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Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-
reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor – equiv-
alent to a two-dimensional Anderson-like model – we experimentally study Anderson localization
in dimension 2 and we observe localized wave function dynamics. We also show that the localiza-
tion length depends exponentially on the disorder strength and anisotropy and is in quantitative
agreement with the predictions of the self-consistent theory for the 2D Anderson localization.
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The metal-insulator Anderson transition plays a cen-
tral role in the study of quantum disordered systems.
Using a tight-binding description of an electron in a lat-
tice, Anderson [1] postulated in 1958 that the dominant
effect of impurities in a crystal is to randomize the di-
agonal term of the Hamiltonian, and showed that this
may lead to a localization of the wave function, in sharp
contrast with the Bloch-wave solution for a perfect crys-
tal. In a weakly disordered (3D) crystal, the eigenstates
are delocalized, leading to a diffusive (metallic) trans-
port, while strong disorder produces an insulator with
localized eigenstates. From its original solid-state physics
scope [1–4] this approach has been applied to a large class
of systems in which waves propagate in disorder. This
includes quantum-chaotic systems [5, 6] and electromag-
netic radiation [7–9]. Important theoretical progress was
obtained in Ref. [10], which postulated that Anderson
localization can be described by a one-parameter scaling
law, leading to the prediction that, for d ≤ 2, the dy-
namics is generically localized, even if the disorder is very
weak. For d > 2, it predicted the existence of the An-
derson transition between a diffusive dynamics at weak
disorder and a localized dynamics at strong disorder.

There is no fully quantitative theory of Anderson lo-
calization, and analytic results are scarce. Supersym-
metry techniques [11] allow derivation of expansions in
powers of d− 2 of the various quantities of interest, but
reaching even d = 3 is difficult. A useful, simplified the-
oretical approach is the so-called self-consistent theory
of localization. In few words, it can be thought as a
mean field theory where large fluctuations are neglected,
but where weak localization corrections to transport, due
to interference between time reversed multiply scattered
paths, are included self-consistently. For spinless time-
invariant systems, belonging to the orthogonal symmetry
class [11], this approach correctly predicts the existence
of the metal-insulator Anderson transition for d > 2, al-
though it fails to predict the correct critical exponent.

For d = 1, it quantitatively predicts the localization
length in a weak disorder. Other approaches lead to ap-
proximate values for the critical exponent not far from
the numerical prediction [12].

Dimension d = 2 – the lower critical dimension – is
very special, the localization properties depending on the
symmetry class. In the orthogonal symmetry class, the
dynamics is always localized, but the localization length
is predicted to scale exponentially with the inverse of the
disorder strength, i.e. ξ ∝ ` exp(πk`/2) [13] where k is
the wave vector and ` the mean-free path for propagation
in the disordered medium. As discussed in the Supple-
mental Material [14], such an exponential dependence is
a signature of the fact that d = 2 is the lower critical
dimension for Anderson localization. The 2D case has
been previously studied experimentally in optical and ul-
tracold atom systems [8, 15], but no quantitative indi-
cation of the exponential scaling has been demonstrated
yet. In the present Letter, we use the well-known corre-
spondence between the d-dimension Anderson model and
the d-frequency quasiperiodic kicked rotor [6, 16, 17] to
test experimentally these predictions.

The quasiperiodic kicked rotor (QPKR) [5, 6, 16–18]
is a spatially one-dimensional system with an engineered
time dependence such that its dynamics is similar to the
dynamics of a time-independent multidimensional sys-
tem. The QPKR can be simply realized experimentally
by exposing laser-cooled atoms (Cesium in the present
work) to a delta-pulsed (kicked) laser standing wave of
wave number kL and time period T1. The amplitude of
the kicks is quasiperiodically time modulated with a fre-
quency ω2. The dynamics is effectively one dimensional
along the axis of the laser beam, as transverse directions
are uncoupled. The corresponding Hamiltonian is

H =
p2

2
+K cosx [1 + ε cos (ω2t)]

N−1∑
n=0

δ(t− n) , (1)
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where x is the particle position, p its momentum, K the
kick intensity and ε the amplitude of the modulation. We
have chosen conveniently scaled variables such that dis-
tances along the x axis are measured in units of (2kL)−1,
the particle’s mass is unity and time is measured in units
of the pulse period T1. In the quantum case, a crucial pa-
rameter is k̄ ≡ 4~k2LT1/M , the reduced Planck constant.

