introducing high-order harmonics19 into the
magnetic spectrum.
High-precision vector magnetic torque experiments20

revealed that Ho undergoes an unexpected field-induced
in-plane SFT, which was originally attributed to com-
peting MEL anisotropy21 terms. The existence of a fully
symmetric six-fold MEL coefficient, λ66, which gives rise
to the sixfold modulation of the α-strains, εα1 (isotropic
volume expansion) and εα2 (tetragonal distortion of the
hexagonal cell), originates a twelvefold MEL-induced
MAE constant, K 12

12, as experimentally confirmed in
bulk Ho22. The existence of λ66 is associated with the
appearance of six-fold MEL constants, which may not be

solely restricted to the Ho metal23. More importantly,
λ66, and by extent K 12

12, exhibits a visible non-monotonic
dependence on temperature22. Making use of arguments
based on point-group theory24, it is straightforward to
establish that λ66, as well as K 12

12, are encompassed
by competing six-fold crystal-field (single-ion) and
exchange (two-ion) MEL terms. This result is obtained
from extending the Callen’s theory of Magnetostriction
(CTM)25 to sixth-order in the angular momentum
operator. Additionally, the outcome of this study shows
that, in contrast to the general wisdom that states
that the magnetostriction (MS) in heavy RE metals
is primarily of crystal-field origin16,17,26,27, α-striction
modes are significantly contributed by exchange terms.
Generally, two-ion MEL contributions are neglected and
when these are brought into the analysis tend to be
considerably smaller than single-ion counterparts28.
In heavy RE metals, the Fermi surface (FS) topology
is determined by the crystal lattice parameters29, to a
point where heavy RE elements are well-modeled by
a crystallo-magnetic phase diagram30. Experimentally,
the ratio between the interplanar spacing c and the
interatomic, intraplanar spacing a of the hexagonal-
close-packed lattice, c/a, which is linked to εα2, seems
to be the crucial parameter that triggers the electronic
topological transition31–35, supporting the nesting hy-
pothesis36 that links the appearance of webbing features
in the FS topology to the onset of non-collinear magnetic
ordering in RE metals.
More importantly, due to the set of spin-spiral mag-
netic structures in Ho, this 4f metal is gathering
increasing fundamental interest, because of the real-
ization that this can be utilized as test ground for
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assessing new experimental techniques in condensed
matter physics37, exploring novel concepts in hybrid
superconductor/ferromagnetic spintronics38 devices
and investigating the impact that low-dimensional
effects have upon the structure of non-collinear mag-
netic phases39–41. Thereby, unlocking the origin of
the spin-flop transition in a model system raising
wide-spread attention and finding out the influence
that single- and two-ion MEL strictions possess is not
only essential for a better understanding of Holmium’s
complex magnetism, but also for gaining a complete
picture of the determining effect that magnetostrictions
have upon the orientation of the spin arrangement in
spin-orbit-coupling dominated RE metals.
This paper proposes a MEL model for the SFT in Ho,
which constitutes one out of a few genuine examples
of magnetoelastically driven spin-flop transition8 in
AFM systems. The model confirms that α- and γ-MEL
strictions of the hexagonal lattice originate competing
in-plane MEL anisotropy terms, and their balance,
jointly to the magnetocrystalline (MC) anisotropy, is
the mechanism that triggers the basal-plane spin reori-
entation. The SFT model includes crystal-field (CF)
and exchange (EXCH) high-order MEL constants, and
is successfully tested in a Ho-based superlattice. Finally,
sixfold EXCH α-MEL constants are proven larger than
CF counterparts in absolute value, which indicates that
the anisotropic part of the volume and tetragonal MS
modes are dominated by two-ion MEL interactions.

II. THERMAL ANALYSIS OF THE VOLUME
AND TETRAGONAL MAGNETOSTRICTION

MODES IN HOLMIUM.

Firstly, it is important to notice that the CTM25 usu-
ally considers terms up to second-order in the angular
momentum operators, i.e. the magnetostrictive hexag-
onal solid is approximated by a crystallographic lattice
with cylindrical symmetry. The differentiated aspect of
this study is the starting point of our analysis, i.e. the re-
lationships for the α-MS, i.e. εα1 and εα2, which include
coefficients up to sixth-order in the angular momentum
operators [see Appendix]. The approach outlined here
in order to undertake the yet not well-understood linear
MS in Ho42 consists of analyzing the temperature depen-
dence of symmetric α-MS modes, rather than the linear
MS, which encompasses a complex mix of temperature-
dependent coefficients, being this approach general to
magnetic solids with hexagonal symmetry.
From the linear anomalous expansions in Ho42 measured

along the high-symmetry directions in the hexagonal lat-
tice, a(1010), b(101̄0) and c(0001), it is straightforward
to determine the symmetric anomalous expansions25

or spontaneous strictions, εspα1,2, which comprise lat-

tice (Debye-Grüneisen) and magnetoelastic (magnet-
induced) lattice distortions. If the Debye-Grüneisen

FIG. 1: (color online). Symmetric volume, εα1 (black circles),
tetragonal, εα2 (red squares) and orthorhombic, εγ1 (blue tri-
angles), magnetostriction (MS) modes in single-crystal Ho,
belonging to the symmetric representations Γα and Γγ in
hexagonal symmetry25. α- and γ-MS modes have been ob-
tained working out the linear MS modes measured by Rhyne
et al.,42. For further details see text.

contribution43 is properly taken away, the resulting can
be attributed to the zero-field magnetostriction, ε0

