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The following Supplemental Material discusses:

I. The main improvements in our experimental setup
allowing the 2D Anderson localization to be ob-
served.

II. The mapping of the quasiperiodic kicked rotor onto
a 2D Anderson model, indicating the essentials of
this mapping and its peculiarities relevant for the
present work.

III. The classical diffusion in the 2-frequency quasiperi-
odic kicked rotor.

IV. A schematic derivation of the localization length,
indicating the essential steps of the calculation in
the case of the quasiperiodic kicked rotor with 2
incommensurate frequencies and the origin of the
exponential dependence on the anisotropy.

SETUP IMPROVEMENTS

In our previous experiments, in order to minimize cou-
pling with gravity, the standing wave (SW) was horizon-
tal, see Fig. 1a. This geometry has several drawbacks.
For 1000 kicks, the atoms would fall of 3.8 mm, to be
compared to the 1.5 mm of the SW waist. Moreover,
the SW was built by retro-reflecting the incoming beam,
which leads to a ∼1 m optical path difference between
the two beams overlapping on the atomic cloud region,
a source of phase noise detrimental to dynamical local-
ization. These restrictions limited the kick number to
less than 200 in our previous experiments. In order to
overcome this limit, we built a new SW system with sev-
eral improvements, as shown in Fig. 1b. The SW is now
vertical, and, between kicks, the atoms fall freely. The
intensity inhomogeneity in the transverse direction was
also reduced. The SW is now formed by two indepen-
dent beams, which has many advantages, as each arm
can be independently controlled, both in amplitude and
phase through the radio-frequency wave that drives the
acousto-optic modulators. This allows us to accurately
cancel gravity effects, by imposing a linear frequency
chirp to one of the arms with respect to the other, so that

Figure 1. Evolution of the experimental setup. a) Horizontal
standing wave setup used in former experiments. The kicks
are controlled by a single acousto-optic modulator (AOM),
and the standing wave is built by retro-reflecting the incom-
ing laser beam. b) Schematic view of the new vertical setup
used in the present work. A Distributed Feedback Laser Diode
(DFB) seeds two optical amplifiers. The kick-sequence tem-
poral modulation is produced by an arbitrary wave generator
(AWG). In addition to the pulsed sequence, a linear chirp is
added so that the standing wave “falls” with acceleration g,
simultaneously with the atomic cloud.

the SW itself “falls” with acceleration g. A kicked rotor
is thus realized in the free-falling reference frame. Fi-
nally, the SW phase noise induced by the laser linewidth
is minimized by accurately balancing the optical paths
of the arms to better than 1 cm. This is performed by
directly minimizing the kinetic energy dispersion at 1000
kicks with a 1D kicked rotor.

MAPPING OF THE QUASIPERIODIC KICKED
ROTOR ONTO A 2D ANDERSON MODEL

The mapping of the quasiperiodic kicked rotor
(QPKR) onto a 2D Anderson model has been described
in [1–3]. Because it is useful to derive an approximate ex-
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pression for the localization length, we summarize here
the basics of the calculation.

The starting point is the following Hamiltonian:

H =
p21
2

+ ω2p2 +K cosx1 [1 + ε cosx2]
∑
n

δ(t− n) (1)

which describes a periodically kicked, two-dimensional
“rotor”; we use here quotations marks around “rotor” be-
cause of the unusual form of the kinetic energy along the
direction 2, linear instead of quadratic. It is a matter of
algebra [3] to show that the temporal evolution of an ini-
tial state initially localized at x2 = φ2, but with arbitrary
wave-function along x1:

Ψ(x1, x2, t = 0) ≡ Ξ(x1, t = 0)δ(x2 − φ2) (2)

leads to the state:

Ψ(x1, x2, t) = Ξ(x1, t)δ(x2 − φ2 − ω2t), (3)

where the wavefunction Ξ(x1, t) exactly obeys the time-
dependent Schrödinger equation of the quasiperiodic
kicked rotor:

H =
p21
2

+K cosx1 [1 + ε cos (ω2t+ φ2)]
∑
n

δ(t−n) . (4)

Thus, the evolution of the quasiperiodic kicked rotor can
be thought of as the evolution of a 2D periodic “rotor”,
with a peculiar initial state perfectly localized in the x2
direction and thus completely delocalized in the conju-
gate p2 direction.

