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Abstract

We use tail expectiles to estimate alternative measures to the Value at Risk (VaR)
and Marginal Expected Shortfall (MES), two instruments of risk protection of utmost
importance in actuarial science and statistical finance. The concept of expectiles is
a least squares analogue of quantiles. Both are M-quantiles as the minimizers of an
asymmetric convex loss function, but expectiles are the only M-quantiles that are
coherent risk measures. Moreover, expectiles define the only coherent risk measure
that is also elicitable. The estimation of expectiles has not, however, received any
attention yet from the perspective of extreme values. Two estimation methods are
proposed here, either making use of quantiles or relying directly on least asymmetrically
weighted squares. A main tool is to first estimate large values of expectile-based VaR
and MES located within the range of the data, and then to extrapolate the obtained
estimates to the very far tails. We establish the limit distributions of both of the
resulting intermediate and extreme estimators. We show via a detailed simulation
study the good performance of the procedures, and present concrete applications to
medical insurance data and three large US investment banks.

Keywords: Asymmetric squared loss; Coherency; Expectiles; Extrapolation; Extreme
values; Heavy tails; Marginal expected shortfall; Value at Risk.

1 Introduction

The concept of expectiles is a least squares analogue of quantiles, which summarizes the

underlying distribution of a random variable Y in much the same way that quantiles do. It

is a natural generalization of the usual mean EpY q just as the class of quantiles generalizes the

median. Both expectiles and quantiles are useful descriptors of the higher and lower regions of

the data points in the same way as the mean and median are related to their central behavior.

Koenker and Bassett (1978) elaborated an absolute error loss minimization framework to

define quantiles. Later, Newey and Powell (1987) substituted the L1 loss function with the

L2 loss to define the population expectile of order τ P p0, 1q as the minimizer

ξτ “ arg min
θPR

E tητ pY ´ θq ´ ητ pY qu , (1)



where ητ pyq “ |τ´1Ipy ď 0q| y2, with 1Ip¨q being the indicator function. Although formulated

using a quadratic loss, problem (1) is well-defined as soon as E|Y | is finite, thanks to the

presence of the term ητ pY q. The first advantage of this asymmetric least squares approach

relative to quantiles lies in the computational expedience of sample expectiles using only

scoring or iteratively-reweighted least squares (see the R package ‘expectreg’). The second

advantage, following Newey and Powell (1987), Abdous and Remillard (1995) and Sobotka

and Kneib (2012), among others, is that inference on expectiles is much easier than infer-

ence on quantiles, and their estimation makes more efficient use of the available data since

weighted least squares rely on the distance to data points, while empirical quantiles only uti-

lize the information on whether an observation is below or above the predictor. Furthermore,

unlike sample quantiles, sample expectiles provide a class of smooth curves as functions of

the level τ (see, e.g., Schulze Waltrup et al., 2015).

Value at Risk (VaR) and Marginal Expected Shortfall (MES) are two instruments of

risk protection of utmost importance in actuarial science and statistical finance. They are

traditionally based on the use of tail quantiles as a main tool for quantifying the riskiness

implied by the variability of losses and the tails of their distribution. In this article we focus

on the less-discussed problem of estimating the concepts of VaR and MES when quantiles

are replaced therein by expectiles. The use of expectiles as an alternative tool for quantifying

tail risk has recently attracted a lot of interest, see for instance Martin (2014). Motivating

advantages are that expectiles are more alert than quantiles to the magnitude of infrequent

catastrophic losses, and they depend on both the tail realizations of Y and their probability,

while quantiles only depend on the frequency of tail realizations (see Kuan et al., 2009). Both

families of quantiles and expectiles were embedded in the more general class of M-quantiles

by Breckling and Chambers (1988). Bellini (2012) has shown that expectiles with τ ě 1
2

are the only M-quantiles that are isotonic with respect to the increasing convex order. Most

importantly, Bellini et al. (2014) have proved that the only M-quantiles that are coherent risk

measures are the expectiles. Very recently, Ziegel (2016) has proved that expectiles are the

only coherent law-invariant measure of risk which is also elicitable. Elicitability corresponds

to the existence of a natural backtesting methodology. It has been shown that the Expected

Shortfall (ES), viewed as the most popular coherent risk measure, is not elicitable (Gneiting,

2011), but jointly elicitable with VaR (Fissler and Ziegel, 2016).