α1,2.
Similarly, from the linear strictions measured under a
strong enough applied magnetic field42 (µH =3 T) that
ensures the full alignment of the spin arragement44

along H‖b, the symmetric field-induced (forced) stric-
tions, εhα1,2 can be determined.Additionally, subtracting

the lattice contribution43 from εhα1,2, yields the α-MS
modes, εα1,2.
Fig. 1 shows the α-MS modes in bulk Ho for µ0H =3 T.
It is observed that εα1 and εα2 attain larger values at
low temperature than the symmetry-breaking γ-striction
in Ho. In particular, this later attains a smaller value
in Ho than in its spin-spiral counterparts, Tb and Dy
[i.e. εγ1∼1.3×10−3 for the former against ∼5.7×10−3

and ∼5.3×10−3 for the latter28, respectively]. More par-
ticularly, a comparative analysis of the α-MS modes re-
veals that εα2 is almost an 80% larger in Ho than in Dy,
whereas that εα1 attains a value that is about 20% bigger
in Dy than in Ho [not shown here]; furthermore, the ratio
εα2/εα1 in Ho indicates a clear asymmetry between the
α-strictions, being considerably larger εα2; however, this
asymmetry is less marked in Dy where both α-strictions
modes reach much alike values.

The extension of the CTM up to sixth-order provides
relationships for εα1,2 [see Appendix, Eq. (A17)], which
can be rearranged according to its dependence on the
azimuthal angle, φ, as follows,

εα1,2 = ε0
α1,2

+ εφα1,2
(1)

where ε0
α1,2

and εφα1,2
are thereafter referred to as the

isotropic and anisotropic (φ-dependent) contributions to
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FIG. 2: (color online)(a) Temperature scaling of (a) the
zero-field volume (squares) and tetragonal (circles) symmetric
magnetostriction (MS), this is ε0α1

and ε0α2
, respectively, and

(b) the anisotropic sixfold volumen (squares) and tetragonal
(circles) MS, εφα1

and εφα2
, respectively, obtained after working

out the measured linear MS in bulk Ho42, e.g. after substrac-
tion of the Debye-Grüneisen contribution43 and determining
εφα1,2

=εhα1,2
−ε0α1,2

, where εhα1,2
is the field-induced MS. In (a)

the continuous line corresponds to a fitting function, which
reads as, ε0α1,2

= 1
cα1cα2

∑
l=2,4M l

α1,2cα1,2Î 2l+1
2

[m̂], where

the best-fit parameters are: M 2
α1=0.09 GPa,M 4

α1=0.026
GPa, M 2

α2=0.9 GPa andM 4
α2=−0.17 GPa. The dashed

line corresponds to a fit, which considers single-ion
terms up to l=2, so that the best-fit parameters are:
M 2
α1=0.12 GPa andM 2

α2=0.74 GPa. In (b) the continu-
ous line corresponds to a fitting function, which reads as,
εφα1,2

(φ=0)= 1
cα1cα2

(M 66
α1,2cα2,1Î 13

2
[m̃]+D66

α1,2cα2,1m2), where

the best-fit parameters are: M 66
α1=−0.018 GPa,M 66

α2=−0.19
GPa, D66

α1=0.04 GPa and D66
α2=0.315 GPa. For further de-

tails see Appendix.

the α-MS, respectively, which read as,

ε0
α1,2

=
1

cα

∑
l=2,4,6

{(M l
α1,2

cα2,1 −M l
α2,1

cα3)Î 2l+1
2

[m̃]

+ (Dl
α1,2

cα2,1 −Dl
α2,1

cα3)[Î 3
2
(m̃)]2} (2)

and

εφα1,2
=

1

cα
{(M66

α1,2
cα2,1

−M66
α2,1

cα3
)Î 13

2
[m̃]

+ (D66
α1,2

cα2,1 −D66
α2,1

cα3)(Î 3
2
[m̃])2} cos 6φ (3)

In zero-field Ho develops a basal plane helical AFM
structure below its Néel temperature TN=132 K45,
where the magnetic moments within the same atomic
sheet form a ferromagnetic arrangement and when
moving along the c-axis, the magnetic moments rotate
a fixed angle between adjacent c-planes, forming a
spin-spiral magnetic arrangement; below its Curie tem-
perature TC=18 K, this structure turns into a conical
spin-spiral structure, where the magnetic moments tilt
away from the c-plane (≈5o) and lie in the surface of
a imaginary cone, developing a small ferromagnetic
component along c-axis.
Evaluating εα1,2

in the helical AFM phase that sets in
Ho metal in zero-field, will allow us to make a crucial

identification. Thus, if we sum up in Eq. (1) over all
possible orientations for the magnetic moments in the N
ferromagnetic sheets, i.e. over the azimuthal angle φi for
each i -layer that conforms the spin-spiral arrangement
in a bulk Ho crystal, leads to

∑
i εα1,2(φi)≡ε0

α1,2
, given

that
∑
i cos 6φi=0. Therefore, it is possible to identify

the ε0
α1,2

, given in Eq. (2), with the zero-field (isotropic)

α-MS, displayed by Fig. 2(a).
Furthermore, if we proceed with the following sub-
straction of experimental data, namely εhα1,2−ε

sp
α1,2, the

resulting striction will be associated to the symmetric

anisotropic contribution to the forced MS, εφα1,2, evalu-

ated in this case for φ=0 (H‖b), which is experimentally
demonstrated to be non-negligible, as displayed in Fig.
2(b). Importantly, we highlight that the existence of