For ε = 0, one obtains the periodic kicked rotor, which
can be mapped onto a one-dimensional Anderson-like
model [6], and displays “dynamical” localization [5, 19],
that is, Anderson localization in momentum space in-
stead of configuration space. For nonzero ε, the tem-
poral dynamics of the QPKR is exactly that of a two-
dimensional periodic kicked system [16, 17, 20], which it-
self can be mapped – provided 2π/T1, ω2 and k̄ are incom-
mensurable numbers – onto a two-dimensional Anderson-
like anisotropic-hopping model, where anisotropy is con-
trolled by ε and the ratio of hopping to diagonal disorder
is controlled by K/k̄ [21].

The experimental observation of dynamical localiza-
tion in the atomic kicked rotor in 1995 [18] can thus be
interpreted as the first experimental observation of 1D
Anderson localization. The two-frequency modulation of
the QPKR – which can be mapped on a 3D Anderson
model [17, 20] – was used to experimentally observe 3D
Anderson localization and the metal-insulator Anderson
transition [22], accurately measure the critical exponent
and demonstrate its universality [23].

The experimental study of the 2D case is more chal-
lenging than the 3D one, because the observation of the
exponential behavior of the localization length ploc re-
quires ploc to vary over about 1 order of magnitude. The
localization time increasing with ploc, this also requires
the ability to preserve coherence over several hundreds
kicks. This needed major evolutions of our experimental
setup [24].

Experimentally, an atomic sample consisting of few
million atoms is prepared in a thermal state (3.2 µK)
whose momentum distribution is much narrower than the
expected localization length. The atomic cloud is then
“kicked” by a far-detuned (∆ ≈ 13 GHz) pulsed standing
wave (SW). Pulse duration is typically τ = 300 ns, while
the typical pulse period T1 = 27.778 µs corresponds to an
effective Planck constant k̄ = 2.89. According to Eq. (1),
an adjustable amplitude modulation with ω2/2π =

√
5

is superimposed to the kick sequence. In our previous
experiments, to minimize coupling with gravity, the SW
was horizontal. However, for 1000 kicks the atoms fall
down by 3.8 mm, compared to the 1.5 mm SW waist, lim-
iting the maximum number of kicks to 200. In order to
overcome this limit we used in the present experiment a
vertical SW, and the atoms fall freely between kicks. The
new SW is formed by two beams that can be indepen-
dently controlled, both in amplitude and phase, through
a radio-frequency driving two acousto-optic modulators.
This allows us to accurately cancel gravity effects, by

imposing a linear frequency chirp to one arm of the SW
with respect to the other, so that the SW itself “falls”
with acceleration g. A kicked rotor is thus realized in
the free-falling reference frame. These technical improve-
ments are discussed in more detail in the Supplemental
Material [24]. At the end of the sequence, the veloc-
ity distribution is measured by a standard time-of-flight
technique.

Figure 1(a) shows experimental momentum distribu-
tions Π(p) recorded after 0 to 1000 kicks for K =
5.34, k̄ = 2.89, ε = 0.36. If the dynamics were classical,
the momentum distribution would keep its initial Gaus-
sian shape and the average kinetic energy would increase
linearly with time, Ekin = Ekin(t = 0) + Dt, where D is
the classical diffusion constant in momentum space. In
contrast, the experimental result displays a distribution
which diffusively broadens at short times, but tends to
freeze, i.e., to localize at long times. This clear-cut proof
of localization is confirmed by the shape of the momen-
tum distribution, shown in Fig. 1(b) after 200 kicks. It
very clearly displays an exponential shape [25] (a straight
line in the logarithmic plot) exp (−|p|/ploc) /2ploc charac-
teristic of localization with a localization length ploc [26].
Figure 1(c) shows the momentum distributions after 1000
kicks for K = 5.34, k̄ = 2.89 and increasing values of ε.
It demonstrates that the localization length varies very
rapidly with ε, indicating the evolution from a 1D local-
ization at ε = 0 to a truly 2D localization with a much
longer localization length at ε = 0.6. In order to pre-
vent trivial localization on KAM tori [27], we always used
K > 4, ensuring that the classical dynamics is ergodic.