In terms of interpretability, the τ -quantile is the point below which 100τ% of the mass

of Y lies, while the τ -expectile specifies the position ξτ such that the average distance from

the data below ξτ to ξτ itself is 100τ% of the average distance between ξτ and all the data:

τ “ E t|Y ´ ξτ |1IpY ď ξτ qu {E |Y ´ ξτ | . (2)

Thus, the τ -expectile shares an intuitive interpretation similar to the τ -quantile, replacing
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the number of observations by the distance. Bellini and Di Bernardino (2017) provide a

transparent financial meaning of expectiles in terms of gain-loss ratio, which is a popular

performance measure in portfolio management and is well-known in the literature on no good

deal valuation in incomplete markets (see Bellini and Di Bernardino, 2017 and references

therein). Also, Ehm et al. (2016) have shown that expectiles are optimal decision thresholds

in certain binary investment problems. Another motivation for the adoption of expectiles in

risk management, according to Taylor (2008), is that they are very closely related to the clas-

sical mean and the popular ES. Furthermore, the theoretical and numerical results obtained

by Bellini and Di Bernardino (2017) seem to indicate that expectiles are perfectly reasonable

alternatives to standard VaR and ES. The statistical problem of expectile estimation has

not, however, received any attention yet from the perspective of extreme values, unlike VaR

estimation (see de Haan and Ferreira, 2006) and ES estimation (see El Methni et al., 2014).

Although least asymmetrically weighted squares estimation of expectiles dates back to

Newey and Powell (1987) in the case of linear regression, it recently regained growing interest

in the context of nonparametric, semiparametric and more complex models, see for example

Sobotka and Kneib (2012) and the references therein, as well as the two recent contributions

by Holzmann and Klar (2016) and Krätschmer and Zähle (2017) for advanced theoretical

developments. Attention has been, however, restricted to ordinary expectiles of fixed order

τ staying away from the tails of the underlying distribution. In the latter two references,

several asymptotic results such as uniform consistency and a uniform central limit theorem

are shown for expectile estimators, but the order τ therein is assumed to lie within a fixed

interval bounded away from 0 and 1. The purpose of this paper is to extend their estimation

and asymptotic theory far enough into the tails. This translates into considering the expectile

level τ “ τn Ñ 0 or τn Ñ 1 as the sample size n goes to infinity. Bellini et al. (2014),

Mao et al. (2015), Mao and Yang (2015) and Bellini and Di Bernardino (2017) have already

initiated and studied the connection of such extreme population expectiles with their quantile

analogues when Y belongs to the domain of attraction of a Generalized Extreme Value

distribution. They do not, however, consider the crucial question of their statistical inference.

In this article, we focus on high expectiles ξτn in the challenging maximum domain of

attraction of Pareto-type distributions, where standard expectile estimates at the tails are

often unstable due to data sparsity. It has been found in statistical finance and actuarial

science that Pareto-type distributions describe quite well the tail structure of losses: already

Embrechts et al. (1997, p.9) pointed out that “claims are mostly modelled by heavy-tailed

distributions”, and more recently Resnick (2007, p.1) has stated that “Record-breaking in-

surance losses, financial log-returns [...] are all examples of heavy-tailed phenomena”. The

rival quantile-based risk measures are investigated extensively in theoretical statistics and

used widely in applied work. Notice that in applications, extreme losses correspond to tail
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probabilities τn at an extremely high level that can be even larger than p1 ´ 1{nq, see for

instance Embrechts and Puccetti (2007) who studied extreme operational bank losses, Cai

et al. (2015) for an application to extreme loss returns of banks in the US market, and El

Methni and Stupfler (2017a, 2017b) who estimate excess-of-loss risk measures on automobile

insurance data and the average value of a catastrophic loss in commercial fire risk. There-

fore, estimating the corresponding quantile-based risk measures is a typical extreme value

problem. We refer the reader to the books by Embrechts et al. (1997), Beirlant et al. (2004),

and de Haan and Ferreira (2006) for a general overview of the theoretical background.

