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A simple estimator for the M -index of functions in M

Meitner Cadena∗

Abstract

An estimator for the M -index of functions of M , a larger class than the class of

regularly varying (RV) functions, is proposed. This index is the tail index of RV func-

tions and this estimator is thus a new one on the class of RV functions. This estimator

satisfies, assuming suitable conditions, strong consistency. Asymptotic normality of

this estimator is proved for a large class of RV functions.

Keywords: estimator; regularly varying function; weak consistency; strong consis-

tency; extreme value theory

AMS classification: 62G05; 62G30

1 Introduction

A measurable function U :R+ →R
+ is a regularly varying (RV) function if (see [9] and e.g.

[1]), for some α ∈R, for any t > 0, U (t x)
/

U (x) → tα (x →∞). α is called the tail index of

U . If α= 1, U is a slowly varying (SV) function. RVα denotes the class of RV functions with

tail index α and SV the class of SV functions.

A main concern in extreme value theory (EVT) is the estimation of the tail index of RV

functions that are tails of distribution functions. Many estimators of this index have been

proposed. The best known estimator among them is one proposed by Hill [8] in 1975,

which shows favorable features to be used than other competitors (see e.g. [11], pp. 1181-

1182).

Cadena and Kratz [2] introduced in 2014 the class M which consists of measurable func-

tions U :R+ →R
+ satisfying

∃α ∈R,∀ε> 0, lim
x→∞

U (x)

xα+ǫ = 0 and lim
x→∞

U (x)

xα−ǫ =∞. (1)

One can prove that α in (1) is unique, which we call in this paper the M -index of U . Fur-

thermore, using Proposition 2.1, one can prove that RV ⊆ M and that α in (1) is the tail

index of U if U ∈ RVα.

All over this paper X is a positive random variable (r.v.) with distribution F (x) = P(X ≤
x) and distribution tail F (x) = 1− F (x) = P(X > x). Suppose that the endpoint of F is
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infinite, i.e. x∗ = sup
{

x : F (x) < 1
}

=∞. Let X1, . . . , Xn be independent and identically

distributed (i.i.d.) r.v.s with distribution F and let X1:n ≤ ·· · ≤ Xn:n be the order statistics

of this sample. The empirical distribution function of F is defined by, for x > 0, Fn(x) =
n−1 ∑n

i=1 I{Xi≤x}, where I A denotes the indicator function of A. We denote by F n = 1−Fn

its empirical tail of distribution.

a.s.→ ,
p
→, and

d→ are convergences almost surely (a.s.), in probability, and in distribution

respectively, log(x) is the natural logarithm of x, ⌊x⌋ is the highest integer ≤ x, op (1) is a

sequence of random values that converges to 0 in probability, and Op (1) is such sequence

bounded in probability (see e.g. [12]).

Assume F ∈M with M -index −1
/

α (< 0).

Assume k = k(n) is a sequence of positive integers satisfying

1 ≤ k ≤ n −1, k →∞, and k
/

n → 0 as n →∞. (k)

We aim to formulate an estimator for α. To this aim, we notice that, applying Proposition

2.1, log
(

F (x)
)/

log(x) →−1
/

α (x →∞). Then, a natural estimator of α is, for 0 ≤ k < n,

α̂=−
log(Xn−k :n)

log
(

F n(Xn−k :n)
) .

This may be rewritten as

α̂=
log(Xn−k :n)

log
(

n
/

k
) . (2)

Then, in this note, the following results are proved.

Theorem 1.1 (Weak consistency of α̂). Let X1, . . . , Xn be i.i.d. r.v.s with continuous distri-

bution F such that its tail F belongs to M with M -index−1
/

α (α> 0). Let X1:n ≤ ·· · ≤ Xn:n

be its order statistics. Then, if (k) is satisfied,

α̂
p→α (n →∞). (3)

Theorem 1.2 (Strong consistency of α̂). Let X1, . . . , Xn be i.i.d. r.v.s with continuous distri-

bution F such that its tail F belongs to M with M -index−1
/

α (α> 0). Let X1:n ≤ ·· · ≤ Xn:n

be its order statistics. Then, if k = k(n)= ⌊nδ⌋, 0 <δ< 1,

α̂
a.s.→ α (n →∞).