Instead of measuring the full momentum distribution,
it is sufficient to measure the population Π0(t) of the zero
velocity class as

Ekin ∝
1

4Π2
0(t)

(2)

is proportional to 〈p2〉(t) (as the total number of atoms
is constant) [28].

Figure 2 displays Ekin (at 1000 kicks) vs. ε for various
values of K and k̄, showing that the exponential depen-
dence in ε is a general feature, with a rate that decreases
with k̄ and increases with K. Note the overall Ekin dy-
namics of a factor of 60 (corresponding to an eightfold
increase in the localization length), a key feature of the
present experiment.

The scaling theory of localization [10] predicts that di-
mension d = 2 is the lower critical dimension for the
Anderson transition. For a time-reversal invariant spin-
less system (thus belonging to the orthogonal universality
class), all states are localized with an exponentially large
localization length. For a usual 2D time-independent sys-
tem, the relevant parameter is the dimensionless conduc-
tance at short scale, equal to the product k` of the wave
vector by the mean free path, so that the logarithm of
the localization length is proportional to k` [14].
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Figure 1. (Color online) Experimentally recorded momentum
distributions for the kicked rotor exposed to a quasiperiodic
driving, Eq. (1). (a) K = 5.34, k̄ = 2.89, ε = 0.36, 0 to
1000 kicks (step 200). The momentum distribution diffusively
broadens at short times and freezes at longer times, proving
the existence of 2D Anderson localization. Time increases
from top to bottom curves. (b) Momentum distribution at
200 kicks in log scale, showing the exponential shape charac-
teristic of localization. The circles are experimental points,
the blue dashed line is a Gaussian fit and the black solid
line an exponential fit for |p| > 3 (2~kL). (c) Localized mo-
mentum distributions after 1000 kicks, as a function of the
anisotropy parameter ε, for K = 5.34, k̄ = 2.89 as in (a)
and (b). The modulation amplitude ε increases from top to
bottom curves. The rapid increase of the localization length
shows the evolution from the 1D localization at ε = 0 to the
truly 2D Anderson localization. Note the different horizontal
scales in the various plots.

Figure 2. (Color online) Kinetic energy Ekin of the quasiperi-
odic kicked rotor vs. the modulation amplitude ε, for various
values of the kicking strength K and effective Planck constant
k̄. The error bars indicate the typical experimental uncer-
tainty. The four curves are straight lines in this logarithmic
scale, with a slope that decreases with k̄ and increases with
K.

The scaling theory cannot be directly transposed to the
case of the kicked rotor for two reasons. (i) There is no
wave vector playing the role of k. Instead, one must con-
sider the diffusion constant (in momentum space), which
is, for a periodic kicked rotor, approximately equal to
K2/4. (ii) The diffusion process for the 2D quasiperiodic
kicked rotor is not isotropic. As shown in [29] and dis-
cussed in the Supplemental Material [14], the quasiperi-
odic kicked rotor can be mapped on a 2D Anderson-like
model, whose dynamics at short time is indeed diffusive,
but anisotropic. Along the “physical” direction (which co-
incides with the atom momentum component along the
standing wave), the diffusion constant is – for small ε
– almost equal to the one of the periodic kicked rotor,
D11 ≈ K2/4; along the other (virtual) direction, the dif-
fusion constant is D22 ≈ K2ε2/8, so that it vanishes in
the limit ε → 0, where one must recover the usual 1D
periodic kicked rotor.

Altogether, the relevant parameter is the geometric av-
erage of the diffusion constant along the two directions√
D11D22 ∝ εK2. The scaling theory predicts that the