Let us point out three main contributions of this paper. First, we estimate the interme-

diate tail expectiles of order τn Ñ 1 such that np1 ´ τnq Ñ 8, and then extrapolate these

estimates to the very extreme expectile level τ 1n which approaches one at an arbitrarily fast

rate in the sense that np1´ τ 1nq Ñ c, for some nonnegative constant c. Two such estimation

methods are considered. One is indirect, based on the use of asymptotic approximations in-

volving intermediate quantiles, and the other relies directly on least asymmetrically weighted

squares (LAWS) estimation. Second, we provide adapted extreme expectile-based tools for

the estimation of the MES, an important factor when measuring the systemic risk of financial

firms. Denoting by X and Y , respectively, the loss on the return of a financial firm and that

of the entire market, the MES is equal to EpX|Y ą tq, where t is a high threshold reflecting

a systemic crisis, i.e. a substantial market decline. For an extreme expectile t “ ξτ 1n and

for a wide nonparametric class of bivariate distributions of pX, Y q, we construct two esti-

mators of the MES. A rival procedure by Cai et al. (2015) is based on extreme quantiles.

Finally, we unravel the important question of how to select theoretically the extreme level

τ 1n so that each expectile-based risk measure (VaR and MES) at this level coincides with its

quantile-based analogue at a given tail probability αn Ñ 1 as n Ñ 8. The obtained level

τ 1n “ τ 1npαnq needs itself to be estimated, which results in two final composite estimators of

the risk measure. Our main results establish the asymptotic distributions of all presented

estimators. To the best of our knowledge, this is the first work to actually join together the

expectile perspective with the tail restrictions of extreme-value theory.

We organize this paper as follows. Section 2 discusses the basic properties of the expectile-

based VaR including its connection with the standard quantile-VaR for high levels τn Ñ

1. Section 3 presents the two estimation methods of intermediate and extreme expectiles.

Section 4 considers the problem of estimating the MES when the related variable is extreme.

Section 5 addresses the important question of how to select the extreme expectile level in the

three studied risk measures. The good performance of our procedures is shown in Section

6 on a simulation study, and concrete applications to medical insurance data and the loss-

returns of three large US investment banks are provided in Section 7. The implemented codes

for our methods can be found at https://hal.archives-ouvertes.fr/hal-01142130.
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2 Basic properties

In this paper, the generic financial position Y is a real-valued random variable, and the

available data tY1, Y2, . . .u are considered as the negative of a series of financial returns.

The right-tail of the distribution of Y then corresponds to the negative of extreme losses.

Following Newey and Powell (1987), the expectile ξτ of order τ P p0, 1q of the variable Y can

be defined as the minimizer (1) of a piecewise-quadratic loss function or, equivalently, as

ξτ “ arg min
θPR

 

τE
“

pY ´ θq2` ´ Y
2
`

‰

` p1´ τqE
“

pY ´ θq2´ ´ Y
2
´

‰(

,

where y` :“ maxpy, 0q and y´ :“ minpy, 0q. The presence of terms Y 2
` and Y 2

´ makes this

problem well-defined indeed as soon as Y P L1 [i.e. E|Y | ă 8]. The related first-order

necessary condition for optimality can be written in several ways, one of them being

ξτ ´ EpY q “
2τ ´ 1

1´ τ
E rpY ´ ξτ q`s .

This equation has a unique solution for all Y P L1. Thenceforth expectiles of a distribution

function FY with finite absolute first moment are well-defined, and we will assume in the

sequel that E|Y | ă 8. Expectiles summarize the distribution function in much the same way

that the quantiles qτ :“ F´1Y pτq “ infty P R : FY pyq ě τu do. A justification for their use

to describe distributions and their tails, as well as to quantify the “riskiness” implied by the

return distribution under consideration, may be based on the following elementary properties

[Newey and Powell (1987), Abdous and Remillard (1995) and Bellini et al. (2014)]:

(i) Law invariance: two integrable random variables Y and rY , with continuous densities,

have the same distribution if and only if ξY,τ “ ξ
rY ,τ for every τ P p0, 1q.

(ii) Location and scale equivariance: the τth expectile of the linear transformation rY “

a` bY , where a, b P R, satisfies

ξ
rY ,τ “

"

a` b ξY,τ if b ą 0
a` b ξY,1´τ if b ď 0.