εφα1,2, would remain unexplained if only contributions

up to l=2 were taken into account in Eqs. (A4) and
(A7) [see Appendix]. It can be seen that ε0

α1,2 shows a

monotonic temperature dependence unlike εφα1,2, which
presents a non-monotonic temperature scaling, as can
be seen in Fig. 2. This experimental approach makes
evident the need of including competing CF and EXCH

six-fold MEL contributions, in order to account for εφα1,2.
The modeling of the temperature variation of the

experimental ε0
α1,2 and εφα1,2 will be performed utilizing

the relationships given in Eqs. (2) and (3), respectively.
The criteria employed in the analysis consists of finding
the best-fitting function, but using the minimum number
possible of CF and EXCH MEL constants, and of the
lowest l -rank possible. Besides, the MEL constants
resulting from the analysis of the α-MS must be suitable
input parameters for modeling the observed SFT in Ho.
Thus, aiming to elucidate the influence of single- and
two-ion contribution, we have attempted three fitting
functions for ε0

α1,2: 1) Fit 1 includes CF MEL constants
up to l= 2; fit 2 includes CF MEL constants up to l= 4
and, finally, fit 3, which includes CF and EXCH MEL
constants up to l= 2. The former fails to produce a fully
satisfactory fit of the experimental data, apart for a nar-
row range at very low temperatures, fit 1 overestimates
the experiment for ε0

α1 and underestimates that for ε0
α2.

Fits 2 and 3 result in an almost indistinguishable fitting
function [not shown here], which in both cases produce
an excellent accord between experiment and theory for
ε0
α1,2 [see Fig. 2(a)]. From the later, we have opted

for retaining fit 2 to the detriment of fit 3, because the
former yields a unique set of α-MEL constants that will
enable us to model the observed SFT in Ho, which is

not the case of fit 3. However, in the case of the εφα1,2,
competing CF and EXCH MEL constants are consid-
ered, producing a relatively good agreement between the
non-monotonic temperature dependence posed by the
experimental data and the model, as seen in Fig. 2(b).
Fig. 2 shows details for all attempted fitting functions
and the best-fitting parameters calculated. We notice
that the extrapolated values at 0 K for cα1,cα2 and cα3

in Ho have been utilized, given that the temperature
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M2
αi M4

αi M66
αi D66

αi

εα1 0.09 0.026 -0.018 0.04

εα2 0.9 -0.17 -0.19 0.315

TABLE I: Crystal-field (single-ion), M 66
α1,2 and M 2

α1,2, and
exchange (two-ion), D66

α1,2 and D2
α1,2, α-magnetoelastic con-

stants associated to εα1 (volume striction), εα2 (tetragonal
striction) resulting from the analysis of the temperature de-
pendence of these latter in single-crystal Ho. The values are
given in GPa.

variation of the symmetric elastic constants46 is assumed
negligible in comparison to the thermal variation of the
MEL constants. The values used are: cα1=40 GPa,
cα2=100 GPa and cα3=−2 GPa.
Table I displays the best-fitting MEL constants, which

result from the temperature analysis of ε0
α1,2 and εφα1,2

as explained above. At a glance, the MEL constants
associated to the tetragonal MS mode, εα2, are around
about an order of magnitude larger that those associated
to the volume expansion, εα1. The quick analysis of the
α-MEL contants reveals the following key features: 1)
The tetragonal MS mode is considerably more efficient
than the volume expansion mode in decreasing the
sixfold magnetic anisotropic energy, since it turns out
that M 66

α2=−0.19 GPa and the ratio M 66
α2/M 66

α1'10,
being fully coherent with a prior study of the impact that
an in-plane compression epitaxial strain has upon the
sixfold magnetic anisotropy47. 2) The uniaxial magnetic
anisotropy increases rapidly under the appearence of εα2,
notice that M 2

α2=0.9 GPa and the ratio M 2
α2/M 2

α1=10.
3) εα2 and εα1 have dissimilar effects upon the biaxial
magnetic anisotropy constant, given that M 4

α2=−0.17
GPa and the ratio M 4

α1/M 4
α2'−6.5. 4) εα2 notably

enhances the sixfold anisotropic nature of the exchange
coupling, in clear contrast to the smooth influence of
εα1, since the experiment shows that D66

α2=0.315 GPa
and the ratio D66

α1/D66
α2'7.9. Overall, the effect that

the α-strictions and, more particularly εα2, have upon
the indirect-exchange coupling in Ho is in agreement
with the findings of a recent crystallo-magnetic phase
diagram30, which predicts a trend to reinforce the
ferromagnetic order as the c/a ratio increases.

III. SPIN-FLOP TRANSITION MODEL IN
HOLMIUM: COMPETING MEL ANISOTROPY

TERMS.

The distinctive aspect of the SFT hosted by Holmium
is that this is observed in magnetic torque curves21, which
points to that the most likely mechanism driven the
SFT is a field-induced competition between magnetocrys-
talline (MC) anisotropy, i.e. that due to the undistorted
lattice, and α- and γ-MEL anisotropy energy terms. The
order parameter of the first-order spin reorientation tran-

sition is the angle, φ, that makes the magnetization,
M, with a high-symmetry direction in the BP of the
HCP structure. Let us commence by noticing that M
in Ho is confined to the BP by a huge uniaxial magnetic
anisotropy16 and, therefore, the relevant anisotropic part
of the free energy, F k can be written as,

Fk = {K6
6 − (M66

α1 +D66
α1)εα1 + (M66

α2 +D66
α2)εα2}cos6φ

−
∑

l=2,4,6

M l
γ2(εγ1cos2φ+ εγ2sin2φ) (4)