logarithm of the localization length should be propor-
tional to

√
D11D22/k̄

2. A similar prediction was made
in [16] using a slightly different method.

The self-consistent theory of localization is an attempt
towards more quantitative predictions, based on the same
ideas as the scaling theory. It has been successfully used
to predict properties of the Anderson transition [30, 31],
and was transposed to the periodic kicked rotor in [19, 32]
and to the quasiperiodic kicked rotor with two addi-
tional driving frequencies in [33]. It consists in comput-
ing perturbatively the weak localization correction to the
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Figure 3. (Color online) Increase in the kinetic energy at
t = 1000 (∝ p2loc) of the quasiperiodic kicked rotor with re-
spect to the purely one-dimensional situation ε = 0 vs. the
scaling parameter ε(K/k̄)2. The cloud of experimental points
– collected at various values of K, ε and k̄ – is distributed
around an average linear dependence in this semi-logarithmic
plot, which shows the exponential dependence of the localiza-
tion length, characteristic of 2D Anderson localization. The
red dashed line is the prediction of Eq. (3). The spread is due
in part to experimental imperfections (at large ε(K/k̄)2, the
localization time is not much shorter than the duration of the
experiment) and in part to fundamental reasons: The linear
dependence on εK2/k̄2 in the argument of the exponential,
Eq. (3), is valid only at small ε, and the formula assumes that
the classical diffusion constant is proportional to K2, while
the actual diffusion constant has oscillatory corrections. The
black curves are numerical simulations corresponding to the
two “extreme” values of K/k̄ = 1.3, k̄ = 3.46 (higher curve)
and K/k̄ = 2.5, k̄ = 2.89 (lower curve); they display the same
spreading phenomenon.

(anisotropic) diffusion constant and to extrapolate to the
strong localization regime. It, however, depends on the
cutoffs used. For our quasiperiodic kicked rotor [14] it
confirms the prediction of the scaling theory, namely,

ploc =
K2

4k̄
exp

(
αεK2

k̄2

)
(3)

where α is a number of the order unity, which may how-
ever depend smoothly on the parameters. In the limit
ε→ 0, it is α = π/

√
32.

In Fig. 3, we display the results of 275 measurements,
corresponding to 12 values of the ratio K/k̄ ∈ [1.3, 2.5],
with K ∈ [4.33, 7.26] and k̄ = {2.89, 3.2, 3.46}, and to
ε values from 0 to 0.6 (step 0.06). Dividing Ekin(ε) by
Ekin(ε = 0) makes it possible to probe the exponential
term in Eq. (3). The exponential dependence (straight
line in logarithmic scale) is visible for ε . 1, materialized
by the red dashed line, corresponding to the prediction

α = π/
√

32 of the self-consistent theory. Despite the
spreading of the experimental results around the average
trend, the overall agreement is rather good. This proves
the exponential dependence of the localization length in
2D, and thus that d = 2 is the lower critical dimension
for the metal-insulator Anderson transition. Some devi-
ations are nevertheless visible. They arise from different
phenomena. First, for large ε, the localization time can
be only slightly shorter than the duration of the experi-
ment (1000 kicks), meaning that the measured momen-
tum distribution is not the asymptotic one for infinite
time and underestimates the eventual saturation of Ekin

at long time. This explains why the experimental points
at large ε tend to lie below the theoretical prediction.
This is confirmed by numerical calculations in the ex-
perimental conditions for the largest value of K/k̄ = 2.5
(longest localization time), see the solid lower curve in
Fig. 3. A second, more fundamental, phenomenon is that
Eq. (3) assumes that the classical diffusion constant is
simply K2/4, which is valid only for K � 1, whereas
oscillatory corrections at moderate K are known to exist
for the 1D kicked rotor [34] and to persist even for the 3D
QPKR [29]. This dependence is thus not eliminated by
the normalization to Ekin(ε = 0). This explains a signifi-
cant part of the spreading of the data. Finally, Eq. (3) is
expected to be valid in the ε → 0 limit, see Supplemen-
tal Material [14]. At larger ε values, higher order terms
must come into play and are responsible for significant
deviations. This is visible in Fig. 3, where both experi-
mental (points) and numerical (solid lines) data are well
predicted at small εK2/k̄2, but are more widely spread
as εK2/k̄2increases. A thorough analysis of all these de-
viations is beyond the scope of this Letter.

To summarize, we presented the first experimental
evidence of two-dimensional Anderson localization with
atomic matter waves. We studied the variation of the lo-
calization length with the system parameters and showed
that it displays an exponential dependence characteris-
tic of time-reversal spinless systems. To the best of our
knowledge, such experimental evidence has not been ob-
served previously. It demonstrates experimentally that
d = 2 is the lower critical dimension of the Anderson
transition. The observed localization length varies as pre-
dicted by the scaling and the self-consistent theories of
localization.
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