(iii) Constancy: if Y “ c P R with probability 1, then ξY,τ “ c for any τ .

(iv) Strict monotonicity in τ : if τ1 ă τ2, with τ1, τ2 P p0, 1q, then ξτ1 ă ξτ2 . Also, the

function τ ÞÑ ξτ maps p0, 1q onto its range ty P R : 0 ă FY pyq ă 1u.

(v) Preserving of stochastic order: if Y ď Ỹ with probability 1, then ξY,τ ď ξỸ ,τ for any τ .

(vi) Subadditivity: for any variables Y, Ỹ P L1, ξY`Ỹ ,τ ď ξY,τ ` ξỸ ,τ for all τ ě 1
2
. Also,

ξY`Ỹ ,τ ě ξY,τ ` ξỸ ,τ for all τ ď 1
2
.
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(vii) Lipschitzianity w.r.t. the Wasserstein distance: for all Y, Ỹ P L1 and all τ P p0, 1q, it

holds that
ˇ

ˇξY,τ ´ ξỸ ,τ
ˇ

ˇ ď τ̃ ¨ dW pY, Ỹ q, where τ̃ “ max
 

τ
1´τ

, 1´τ
τ

(

and

dW pY, Ỹ q “

ż 8

´8

|FY pyq ´ FỸ pyq|dy “

ż 1

0

|F´1Y ptq ´ F´1
Ỹ
ptq|dt.

(viii) Sensitivity vs resistance: expectiles are very sensitive to the magnitude of extremes

since their gross-error-sensitivity and rejection points are infinite. Whereas they are re-

sistant to systematic rounding and grouping since their local-shift-sensitivity is bounded.

The convention we have chosen for values of Y as the negative of returns implies that

extreme losses correspond to levels τ close to 1. Only Bellini et al. (2014), Mao et al. (2015),

Mao and Yang (2015) and Bellini and Di Bernardino (2017) have described what happens

for large population expectiles ξτ and their link with high quantiles qτ when FY is attracted

to the maximum domain of Pareto-type distributions with tail index 0 ă γ ă 1. According

to Bingham et al. (1987), such a heavy-tailed distribution function can be expressed as

FY pyq “ 1´ y´1{γ`pyq (3)

where `p¨q is a slowly-varying function at infinity, i.e, `pλyq{`pyq Ñ 1 as y Ñ 8 for all λ ą 0.

The index γ tunes the tail heaviness of the distribution function FY , whose first moment

does not exist when γ ą 1. For most applicational purposes in risk management, it has been

found in previous studies that the class of heavy-tailed distributions describes sufficiently

well the tail structure of actuarial and financial data: in addition to the monographs of

Embrechts et al. (1997) and Resnick (2007), see for instance Chavez-Demoulin et al. (2014)

and the references therein. See also Alm (2016) for a recent study in the context of the

Swedish insurance market.

Writing F Y :“ 1´ FY , Bellini et al. (2014) have shown in the case γ ă 1 that

F Y pξτ q

F Y pqτ q
„ γ´1 ´ 1 as τ Ñ 1, (4)

or equivalently F Y pξτ q{p1´ τq „ γ´1´ 1 as τ Ñ 1. It follows that extreme expectiles ξτ are

larger than extreme quantiles qτ (i.e. ξτ ą qτ ) when γ ą 1
2
, whereas ξτ ă qτ when γ ă 1

2
, for

all large τ . The connection (4) between high expectiles and quantiles can actually be refined

appreciably by considering a strengthened yet classical version of condition (3). Assume

that the tail quantile function U of Y , namely the left-continuous inverse of 1{F Y , defined

by Uptq “ infty P R | 1{F Y pyq ě tu, is such that there exist γ ą 0, ρ ď 0, and a function

Ap¨q converging to 0 at infinity and having constant sign such that

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ
.
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Here and in what follows, pxρ´ 1q{ρ is to be read as log x when ρ “ 0. The interpretation of

this condition can be found in Beirlant et al. (2004) and de Haan and Ferreira (2006) along

with abundant examples of commonly used continuous distributions satisfying C2pγ, ρ, Aq:
for instance, this is the case for any distribution whose distribution function F satisfies

1´ F pxq “ x´1{γ
`

a` bxρ{γ ` opxρ{γq
˘

as xÑ 8,

where a and b are positive constants and ρ ă 0. This contains in particular the Hall-Weiss

class of models (see Hua and Joe, 2011).

