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Introduction

A measurable function U : R + → R + is a regularly varying (RV) function if (see [START_REF] Karamata | Sur un mode de croissance régulière des fonctions[END_REF] and e.g. [START_REF] Bingham | Regular Variation[END_REF]), for some α ∈ R, for any t > 0, U (t x) U (x) → t α (x → ∞). α is called the tail index of U . If α = 1, U is a slowly varying (SV) function. RV α denotes the class of RV functions with tail index α and SV the class of SV functions.

A main concern in extreme value theory (EVT) is the estimation of the tail index of RV functions that are tails of distribution functions. Many estimators of this index have been proposed. The best known estimator among them is one proposed by Hill [START_REF] Hill | A Simple General Approach to Inference About the Tail of a Distribution[END_REF] in 1975, which shows favorable features to be used than other competitors (see e.g. [START_REF] Smith | Estimating Tails of Probability Distributions[END_REF], pp. 1181-1182).

Cadena and Kratz [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] introduced in 2014 the class M which consists of measurable func-

tions U : R + → R + satisfying ∃α ∈ R,∀ε > 0, lim x→∞ U (x) x α+ǫ = 0 and lim x→∞ U (x) x α-ǫ = ∞. (1) 
One can prove that α in (1) is unique, which we call in this paper the M -index of U . Furthermore, using Proposition 2.1, one can prove that RV ⊆ M and that α in (1) is the tail index of U if U ∈ RV α .

All over this paper X is a positive random variable (r.v.) with distribution F (x) = P (X ≤ x) and distribution tail [START_REF] Bingham | Regular Variation[END_REF] is such sequence bounded in probability (see e.g. [START_REF] Van Der | Asymptotic Statistics[END_REF]).

F (x) = 1 -F (x) = P (X > x). Suppose that the endpoint of F is infinite, i.e. x * = sup x : F (x) < 1 = ∞. Let X 1 , .
Assume F ∈ M with M -index -1 α (< 0). Assume k = k(n) is a sequence of positive integers satisfying 1 ≤ k ≤ n -1, k → ∞, and k n → 0 as n → ∞. (k)
We aim to formulate an estimator for α. To this aim, we notice that, applying Proposition 2.1, log

F (x) log(x) → -1 α (x → ∞). Then, a natural estimator of α is, for 0 ≤ k < n, α = - log(X n-k:n ) log F n (X n-k:n ) .
This may be rewritten as

α = log(X n-k:n ) log n k . ( 2 
)
Then, in this note, the following results are proved.

Theorem 1.1 (Weak consistency of α). Let X 1 , . . . , X n be i.i.d. r.v.s with continuous distribution F such that its tail F belongs to

M with M -index -1 α (α > 0). Let X 1:n ≤ • • • ≤ X n:n be its order statistics. Then, if (k) is satisfied, α p → α (n → ∞). (3) 
Theorem 1.2 (Strong consistency of α). Let X 1 , . . . , X n be i.i.d. r.v.s with continuous distribution F such that its tail F belongs to 

M with M -index -1 α (α > 0). Let X 1:n ≤ • • • ≤ X n:n be its order statistics. Then, if k = k(n) = ⌊n δ ⌋, 0 < δ < 1, α a.s. → α (n → ∞). Theorem 1.3 (Asymptotic normality of α). Assume that F is a continuous distribution with tail F satisfying F (x) = x -α 1 + o(x -β ) as x → ∞,
≤ • • • ≤ X n:n be its order statistics. Then, if (k) is satisfied, k log n k 1 α - 1 α d → N 0, α -2 (n → ∞). ( 4 
)
2 Proofs Proposition 2.1. Let U : R + → R + be a measurable function. Then, U ∈ M with M -index

α = τ iff log (U (x)) log(x) → η (x → ∞).
This result was given by [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] and for the sake of completeness of this note, we give its proof, part of it being copied from [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF].

Proof. Let U : R + → R + be a measurable function and let ǫ > 0.