Theorem 1.3 (Asymptotic normality of α̂). Assume that F is a continuous distribution with

tail F satisfying F (x) = x−α(

1+o(x−β)
)

as x →∞, for positive constants α and β. Let X1,

. . . , Xn be i.i.d. r.v.s with distribution F , and let X1:n ≤ ·· · ≤ Xn:n be its order statistics. Then,

if (k) is satisfied,
p

k log
(n

k

)

(

1

α̂
−

1

α

)

d→N
(

0,α−2
)

(n →∞). (4)
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2 Proofs

Proposition 2.1. Let U : R+ →R
+ be a measurable function. Then, U ∈M with M -index

α= τ iff log (U (x))
/

log(x) → η (x →∞).

This result was given by [2] and for the sake of completeness of this note, we give its proof,

part of it being copied from [2].

Proof. Let U :R+ →R
+ be a measurable function and let ǫ> 0.

Assume U ∈M with M -index α= τ. Then, by definition,

lim
x→∞

U (x)

xτ+ǫ = 0 and lim
x→∞

U (x)

xτ−ǫ =∞.

Hence, there exists x0 ≥ 1 such that, for x ≥ x0,

U (x) ≤ ǫxτ+ǫ and U (x) ≥
1

ǫ
xτ−ǫ.

Applying the logarithm function to these inequalities and dividing them by log(x) (with

x > 1) provide

log (U (x))

log(x)
≤

log (ǫ)

log(x)
+τ+ǫ and

log (U (x))

log(x)
≥−

log (ǫ)

log(x)
+τ−ǫ,

and, one then has

lim
x→∞

log (U (x))

log(x)
≤ τ+ǫ and lim

x→∞

log (U (x))

log(x)
≥ τ−ǫ,

from which, taking ǫ arbitrary, the assertion follows.

Conversely, assume log (U (x))
/

log(x) → η (x → ∞). Then, there exists x0 > 1 such that,

for x ≥ x0, | log(U (x))
/

log(x)−τ| ≤ ǫ
/

2.

Writing, for w ∈
{

ǫ,−ǫ
}

,

U (x)

xτ+w
= exp

{

log(x)×
(

log(U (x))

log(x)
−τ−w

)}

gives

exp
{

log(x)×
(

−
ǫ

2
−w

)}

≤
U (x)

xτ+w
≤ exp

{

log(x)×
( ǫ

2
−w

)}

,

and then,

lim
x→∞

U (x)

xτ+ǫ ≤ lim
x→∞

exp
{

log(x)×
( ǫ

2
−ǫ

)}

= 0

and

lim
x→∞

U (x)

xτ−ǫ ≥ lim
x→∞

exp
{

log(x)×
( ǫ

2
+ǫ

)}

=∞.

These two limits provide U ∈M with M -index α= τ. This completes the proof.
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Lemma 2.1. Let X1, X2, . . . be i.i.d. r.v.s with distribution F :R+ →R
+. Let X1:n ≤ ·· · ≤ Xn:n

be its order statistics. Then, if (k) is satisfied,

Xn−k :n
a.s.→ ∞ (n →∞).

Proof. Applying the proof of Lemma 3.2.1 given in [5], which is independent of the distri-

bution F .

Lemma 2.2. Let E1, . . . , En be i.i.d. r.v.s with standard exponential distribution F . Let

E1:n ≤ ·· · ≤ En:n be its order statistics. Then, if (k) is satisfied,

p
k

(

En−k :n − log
(n

k

))

is asymptotically standard normal as n →∞.

Proof. Let U = (1− F )←, U (x) = inf
{

y : F (y) ≥ 1− 1
/

y
}

. Since 1− F (x) = e−x we have

U (x) = log(x).Then, by Theorem 2.1.1 of [5],

p
k

En−k :n −U
(

n
k

)

n
k U ′

(

n
k

) =
p

k
En−k :n − log

(

n
k

)

n
k
× k

n

=
p

k
(

En−k :n − log
(n

k

))

is asymptotically standard normal as n →∞, supposing (k).