Proposition 1. Assume that condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1. Then

F Y pξτ q

1´ τ
“ pγ´1 ´ 1qp1` εpτqq

with εpτq “ ´
pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq ´

pγ´1 ´ 1q´ρ

γp1´ ρ´ γq
App1´ τq´1qp1` op1qq as τ Ò 1.

One can actually establish the precise bias term in the asymptotic expansion of ξτ{qτ .

Corollary 1. Assume that condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1. If FY is strictly

increasing, then

ξτ
qτ

“ pγ´1 ´ 1q´γp1` rpτqq

with rpτq “
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q as τ Ò 1.

Other refinements under similar second order regular variation conditions can also be

found in Mao et al. (2015) and Mao and Yang (2015). An extension to a subset of the

challenging Gumbel domain of attraction is also derived in Proposition 2.4 in Bellini and Di

Bernardino (2017). In practice, the tail quantities ξτ , qτ and γ are unknown and only a sample

of random copies pY1, . . . , Ynq of Y is typically available. While extreme-value estimates of

high quantiles and of the tail index γ have been widely used in applied statistical analyses

and extensively investigated in theoretical statistics, the problem of estimating ξτ , when

τ “ τn Ñ 1 at an arbitrary rate as n Ñ 8, has not been addressed yet. This motivated

us to construct estimators of large expectiles ξτn and derive their limit distributions when

they are located within or beyond the range of the data, where their empirical counterparts

usually fail due to data sparseness. We shall assume the extended regular variation condition

C2pγ, ρ, Aq to obtain our convergence results.
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3 Estimation of the expectile-based VaR

Our main objective in this section is to estimate ξτn for high levels τn that may approach 1 at

any rate, covering both scenarios of intermediate expectiles with np1´τnq Ñ 8 and extreme

expectiles with np1´τnq Ñ c, for some nonnegative constant c. We assume that the available

data consist of independent copies pY1, . . . , Ynq of Y , and denote by Y1,n ď ¨ ¨ ¨ ď Yn,n their

ascending order statistics.

3.1 Intermediate expectile estimation

3.1.1 Estimation based on intermediate quantiles

The rationale for this first method relies on the heavy-tailed property (3) and on the asymp-

totic equivalence (4). Given that FY satisfies (3), we expect that (4) entails:

ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ò 1. (5)

This result is actually an immediate consequence of Corollary 1 above and can be found

in Proposition 2.3 of Bellini and Di Bernardino (2017) as well. Therefore, for a suitable

estimator pγ of γ, we suggest estimating the intermediate expectile ξτn by pξτn :“ ppγ´1 ´

1q´pγ pqτn , where pqτn :“ Yn´tnp1´τnqu,n and t¨u stands for the floor function. This estimator is

based on the intermediate quantile-VaR pqτn and crucially hinges on the estimated tail index

pγ. A simple and widely used estimator pγ is the popular Hill estimator (Hill, 1975):

pγH “
1

k

k
ÿ

i“1

log
Yn´i`1,n
Yn´k,n

, (6)

where k “ kpnq is an intermediate sequence, namely kpnq Ñ 8 and kpnq{n Ñ 0 as n Ñ 8.

Beirlant et al. (2004) and de Haan and Ferreira (2006) give a nice summary of the properties

of pγH and review other efficient estimation methods with an extensive bibliography.

Next, we formulate conditions that lead to asymptotic normality for pξτn .

Theorem 1. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1, that τn Ò 1 and np1´ τnq Ñ 8. Assume further that

a

np1´ τnq

ˆ

pγ ´ γ,
pqτn
qτn

´ 1

˙

d
ÝÑ pΓ,Θq. (7)

If
a

np1´ τnqq
´1
τn Ñ λ1 P R and

a

np1´ τnqApp1´ τnq
´1q Ñ λ2 P R, then

a

np1´ τnq

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ mpγqΓ`Θ´ λ
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with mpγq :“ p1´ γq´1 ´ logpγ´1 ´ 1q and

λ :“ γpγ´1 ´ 1qγEpY qλ1 `
ˆ

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ2.