Assume U ∈ M with M -index α = τ. Then, by definition,

lim x→∞ U (x)
x τ+ǫ = 0 and lim

x→∞ U (x) x τ-ǫ = ∞.
Hence, there exists x 0 ≥ 1 such that, for x ≥ x 0 ,

U (x) ≤ ǫx τ+ǫ and U (x) ≥ 1 ǫ x τ-ǫ .
Applying the logarithm function to these inequalities and dividing them by log(x) (with Conversely, assume log (U (x)) log(x) → η (x → ∞). Then, there exists x 0 > 1 such that, for x ≥ x 0 , | log(U (x)) log(x) -τ| ≤ ǫ 2.

x > 1) provide log (U (x)) log(x) ≤ log (ǫ) log(x) + τ + ǫ and log (U (x)) log(x) ≥ - log (ǫ) log(x) + τ -ǫ,
Writing, for w ∈ ǫ, -ǫ ,

U (x) x τ+w = exp log(x) × log(U (x)) log(x) -τ -w gives exp log(x) × - ǫ 2 -w ≤ U (x) x τ+w ≤ exp log(x) × ǫ 2 -w ,
and then,

lim x→∞ U (x) x τ+ǫ ≤ lim x→∞ exp log(x) × ǫ 2 -ǫ = 0 and lim x→∞ U (x) x τ-ǫ ≥ lim x→∞ exp log(x) × ǫ 2 + ǫ = ∞.
These two limits provide U ∈ M with M -index α = τ. This completes the proof. 

Proof. Let U = (1 -F ) ← , U (x) = inf y : F (y) ≥ 1 -1 y . Since 1 -F (x) = e -x we have U (x) = log(x).
Then, by Theorem 2.1.1 of [START_REF] De Haan | Extreme Value Theory. An Introduction[END_REF],

k E n-k:n -U n k n k U ′ n k = k E n-k:n -log n k n k × k n = k E n-k:n -log n k is asymptotically standard normal as n → ∞, supposing (k). Lemma 2.3. Let E 1 , . . . , E n be i.i.d. r.v.s with standard exponential distribution F . Let E 1:n ≤ • • • ≤ E n:n be its order statistics. Then, if (k) is satisfied, E n-k:n log n k p → 1 (n → ∞).
Proof. Application of Lemma 2.2 and e.g. [START_REF] Van Der | Asymptotic Statistics[END_REF], exercice 18, page 24.

Proof of Theorem 1.1. By hypothesis we have log(F (x)) log(x)

→ -1 α (x → ∞). Then, noting that X n-k:n → ∞ (n → ∞) by Lemma 2.1, we have lim n→∞ log(X n-k:n ) log n k = lim n→∞ log(X n-k:n ) log(F (X n-k:n )) × log(F (X n-k:n )) log n k a.s. = -α lim n→∞ log(F (X n-k:n )) log n k ,
from which, noting thatlog(F (X )) is a r.v. following a standard exponential distribution G (see e.g. [START_REF] Galambos | Characterizations of Probability Distributions[END_REF], page 18), -log(F (X 1 )), . . . , -log(F (X n )) is a sample of i.i.d. r.v.s following G, andlog(F (X 1:n )), . . . , -log(F (X n:n )) is its order statistics (see e.g. [START_REF] Galambos | Characterizations of Probability Distributions[END_REF], page 20), then applying Lemma 2.3, follows

lim n→∞ α = lim n→∞ log(X n-k:n ) log n k p = α.
This concludes the proof.

Lemma 2.4 (Lemma 5.1 given by [START_REF] Davis | Tail Estimates Motivated by Extreme Value Theory[END_REF] [START_REF] Davis | Tail Estimates Motivated by Extreme Value Theory[END_REF]). Let E 1 , . . . , E n be i.i.d. r.v.s with standard exponential distribution F . Let E 1:n ≤ • • • ≤ E n:n be its order statistics. Then,

if k = k(n) = ⌊n δ ⌋, 0 < δ < 1, E n-k:n -log n k a.s. → 0 (n → ∞).
Proof of Theorem 1.2. Using Lemma 2.4 instead of Lemma 2.3 in the proof of Theorem 1.2.