−
∑
l=4,6

M l
γ4(εγ1cos4φ− εγ2sin4φ)

where the first term corresponds to the sixfold MC
anisotropy energy constant, K 6

6, the next linear com-
bination involving α-strictions is referred to as the α-
MEL anisotropy terms, and the last two sums includ-
ing γ-strictions to the γ-MEL anisotropy terms, all these
terms constitute the effective sixfold MAE in the BP. In
the case of Ho, φ is the angle that makes M with the b
axis, i.e. Holmium’s easy direction for M at high field44.
It is convenient to clarify that Ho’s magnetic structure
turns from a spin-spiral phase in zero-field into a forced
FM structure along H‖b, passing through intermediate
magnetic phases, such as for instance distorted helix and
fan phases as H increases45. Fan phases are featured by
a rapid increase of the M, so that this latter quickly ap-
proaches to a fully magnetized state and results from an
orderred bunching of the spin arrangement, posing a nar-
row angular dispersion around H48. Assuming that a fan
phase can be visualized in first-order of approximation
as a pseudo-ferromagnetic structure, then for H≥H c1,
where H c1 is the critical field for the field-induced tran-
sition from a spin-spiral into a fan phase48, the condition
for φ=0 to become a extreme leads to,

∂Fk
∂φ
|φ=0 = (M2

γ2 +M4
γ2 +M6

γ2 + 2(M4
γ4 +M6

γ4))εγ2 = 0

(5)
Now, in a general case, both γ-striction modes will be
non-null and, therefore, the relationship between γ-MEL
constants that must be met for high-symmetry a and b
directions become extremes in a fan or forced FM phase,
compatible with εγ2 6=0, reads as,∑

l=2,4,6

M l
γ2 = −2

∑
l=4,6

M l
γ4 (6)

The condition that must be met for φ=0 to become max-
imum or minimum, after inserting Eq. (6) into Eq. (5),
leads to,

∂2Fk
∂φ2

= 3(K6
6 −

∑
i=1,2

M66
α,iεα,i) + 2(M4

γ4 +M6
γ4)εγ1 (7)

It becomes clear from inspecting Eq. (7) that the α- and
γ-strictions, which are intrinsically functions of the tem-
perature and the applied magnetic field, i.e. ε(Γ)i(T,H ),
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determine the easy direction for M in Ho. In other words,
the balance between the different contributions to the
MAE, namely the MC, α− and γ-MEL anisotropy terms,
is unambiguously the microscopic mechanism underlay-

ing the SFT. Thus, if ∂
2Fk
∂φ2 <0, then cosφ=0, which means

that the a axis is the easy direction for M. By contrary, if
∂2Fk
∂φ2 >0, then cosφ=1 and the b axis is the easy direction

for M.
At this point, it is interesting to set out what high-
symmetry direction in the BP the α- and γ-MEL con-
tributions to MAE tend to align the magnetic moments.
Firstly, we should consider the sign of the symmetric MS
modes at high field [as observed in Fig. 1, we notice
that εα1,εα2>0 and εγ1<0] and that of the α-MEL [see
Table I] and γ-MEL28 constants. In addition, we must
bear in mind that the symmetric MS modes in single-
crystal Ho are monotonic functions of the temperature
[see Fig. 1] and the applied field, such as earlier stud-
ies have shown18,26,27,49. Building on these experimen-
tal facts, we conclude that the sixfold α-MEL and γ-
MEL contributions to the MAE, which are referred to
as K 6,α

6,mel and K 6,γ
6,mel anisotropy constants, respectively,

which read as,

K6,α
6,mel = −

∑
i=1,2

(M66
α,i +D66

α,i)εα,i

K6,γ
6,mel = (M4

γ2 +M6
γ4)εγ1 (8)

compete each other to align M along high-symmetry di-
rections in the BP of the HCP strucutre. Thus, if we
consider that M 6

γ4�M 4
γ4≈−0.85 GPa28 [notice that ex-

perimentally the γ-MS in Ho is finely modeled by uti-
lizing a few low-rank MEL constants28], which means

that K 6,γ
6,mel>0 and, therefore, we can conclude that γ-

MEL anisotropy term tends to align M along b direction,
competing with K 6

6.28 On the other hand, from inspect-

ing Eq. (8), we observe that K 6,α
6,mel<0, which indicates

that α-MEL anisotropy term tends to align M along a
direction, co-operating with K 6

6.
In order to test the proposed model for the SFT in Ho,
we find appropiate to re-arrange K 6,α

6,mel and K 6,γ
6,mel. To

this end, the relationships for εα1,εα2 [given in Eq. (1)]
and εγ1

28 will be inserted into the Eq. (8), which after
retaining only α-MEL contants up to l=2,4, and consid-
ering that cα=cα1cα2-c2

α3≈cα1cα2, which enables us to
provide a further simplified relationship, leading to,

K6,α
6,mel '

∑
i=1,2

−1

cαi
(
∑
l=2,4

M l
αiÎl+ 1

2
[m̂])(M66

αi Î 13
2

[m̂]+D66
αim

2)

(9)
and applying the same cut-off criteria to γ-MEL con-
stants, leads to,

K6,γ
6,mel '

−1

cγ
{M2

γ2M
4
γ4Î 5

2
[m̂]Î 9

2
[m̂] +M4

γ2M
4
γ4(Î 9

2
[m̂])2}

(10)

where cγ=2(c11−c12)=106.6 GPa.46 Finally, the effective
sixfold MAE constant can be written as,