The Hamiltonian Eq. (1) being time-periodic, one can
use the Floquet theorem and look at its Floquet eigen-
states. Let |φ〉 denote an eigenstate of the evolution
operator over one period with eigenvalue exp(−iE/k̄),
and consider the state |χ〉 = (1 + iW )−1|φ〉 where
W (x1, x2) ≡ tan [K cosx1(1 + ε cosx2)/ 2k̄]. The Hamil-
tonian being periodic in x1 and x2 (we take periodic
boundary conditions), |χ〉 can be expanded on the basis
of plane waves |m1,m2〉 – eigenstates of the momentum
operators in both directions with eigenvalues m1k̄ and
m2k̄: |χ〉 =

∑
m1,m2

χm1,m2
|m1,m2〉. It is again a mat-

ter of algebra [2, 4] to show that the coefficients χm1,m2

obey the following equation:

εm1,m2
χm1,m2

+
∑

r1,r2 6=0

Wr1,r2χm1+r1,m2+r2 = 0, (5)

where εm1,m2
is given by:

εm1,m2 = tan

{
1

2

[(
k̄
m1

2

2
+ ω2m2

)
− E

k̄

]}
(6)

and the Wr1,r2 are the two-fold Fourier components of
the doubly-periodic function W.

Equation (5) can be interpreted as the eigenvalue equa-
tion for a Anderson-like model on a 2D lattice with sites
labeled (m1,m2), with hopping described by Wr1,r2 and
on-site energies εm1,m2

. There are however four differ-
ences with respect to a usual Anderson model:

• The hopping matrix elementsWr1,r2 are not limited
to nearest neighbors. They do however decrease
fast enough at large (r1, r2) so that this difference
does not change the qualitative behavior (i.e. lo-
calization).

• The on-site energies εm1,m2 are not random, but
rather a deterministic pseudo-random sequence.
Provided π, k̄, ω2 are incommensurate, the sequence
has no periodicity and localization properties sim-
ilar to those of a truly random model are expected
(and observed numerically).

• The hopping is anisotropic, governed by the K/k̄
coefficient along direction 1 and by the εK/k̄ co-
efficient along direction 2. For ε = 0, the 2D sys-
tem appears as a series of chains along direction 1,
which are uncoupled along direction 2, and a 1D
Anderson model is recovered.

• Floquet quasi-eigenstates with different quasi-
energies E are associated with the same energy 0
in Eq. (5), but with different realizations of the dis-
order, Eq. (6), all having the same statistical prop-
erties. This is why, for given values of parameters
k̄,K, ε, all quasi-eigenstates have the same localiza-
tion length [5].

In order to understand localization properties of the
quasiperiodic kicked rotor, it is thus sufficient to study
transport and localization on the equivalent anisotropic
Anderson-like 2D model Eq. (1).

CLASSICAL DIFFUSION

It is well known that the classical dynamics of the pe-
riodic kicked rotor is described by the Standard Map [6].
A similar map can be constructed for the quasiperiodic
kicked rotor. The classical evolution over one period of
the Hamiltonian Eq. (4) is given by the following map:

p1n+1
= p1n +K sinx1n(1 + ε cosx2n) ,

p2n+1
= p2n +Kε cosx1n sinx2n ,

x1n+1
= x1n + p1n+1

,

x2n+1
= x2n + ω2 ,

where yn = y(t = n + ε), y = xi, pi (i = 1, 2). If K is
sufficiently large, the classical dynamics is almost fully
chaotic [7]. For the 1D problem (ε = 0), this takes place
for K & 6. For the 2D problem (non vanishingly small
ε), we found an almost fully chaotic dynamics for K & 4,
and this is why we did not perform any experiment below
this value. In the chaotic regime, the kicks in momentum
have a pseudo-random sign (depending on x1 and x2),
making the dynamics in momentum space appear as a
pseudo-random walk, i.e. a chaotic diffusive process at
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long time. Note however that the diffusion is anisotropic
because kicks along p2 are typically smaller than kicks
along p1 by a factor ε. In the limit of large K it is easy
to evaluate the diffusion tensor, defined as

Dij = lim
t→+∞

〈pipj〉
t

(7)

by assuming that positions of consecutive kicks are uni-
form uncorrelated variables (see [7] for the essentially
identical calculation in 3D). It is diagonal in the (1,2)
directions with:

D11 ≈ (K2/4)(1 + ε2/2) ,

D22 ≈ K2ε2/8 ,

Di6=j ≈ 0 . (8)

Numerical simulations of the classical dynamics [7] fully
confirm that the classical dynamics is an anisotropic dif-
fusion; however, at not too large K, correlations between
successive kicks are responsible for oscillatory corrections
to the diffusion constant of the order of few ten percents.

LOCALIZATION LENGTH

The calculation of the localization length turns out to
a bit tricky in 2D. It has been discussed in the literature
mainly in the context of electrons in disordered poten-
tials [8, 9]. The calculation for the quasiperiodic rotor
follows the same lines. We sketch here only the general
method, comparing the key steps with the case of elec-
trons in disordered potentials.