When using the Hill estimator (6) of γ with k “ rnp1´τnqs, sufficient regularity conditions

for (7) to hold can be found in Theorems 2.4.1 and 3.2.5 in de Haan and Ferreira (2006,

p.50 and p.74). Under these conditions, the limit distribution Γ is then Gaussian with mean

λ2{p1 ´ ρq and variance γ2, while Θ is the centered Gaussian distribution with variance

γ2. Lemma 3.2.3 in de Haan and Ferreira (2006, p.71) shows that both Gaussian limiting

distributions are independent. As an immediate consequence we get the following for pγ “ pγH .

Corollary 2. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with 0 ă

γ ă 1, that τn Ò 1 and np1´ τnq Ñ 8. If
a

np1´ τnqq
´1
τn Ñ λ1 P R and

a

np1´ τnqApp1´

τnq
´1q Ñ λ2 P R, then

a

np1´ τnq

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ N

ˆ

mpγq

1´ ρ
λ2 ´ λ, vpγq

˙

,

with mpγq and λ as in Theorem 1, and

vpγq “ γ2

«

1`

ˆ

1

1´ γ
´ log

ˆ

1

γ
´ 1

˙˙2
ff

.

Yet, a drawback to the resulting estimator pξτn lies in its heavy dependency on the esti-

mated quantile pqτn and tail index pγ in the sense that pξτn may inherit the vexing defects of

both pqτn and pγ. Note also that pξτn is asymptotically biased, which is not the case for pqτn ;

it should be pointed out though that one may design a bias-reduced version of the estima-

tor pξτn . Indeed, the bias components λ1 and λ2 appearing in Theorem 1 can be estimated,

respectively, by using pλ1 “
a

np1´ τnqpq
´1
τn and by applying the methodology of Caeiro et

al. (2005) in conjunction with the Hall-Welsh class of models to get an estimator pλ2 of λ2.

Plugging these, along with the empirical mean Y , the estimator pγ, and a consistent estima-

tor pρ of the second-order parameter ρ (a review of possible estimators pρ is given in Gomes

and Guillou, 2015), into the expression of λ, we get a consistent estimator pλ of this bias

component. This in turn enables one to define a bias-reduced version of pξτn , for instance as

pξRBτn :“ pξτn

˜

1´

„

mppγq

1´ pρ
pλ2 ´ pλ



1
a

np1´ τnq

¸

.

Of course, one should expect the value of the asymptotic variance of this estimator to be

even higher than that of pξτn , similarly to what is observed when bias reduction techniques

are applied to the Hill estimator (see e.g. Theorem 3.2 in Caeiro et al., 2005).

Another efficient way of estimating ξτn , which we develop in the next section, is by joining

together least asymmetrically weighted squares (LAWS) estimation with the tail restrictions

of modern extreme-value theory.
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3.1.2 Asymmetric least squares estimation

Here, we consider estimating the expectile ξτn by its empirical counterpart defined through

rξτn “ arg min
uPR

1

n

n
ÿ

i“1

ητnpYi ´ uq,

where ητ pyq “ |τ ´ 1Ity ď 0u|y2 is the expectile check function. This LAWS minimizer can

easily be calculated by applying the function “expectile” of the R package ‘expectreg’. Clearly

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

“ arg min
uPR

ψnpuq (8)

with ψnpuq :“
1

2ξ2τn

n
ÿ

i“1

«

ητn

˜

Yi ´ ξτn ´
uξτn

a

np1´ τnq

¸

´ ητnpYi ´ ξτnq

ff

.

Note that pψnq is a sequence of almost surely continuous and convex random functions. The-

orem 5 in Knight (1999) then states that to examine the convergence of the left-hand side

term of (8), it is enough to investigate the asymptotic properties of the sequence pψnq. Built

on this idea, we get the asymptotic normality of the LAWS estimator rξτn by applying stan-

dard techniques involving sums of independent and identically distributed random variables.

Let us recall that we denote by Y´ the negative part of Y , i.e., Y´ “ minpY, 0q.