K6,eff
6 = K6

6,mcÎ 13
2

[m̂] +K6,α
6,mel +K6,γ

6,mel (11)

In order to test whether the proposed MEL model, which
is summarized in Eq. (11), replicates a change of sign

in K 6,eff
6 as H is swept in the [Ho85/Lu15]50 superlat-

tice (SL), in which the SFT was firstly observed21, the
first aspect we must consider is the influence that the
finite-size50 of the Ho layers has upon the MEL constants.
Thus, as an earlier study47 has shown, the development
of typical epitaxial strains in multilayered RE-based sys-
tems originated a negligible alteration, if any at all, in
the γ-MEL constants; however, the α-MEL ones experi-
enced an appreciable strain-induced modification, which
is in a general case modelled as follows23:

Mp
α1,2 =

Mp
α1,2(0)

1 + b′εα1,2
(12)

where p(=2,4 and 66), M p
α1,2(0)≡M p

α1,2(εα1,2=0)

and b’=104. Let us assume that Eq. (12) is equally
valied for two-ion MEL constants. Besides, we will
assume that the developed epitaxial strain in the target
Ho/Lu SL is mostly isotropic in the deposition plane,
as a prior study suggested47. In this way, making
the following identification εxx=εxx≡ε‖ and εzz≡ε⊥,
where ε‖ and ε⊥ are the in- and out-of-plane strains,
respectively, and modelling the thickness dependence of
ε‖ by the relationship, ε‖=ε0tLu/(ctLu+tHo)

51, where

ε0=aLu−aHo
aHo

=−0.0204, is the lattice mismatch, aHo(Lu)

is the in-plane lattice parameter16 for Ho(Lu), tHo,Lu
is the Ho(Lu) nominal layer thickness [85 monolayers
(MLs) for Ho and 15 MLs for the Lu layers] and c=0.95
is a constant resulting from the ratio between Ho and Lu
elastic constants and, finally, making use of the Poisson’s
ratio ε⊥=−2ε‖c13/c33

52, where the ratio c13/c33=0.2646

in bulk Ho, it is straightforward to calculate that
εα1' 3

2ε‖ and εα2'− 1
4ε‖, where ε‖=−0.00308. For

illustrative purposes, the epitaxial strain developed in
the Ho85/Lu15 SL [in-plane compression] entails a sharp
diminishing of the α-MEL constants, which in the case
of εα2 means that these latter solely amount to a 12%
out of the unstrained constant values.

Fig. 3 shows the experimental SFT driven by field in
the Ho85/Lu15 SL at T=50 K. It is observed that the
outlined model achieves an excellent agreement with the
experiment. The sign cross-over manifested by the field-

dependent K 6,eff
6 is modelled making use of Eq. (11), so

that we have taking K 6
6=−1.84 MPa28, K 6,γ

6,mel as given

in Eq. (10), K 6,α
6,mel as given in Eq. (9), the α-MEL

constants determined in this study [see Table I] and the
earlier obtained γ-MEL28 constants in Ho. Notice that
we have taken into account the strain dependence of the
α-MEL applying Eq. (12) to estimate the strain-induced
downsizing. The only parameter utilized is the measured
m(T=50 K,H ) in the Ho/Lu SL, which determines the
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FIG. 3: (color online). Field-depedent effective sixfold mag-

netic anisotropic energy (MAE) constant, K 6,eff
6 , (filled

squares) experimentally determined in a [Ho85/Lu15]50
21 su-

perlattice at T=50 K. The empty triangles correspond to the
calculated values for K 6,eff

6 using Eq. (11) [the line serves
as a eye-guide]. The insert graph displays the field-dependent
magnetocrystalline, γ- and α-magnetoelastic MAE constants,
K 6

6,mc (black squares), K 6,γ
6,mel (blue circles) and K 6,α

6,mel (red

triangles), respectively as a function of the reduced magneti-
zation, m(T=50 K,H ), equally shown, utilized in the simu-
lation of the in-plane spin-flop transition. For further details
see text.

values of the reduced hyperbolic Bessel functions. For
completeness, Fig. 3 also displayes m(T=50 K,H ),
and the calculated field-dependent MC, γ- and α-MEL
anisotropy terms utilized in the simulation as a function
of H. The experimental critical field for the SFT at

T=50 K is µ0H c(K 6,eff
6 ≈0)'1.6 T.

Finally, a brief remark on the discarding of fit 3. If
we proceeded in the same way spelt out above with
the CF and EXCH MEL constants derived from fit
3, it is straightforward to calculate that under such
premesis K 6,α

6,mel would include a dominant term reading

as −1/cα(D2
α2D66

α2cα1+D2
α1D66

α1cα2)m4, where the
best-fitting parameter would be: D2

α1=−0.1 GPa,
D66
α1=0.04 GPa, D2

α2=0.38 GPa and D66
α2=0.37 GPa.

Despite taking into account the re-sizing effect intro-
duced by the epitaxial strain into the declared CF
and EXCH MEL constants [described by Eq. (12)],
the aforementioned α-MEL anisotropy term would
force the spins to align along a axis, since in that situa-

tion K 6,eff
6 <0 at any temperature and for any applied H.