The starting point is to take into account the weak lo-
calization effect due to closed loops in the system. In the
weak scattering regime, where this correction is small, it
takes the following form for electrons (or massive parti-
cles) in disordered potentials:

D
D

= 1− 1

πρ

∫
1

(2π)2
dq

Dq2
(9)

where D is the classical (Boltzmann) diffusion constant
and D the quantum modified one. The term after 1 in
the right-hand side is the weak localization correction.
It depends on the density of states ρ and involves a two-
dimensional integral over the vector q which is a momen-
tum, conjugate of position. The integrand is nothing but
the classical diffusive kernel (at zero frequency, hence infi-
nite time). Formally, the integral diverges both for small
and large q, so that appropriate cut-offs must be set. The
natural short distance (large q) cut-off is the mean free
path ` (at shorter scale, the dynamics is not diffusive).
The short q cut-off can be taken proportional to 1/L,
where L is the size of the system. One then obtains a
size-dependent diffusion constant D(L). Taking for the

density of states in 2D its disorder-free value 1/2π (we
take the mass of the particle and ~ as unity), one obtains:

D(L)

D
= 1− 2

πk`
ln

(
L

`

)
(10)

where k is the wavevector of the particle. In these units,
the classical diffusion constant is D = k`/2. The logarith-
mic dependence in L is a crucial ingredient, as we will see
below. It is intimately related to the low-q divergence of
the integral.

Equation (10) shows that the diffusion constant de-
creases with the system size. Of course, this cannot be
correct for arbitrary large size, as the correction is com-
puted assuming it is small. This ceases to be true when
the right hand side term in Eq. (10) vanishes. This gives
an order of magnitude of the size at which the diffusion
constant vanishes, that is the localization length. One
then gets

ξ = ` exp

(
πk`

2

)
. (11)

Of course, this is only a very approximate expression.
The self-consistent theory of localization [8, 9] is an at-
tempt to be a bit more quantitative. It predicts essen-
tially the same exponential dependence for the localiza-
tion length.

For the periodic kicked rotor, the weak localization
corrections have been computed in [10]. These results
have been extended to the quasiperiodic rotor in [11, 12].
There are essentially two modifications:

• The term depending on the density of states (which
is meaningless for a time-periodic system where the
density of states of the Floquet Hamiltonian is in-
finite) 1/πρ must be replaced by 2k̄2.

• Because the classical dynamics is an anisotropic
diffusion, the diffusive kernel is now (D11q

2
1 +

D22q
2
2)−1. When performing the integral over q, it

is not entirely clear how to choose the cut-offs. The
simplest choice is to take the large q1 and q2 cut-offs
scaling like the (anisotropic) mean free paths, i.e.
respectively proportional to 1/

√
D11 and 1/

√
D22.

This is however arbitrary and questionable. It is
important to understand that the choice of differ-
ent cut-offs will affect the prefactors, but not the
key point, namely the logarithmic dependence of
the integral on the system size.

With this simple choice of cut-offs, the weak localization
correction reads:

D11(L)

D11
=
D22(L)

D22
= 1− k̄2

π
√
D11D22

ln

(
L

l

)
(12)

where l is a yet unspecified short scale cut-off.
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With the same reasoning as the one for electrons, one
obtains the approximate expression for the localization
length (in momentum space for the kicked rotor):

ploc = l exp

(
π
√
D11D22

k̄2

)
. (13)

In the ε → 0 limit, one must recover the localiza-
tion length of the periodic kicked rotor, which fixes
l = K2/4k̄. By inserting the values of the diffusion con-
stants, Eqs. (8) into Eq. (13), we finally obtain:

ploc =
K2

4k̄
exp

(
πεK2

√
32k̄2

)
. (14)

Because of the questionable assumptions on the cut-
offs, it might well be that the coefficient π/

√
32 is not

exact and requires some correction. This is a difficult
question left for further investigation. We just emphasize
that the exponential behavior of the localization length
with the scaling parameter εK2/k̄2 comes from the pref-
actors in the integral over q and from the logarithmic
singularity of the integral. It is thus a very robust phe-
nomenon, unlikely to be affected by the shortcomings of
the self-consistent theory of localization. Ultimately, the
experimentally observed exponential dependence of the
localization length proves that the weak localization cor-
rection is logarithmic with the system size. This, in turn,
implies that dimension d = 2 is the lowest critical dimen-
sion of the Anderson transition. Indeed, a modification
of the dimension would introduce an extra qd−2 factor in
the integral, i.e. would change the logarithm dependence
in L in Eq. (12) to an algebraic one, incompatible with
the exponential behavior of the localization length.
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