Lemma 2.3. Let E1, . . . , En be i.i.d. r.v.s with standard exponential distribution F . Let

E1:n ≤ ·· · ≤ En:n be its order statistics. Then, if (k) is satisfied,

En−k :n

log
(

n
k

)

p
→ 1 (n →∞).

Proof. Application of Lemma 2.2 and e.g. [12], exercice 18, page 24.

Proof of Theorem 1.1. By hypothesis we have log(F (x))
/

log(x) →−1
/

α (x →∞). Then,

noting that Xn−k :n →∞ (n →∞) by Lemma 2.1, we have

lim
n→∞

log(Xn−k :n)

log
(

n
k

) = lim
n→∞

log(Xn−k :n)

log(F (Xn−k :n))
×

log(F (Xn−k :n))

log
(

n
k

)

a.s.= −α lim
n→∞

log(F (Xn−k :n))

log
(

n
k

) ,

from which, noting that − log(F (X )) is a r.v. following a standard exponential distribution

G (see e.g. [6], page 18), − log(F (X1)), . . . , − log(F (Xn)) is a sample of i.i.d. r.v.s following

G , and − log(F (X1:n)), . . . , − log(F (Xn:n)) is its order statistics (see e.g. [6], page 20), then

applying Lemma 2.3, follows

lim
n→∞

α̂= lim
n→∞

log(Xn−k :n)

log
(

n
k

)

p
=α.

This concludes the proof.

Lemma 2.4 (Lemma 5.1 given by Davis and Resnick (1984) [4]). Let E1, . . . , En be i.i.d. r.v.s

with standard exponential distribution F . Let E1:n ≤ ·· · ≤ En:n be its order statistics. Then,

if k = k(n)= ⌊nδ⌋, 0 < δ< 1,

En−k :n − log
(n

k

)

a.s.→ 0 (n →∞).
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Proof of Theorem 1.2. Using Lemma 2.4 instead of Lemma 2.3 in the proof of Theorem

1.2.

Lemma 2.5 (Lemma given in [7], page 40). Suppose λ> 0. If (k), then

−
1

λ

n−k
∑

j=1

En− j+1

n − j +1
=−

1

λ
log

(n

k

)

+ log
(

1+Op (k−1/2)
)

.

Proof of Theorem 1.3. Applying the transformation x 7→ x−1 used by Hall in [7] to have

simpler notations, F (x)= x−α(

1+o(x−β)
)

as x →∞becomes F (x) = xα
(

1+o(xβ)
)

as x → 0+.

This expression we may write, as t → 0+,

F−1(t )= t 1/αeo(tβ). (5)

Let E1, . . . , En be independent standard exponential r.v.s. Define

Sk =
n−k+1

∑

j=1

En− j+1

n − j +1
=

n−k+1
∑

j=1

En− j+1−1

n − j +1
+ log

(

k +1

n

)

+ log
(

1+O(k−1)
)

.

Then, by Rényi’s representation of order statistics (see [10] and e.g. [3], page 21), we may

write 1
/

Xk :n = F−1
(

e−Sk
)

for k = 1, . . . , n. It now follows from (5) that

log(Xk :n) =
1

α
Sk +op (e−βSk ), (6)

Applying Lemma 2.5 to (6) gives

log(Xk :n) =
1

α

n−k+1
∑

j=1

En− j+1 −1

n − j +1
+

1

α
log

( n

k +1

)

+
1

α
log

(

1+Op ((k +1)−1/2)
)

+op

(

((k +1)/n)β(1+Op ((k +1)−1/2)β
)

=
1

α

n−k+1
∑

j=1

En− j+1 −1

n − j +1
+

1

α
log

( n

k +1

)

+
(

1+
1

α

)

op (1). (7)

The mean of α−1 ∑n−k+1
j=1

(

En− j+1 −1
)/

(n − j +1) is 0 and its variance

1

α2

n
∑

j=k

1

j 2
∼

1

kα2
(n →∞),

where f (x) ∼ g (x) (x →∞) means f (x)
/

g (x) → 1 (x →∞). Hence, log
(

Xk :n

)

−α−1 log
(

n
/

k
)

is asymptotically N
(

0,k−1α−2
)

as n →∞, and (4) then follows. This completes the proof.
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