IV. CONCLUSIONS.

As a summary, this study develops a MEL model that
elucidates the mechanism behind the spin-flop transition

previously observed in Ho nanostructures21,22, which ap-
pears to be the interplay between the magnetocrystalline
(undistorted lattice), α- and γ-MEL contributions to the
in-plane sixfold magnetic anisotropy energy. Besides,
the model shows that whereas α-MEL anisotropy tends
to align the spins along a axis, co-operating with
the magnetocrystalline anisotropy, γ-MEL anisotropy
competes with the former, tending to align spins along b
axis. The model proposed here builds on the extention of
the Callen and Callen Theory of the Magnetostriction25

up to sixth-order in the angular momentum operators,
which allows to undertake the temperature analysis
of the volume and tetragonal magnetostrictive modes
in single-crystal Ho, which remained yet unsolved so
far. From that analysis crystal-field and exchange
α-MEL constants are determined, providing essential
input parameters for testing the model of the spin-flop
transition in a [Ho85/Lu15]50 superlattice. For the first
time in a rare-earth metal, sixfold single- and two-ion
α-MEL contants, which are shown particularly large in
the case of the tetragonal magnetostriction mode, where
D66
α2

=0.365 GPa and M 66
α2

=−0.2 GPa, demonstrating
that fully symmetric magnetostriction is dominated
by spin-lattice interactions with exchange origin. This
investigation contributes to a better understanding of
the complex magnetic phenomena arising in a model
system like Holmium, and by extent in heavy rare-earth
metals, unravelling the central role played by the MEL
anisotropy energy in determining the orientation of the
spins in spin-orbit-coupling dominated magnetic systems.
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APPENDIX. VOLUME AND TETRAGONAL
MAGNETOSTRICTION MODES IN

HEXAGONAL SYMMETRY: THE HOLMIUM
CASE.

This appendix aims to obtaining the volume and
tetragonal magnetostriction modes in hexagonal symme-
try provided the CTM25 is extended to sixth-order in the
angular momentum operators, the maximum permitted
by point-group theory. We will build on the same as-
sumptions that the CTM, i.e. MS is restricted to first
order effects, assuming that the spin-lattice coupling is
small compared to the magnetic exchange. Addition-
ally, any dynamical coupling between the lattice and the
crystal-field and magnetic exchange (crystal-field-phonon
and magnonphonon interactions) are also neglected, so
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that only the long wavelength static limit is considered.
The starting point is the magnetic Hamiltonian, H, for
a RE ion located in a metallic crystal, which reads as
follows: H=Hexch+Hcf+Hze where the Zeeman term is
Hze=−gJµBJ iH, and gJ and Ji are the landé-factor and
the total angular moment of the i -th ion; the indirect-
exchange and crystal-field contributions per ion to H can
be written as follows16,53:

Hexch(i) = −1

2

∑
(j,i)(ml)

Kml (i, j, ε)Oml (i, j) (A1)

Hcf (i) =
∑

n=2,4,6

B0
n(i)O0

n(i, ε) +B6
6(i, ε)O6

6(i) (A2)

where Kml (i, j, ε) and Bml (i, ε) are the EXCH and CF
parameters, which depend on the relative position of
the RE ions in the solid, i.e. Ri−Rj , where Ri is the
position of the i -th RE ion in the hexagonal metallic
lattice, leading to the appearance of magnetoelastic in-
teractions54. We have denoted the single-ion Stevens
operators55 as Oml (i) ≡ Oml (Ji) and the isomorphic two-
ion ones as Oml (i, j) ≡ Oml (Ji,Jj) for simplicity. For the
sake of completeness, Hexch is introduced in the most
general form, which includes anisotropic EXCH contribu-
tions. The terms that appear in Hexch are found numer-
ous and varied in nature56, but otherwise restricted by
symmetry57. In RE metals, the main and most important
source of anisotropic indirect-exchange interactions58 is
the coupling between the localized and highly anisotropic
4f electron clouds mediated by spin-orbit coupled 5d -6s
hybridize conduction electrons59, as a result of the large
4f orbital moment, L, which among other effects causes
the anisotropy of the magnetic moment12.
The magnetoelastic coupling arises as a Taylor series ex-
pansion ofHexch andHcf with respect to the components
of the MS, ε, so that if assumed small deformations, only
linear terms in ε are considerate. It is thereby neces-
sary to include in H the MEL hamiltonian, Hmel, and
the elastic energy per ion, E el. For hexagonal symmetry,
E el reads as25:

Eel =
1

2
cα1ε

2
α1 + cα3εα1εα2 +

1

2
cα2ε

2
α2

+
1

2
cγ(ε2

γ1 + ε2
γ2) +

1

2
cε(ε

2
ε1 + ε2

ε2) (A3)

where the symmetric strains belonging to the symmetric
representations in hexagonal symmetry are related to
the Cartesian strains as follows: εα1=εxx+εyy+εzz,

εα2=
√

3
2 (εzz− εα1

3 ), εγ1= 1
2 (εxx−εyy), εγ2=εxy, εε1=εxz

and εε2=εyz. Equally, the symmetric elastic con-
stants are related to the Cartesian ones by the fol-
lowing relationships, cα1= 1

9 (2c11+2c12+4c13+c33),

cα2= 2
3 (c11+c12−4c13+2c33),

cα3= 2
3
√

3
(−c11−c12+c13+c33), cγ=2(c11−c12)=4c66

and cε=4c44.
Now, considering the symmetry restrictions imposed by

the point-group theory, the single- and two-ion MEL
hamiltonian per ion in hexagonal symmetry can be split
into three symmetric deformation modes as follows,
Hmel=Hαmel+H

γ
mel+Hεmel where the single-ion MEL

hamiltonian, Hcfmel, associated to the α- and γ-strictions
can be written as17,

Hcf,αmel = −
∑

l=2,4,6

(M̃ l
α1εα1 + M̃ l

α2εα2)O0
l (i)