Lemma 2.5 (Lemma given in [START_REF] Hall | On Some Simple Estimates of an Exponent of Regular Variation[END_REF], page 40). Suppose λ > 0.

If (k), then - 1 λ n-k j =1 E n-j +1 n -j + 1 = - 1 λ log n k + log 1 + O p (k -1/2 ) .
Proof of Theorem 1.3. Applying the transformation x → x -1 used by Hall in [START_REF] Hall | On Some Simple Estimates of an Exponent of Regular Variation[END_REF] to have simpler notations,

F (x) = x -α 1+o(x -β ) as x → ∞ becomes F (x) = x α 1+o(x β ) as x → 0 + .
This expression we may write, as t → 0 + ,

F -1 (t ) = t 1/α e o(t β ) . (5) 
Let E 1 , . . . , E n be independent standard exponential r.v.s. Define

S k = n-k+1 j =1 E n-j +1 n -j + 1 = n-k+1 j =1 E n-j +1 -1 n -j + 1 + log k + 1 n + log 1 + O(k -1 ) .
Then, by Rényi's representation of order statistics (see [START_REF] Rényi | On the theory of order statistics[END_REF] and e.g. [START_REF] David | Order Statistics[END_REF], page 21), we may write 1 X k:n = F -1 e -S k for k = 1, . . . , n. It now follows from (5) that log(X E n-j +1 -1

k:n ) = 1 α S k + o p (e -βS k ), (6) 
n -j + 1 + 1 α log n k + 1 + 1 + 1 α o p (1). (7) 
The mean of α -1 n-k+1 j =1

E n-j +1 -1 (nj + 1) is 0 and its variance

1 α 2 n j =k 1 j 2 ∼ 1 kα 2 (n → ∞),
where f (x) ∼ g (x) (x → ∞) means f (x) g (x) → 1 (x → ∞). Hence, log X k:n -α -1 log n k is asymptotically N 0, k -1 α -2 as n → ∞, and (4) then follows. This completes the proof.

  ≥ τǫ, from which, taking ǫ arbitrary, the assertion follows.

Applying Lemma 2 log 1 +

 21 O p ((k + 1) -1/2 ) + o p ((k + 1)/n) β (1 + O p ((k + 1) -1/2 ) β

  . . , X n be independent and identically distributed (i.i.d.) r.v.s with distribution F and let X 1:n ≤ • • • ≤ X n:n be the order statistics of this sample. The empirical distribution function of F is defined by, for x > 0, F n (x) = n -1 n i =1 I {X i ≤x} , where I A denotes the indicator function of A. We denote by F n = 1 -F n its empirical tail of distribution.

	a.s. → , respectively, log(x) is the natural logarithm of x, ⌊x⌋ is the highest integer ≤ x, o p (1) is a p →, and d → are convergences almost surely (a.s.), in probability, and in distribution sequence of random values that converges to 0 in probability, and O p

  Lemma 2.1. Let X 1 , X 2 , . . . be i.i.d. r.v.s with distribution F : R + → R + . Let X 1:n ≤ • • • ≤ X n:n

	be its order statistics. Then, if (k) is satisfied,
	X n-k:n	a.s. → ∞ (n → ∞).
	Proof. Applying the proof of Lemma 3.2.1 given in [5], which is independent of the distri-
	bution F .	
	Lemma 2.2. Let E 1 , . . . , E n be i.i.d. r.v.s with standard exponential distribution F . Let
	E 1:n ≤ • • • ≤ E n:n be its order statistics. Then, if (k) is satisfied, n k E n-k:n -log k
	is asymptotically standard normal as n → ∞.
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