− (M̃66
α1εα1 + M̃66

α2εα2)O6
6(i) (A4)

Hcf,γmel = −
∑

l=2,4,6

M̃ l
γ2(O2

l (i)εγ1 +O−2
l (i)εγ2)

−
∑
l=4,6

M̃ l
γ4(O4

l (i)εγ1 −O−4
l (i)εγ2) (A5)

where M̃m
Γl are the single-ion MEL parameters, which are

defined as53,

M̃m
(Γ)l(i) =

∂Bml (i, ε)

∂εΓ
|εΓ=0 (A6)

We notice that only α- and γ-striction modes will
be of interest for this study [Ho is an easy-plane
antiferromagnet16], and thus, although Hεmel is men-
tioned for exactness, this will not be considered now on.
The two-ion MEL hamiltonian, Hexchmel , which must be in-
variant under time reversal and the symmetry elements
of the spatial point group D3h, this is Hexchmel must be

formally isomorphous to Hcfmel. Thus, for instance the

α-striction contribution to Hexchmel , i.e. Hexch,αmel , which is
of special interest to our study reads as24,53,

Hexch,αmel = −
∑

l=2,4,6

(D̃l
α1(ij)εα1 + D̃l

α2(ij)εα2)O0
l (i, j)

−(D̃66
α1(ij)εα1 + D̃66

α2(ij)εα2)O6
6(i, j) (A7)

where in this case D̃m
Γl are the two-ion MEL parameters,

which are generically defined as53,

D̃m
(Γ)l(i, j) =

∂Kml (i, j, ε)

∂εΓ
|εΓ=0 (A8)

The aim here is to obtain the relationships for the α-
MS modes, i.e. εα1,2 , which will enable us to undertake
the temperature analysis of the experimental volume and
tetragonal MS in a heavy RE metal. In a general case, CF
and EXCH contributions up to sixth-order in the angular
momentum operators will be included in the analysis.
For didactics, our starting point will be the MEL and
elastic α-Hamiltonian including only MEL interactions
with CF origin, which reads as:

Hαmel,el = −
N∑
i=1

∑
l=2,4,6

(M̃ l
α1
εα1 + M̃ l

α2
εα2)Q0

l (Ji)

− (M̃66
α1
εα1

+ M̃66
α2
εα2

)Q6
6(Ji)

+ N(
1

2
cα1ε

2
α1 +

1

2
cα2ε

2
α2 − cα3εα1εα1) (A9)
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FIG. 4: (color online). Sketch of the hexagonal-close-packed
(HCP) lattice featured by heavy rare earth metals. The co-
ordinate system (ξ,η,ζ) is parallel to the principal axis of the
HCP lattice, i.e. (a,b,c). The coordinate system (x,y,z ) is ro-
tated with respect to (ξ,η,ζ), forming angles (θ,φ), so that x
axis lies in the (ξ,η) plane. The magnetization M is oriented
along the direction defined by û.

where Qlm(i)≡Qlm(Ji) are single-ion Stevens’ operators,
where Ji is now the total angular momentum per ion
referred to a coordinate system (ξ, η, ζ) parallel to the
principal a,b and c directions of the hexagonal crystal-
lographic lattice [see Fig. 4], so that ζ is the quantifi-
cation axis for J. The α-MS are obtained by minimiz-
ing the sum of the elastic and MEL contributions to the
α-free-energy density, i.e. Fα=Fα

el+Fα
mel with respect

to the α-strains, εα1,2
, so that Fα

el is written classically
and Fα

mel is obtained by taking the thermal average of
the MEL α-Hamiltonian, i.e. 〈Hαmel,el〉. In this way, re-

solving ∂〈Hα〉/∂εαi=0 will yield the α-MS originated by
spin-lattice interactions with CF origin, εcfα1,2

, which can

be written as60:

εcfα1,2
= N

cα

∑
l=2,4,6

(M̃ l
α1,2

cα2,1
− M̃ l

α2,1
cα3

)〈Q0
l (i)〉

+ (M̃66
α1,2

cα2,1 − M̃66
α2,1

cα3)〈Q6
6(i)〉 (A10)

Ho develops a spin-spiral AFM structure45 below its
Néel temperature, TN=132 K, so that the basal plane
(BP) of the HCP structure is the easy plane and the b
direction is the easy axis for the magnetization, M. Due
to its large sixfold magnetic anisotropy16,28, the linear
MS experiments were carried out with the applied mag-
netic field, H, along the b axis. Therefore, εα1,2

must
be obtained for M in the BP of the HCP lattice. On
applying a strong enough H along an arbitrary direction
defined by the unitary vector, û, if we choose a coor-
dinate system, (x, y, z), so that forms angles (θ, φ) with
respect to (ξ, η, ζ) [see Fig. 4] and z‖û, then assuming
that x̂ is kept in the c-plane of the HCP crystal lattice, it
can be demonstrated that the Stevens operators, Qml (Ji),
referred to the (ξ, η, ζ) can be written as a linear com-
bination of the Stevens operators Oml (J′i) [where these
latter are defined as a function of J′i, the total angu-
lar momentum operators referrred to the (x, y, z)] which

reads61,

Qml (Ji) =
∑
m′

bm,m
′

l Om
′

l (J′i) (A11)

where the coefficients of the transfer matrix are de-
fined as bm,m

′

l =〈Om′

l |Qml 〉Om
′

l (J′i). Given that Om′

l (J′i)
equally possesses cylindrical symmetry around û, only
those thermal averages having m = 0 will not be
vanish62. In this way, 〈Qml (J′i)〉T ∝ bm

l 〈O0
l (J′i)〉T,

where bml ∝ Pml (cosθ)cos(mφ), for m > 0 and bml ∝
P |m|l (cosθ)sin(|m|φ) for m < 0, being Pml (cosθ) the asso-
ciated Legrendre’s polynomial of first kind. Now, consid-
ering that a good approximation for the thermal average
〈O0

l (J
′
i)〉T can be written as63,

〈O0
l (J)〉T = clJ

(l)
Il+ 1

2
(m̃)

I1/2(m̃)
≡ clJ (l)Îl+ 1

2
(m̃) (A12)

where Îl+1/2(m̃) is the reduced hyperbolic Bessel func-

tion and m̃ ≡ L−1[m(T )] is the inverse of the Langevin’s
function, m is the reduced magnetization, cl are numeri-

cal constants and J(l)≡ J (J−1)(J− 1
2 )...(J− (l−1)

2 ). Now,
if considered that M lies in the BP, the rotation of the an-
gular momentum operators described by the Eq. (A11)
should be evaluated for θ=π/261. Doing so, inserting this
result in Eq. (A10) and evaluating the thermal averages
accordingly to Eq. (A12), we then obtain that the CF
α-MS reads as:

εcfα1,2
=

1

cα

∑
l=2,4,6

(M l
α1,2

cα2,1
−M l

α2,1
cα3

)Îl+ 1
2
[m̃]

+ (M66
α1,2

cα2,1
−M66

α2,1
cα3

)Îl+ 1
2
[m̃] cos(6φ)(A13)

where M l
α1,2

and M 66
α2,1

are MEL constants related to the

MEL parameters as follows: M l
α1,2
∝J (l)M̃ l

α1,2
αl〈r l4f 〉

and M 66
α1,2
∝J (6)M̃66

α1,2
βJ〈r6

4f 〉, where αl(=〈J‖O l‖J 〉) is

the l -th Stevens’ factor64, this is αl≡αJ ,γJ and βJ ,
for l=2,4 and 6, respectively, and 〈r l4f 〉 is the l -th

multipole65 of the 4f wave functions66.
At this point, it is now appropriate to obtain the α-
MS due to spin-lattice interactions with exchange ori-
gin, εexchα1,2

. If we proceeded in the same way as done in
the case of the single-ion contributions to Hαmel,el, bear-

ing in mind the existing isomorphism between Hcf,αmel and

Hexch,αmel , which is clear from inspecting Eqs. (A4) and

(A8), we could conclude that εexchα1,2
can be written as24,

εexchα1,2
= N

cα

∑
l=2,4,6

(D̃l
α1,2

cα2,1
− D̃l

α2,1
cα3

)〈Q0
l (i, j)〉

+ (D̃66
α1,2

cα2,1
− D̃66

α2,1
cα3

)〈Q6
6(i, j)〉 (A14)

and, thereby, εexchα1,2
is isomorphic to εcfα1,2

, given by Eq.

(A11). As done in the case of the α-MS with CF ori-
gin, Q l

m(Ji,Jj) must be obtained for the case of M⊥c.
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We notice that under a rotation of coordinate system,
see Fig. 4, Q l

m(Ji,Jj) transforms isomorphically as its
equivalent classical spherical harmonic does. In such
a situation, only rotations of the two-ion angular mo-
mentum complex as a whole are of interest67, this is
the two-ion total angular momentum complex acts like
a single ion of angular momentum 2J. Thus, the re-
lation between Q l

m(Ji,Jj) and O l
m(J′i,J

′
j) reads as,

Qm
l (i,j)=

∑
m′ b

m,m′

l Om′

l (i,j) where the coefficients bm,m
′

l
are the same as those resulting from the rotation of
single-ion Steven operators [see Eq. (A12)]. Equally, the
two-ion angular momentum complex possesses cylindrical
symmetry around the quantization axis, i.e. û||M in the
case of the new (x,y,z) and, therefore, the thermal average
of Qm

l (Ji,Jj) can be obtained as well: 〈Qml (J′i,J
′
j)〉 ∝

bml 〈O0
l (J
′
i,J
′
j)〉. One requires to turn to the ubiquitous

Hartree-Fock decoupling approximation25 to evaluate the
thermal average of two-ion Stevens operators12,28, which
leads to,

〈O0
6(J′i,J

′
j)〉 ≡ 〈O0

2(J′i,J
′
j)〉 = 〈JiζJjζ〉 ∝ m2 (A15)

Evaluating the rotation of Qm
l (i,j) for the case in which

M is in the BP. i.e. for θ=π/2, and inserting 〈O0
6(J′i,J

′
j)〉

given by the Eq. (A15) into the Eq. (A14), the α-MS
with EXCH origin can be written as follows:

εexchα1,2
=

1

cα
{

∑
l=2,4,6

(Dl
α1,2

cα2,1
−Dl

α2,1
cα3

)

+ (D66
α1,2

cα2,1
−D66

α2,1
cα3

) cos(6φ)}m2(A16)

where D l
α1,2

and D66
α1,2

are the two-ion MEL constants,
which are related to the EXCH MEL parameters through
relationships, which are isomorphic to the case of single-
ion MEL constants. The total α-MS is obtained by
adding up the α-MS due to spin-lattice interactions with
CF and EXCH origin and given in Eqs. (A13) and (A16),
respectively. Doing so leads to,

εα1,2
= εcfα1,2

+ εexchα1,2
(A17)
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