Theorem 2. Assume that there is δ ą 0 such that E|Y´|2`δ ă 8, that 0 ă γ ă 1{2 and

τn Ò 1 is such that np1´ τnq Ñ 8. Then

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ N p0, V pγqq with V pγq “

2γ3

1´ 2γ
.

In contrast to Theorem 1 and Corollary 2, the limit distribution in Theorem 2 is derived

without recourse to either the extended regular variation condition C2pγ, ρ, Aq or any bias

condition. A mild moment assumption and the condition 0 ă γ ă 1{2 suffice. It has been

found in many instances (e.g. recently by Chavez-Demoulin et al., 2014, Cai et al., 2015,

Alm, 2016, El Methni and Stupfler, 2017a; see also the R package ‘CASdatasets’) that the

model assumption of Pareto-type tails along with these finite-variance conditions deliver

competitive results for most applicational purposes in risk management; our findings in

Section 7 also go in this sense. Most importantly, unlike the indirect expectile estimator pξτn ,

the new estimator rξτn does not hinge by construction on any quantile or tail index estimators.

A comparison of the asymptotic variance V pγq of rξτn with the asymptotic variance vpγq of
pξτn is provided in Figure 1. It can be seen from the left panel that both asymptotic variances

are stable and close for values of γ ă 0.3, with an advantage for V pγq in dashed line as

visualized more clearly in the right panel. Then V pγq becomes appreciably larger than vpγq

for γ ą 0.3 and explodes in a neighborhood of 1{2, while vpγq in solid line remains lower

than the level 1.25.

10
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Figure 1: Asymptotic variances V pγq of the LAWS estimator rξτn in dashed line, and vpγq of

the indirect estimator pξτn in solid line. From left to right, γ P p0, 1{2q and γ ă 0.3.

3.2 Extreme expectile estimation

We now discuss the important issue of estimating extreme tail expectiles ξτ 1n , where τ 1n Ñ 1

with np1 ´ τ 1nq Ñ c ă 8 as n Ñ 8. The basic idea is to extrapolate intermediate expectile

estimates of order τn Ñ 1, such that np1 ´ τnq Ñ 8, to the very extreme level τ 1n. This is

achieved by transferring the elegant device of Weissman (1978) for estimating an extreme

quantile to our expectile setup. Note that, in standard extreme-value theory and related

fields of application, the levels τ 1n and τn are typically set to be τ 1n “ 1 ´ pn for a pn not

greater than 1{n, and τn “ 1´ kpnq{n for an intermediate sequence of integers kpnq.

The model assumption of Pareto-type tails (3) means that Uptxq{Uptq Ñ xγ as t Ñ 8,

which, using (5), suggests that when τn and τ 1n satisfy suitable conditions, we may write:

qτ 1n
qτn

“
Upp1´ τ 1nq

´1q

Upp1´ τnq´1q
«

ˆ

1´ τ 1n
1´ τn

˙´γ

and thus
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

.

This approximation motivates the following class of plug-in estimators of ξτ 1n :

ξ
‹

τ 1n
” ξ

‹

τ 1n
pτnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγ

ξτn (9)

where pγ is an estimator of γ, and ξτn is either the estimator pξτn or rξτn of the intermediate ex-

pectile ξτn . We actually have ξ
‹

τ 1n
{ξτn “ pq‹τ 1n{pqτn , where pqτn “ Yn´tnp1´τnqu,n is the intermediate

quantile estimator introduced above, and pq‹τ 1n is the Weissman extreme quantile estimator

pq‹τ 1n ” pq‹τ 1npτnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγ

pqτn . (10)

11



We then show that p
ξ
‹

τ 1n

ξτ 1n
´1q has the same limit distribution as ppγ´γq with a different scaling.

Theorem 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1 and ρ ă 0, and that τn, τ 1n Ò 1, with np1 ´ τnq Ñ 8 and np1 ´ τ 1nq Ñ c ă 8. If

moreover
a

np1´ τnq

˜

ξτn
ξτn

´ 1

¸

d
ÝÑ ∆ and

a

np1´ τnqppγ ´ γq
d
ÝÑ Γ,

with
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1´τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1´

τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n

ξτ 1n
´ 1

¸

d
ÝÑ Γ.

More specifically, we can choose ξτn in (9) to be either the indirect intermediate expectile

estimator pξτn , the resulting extreme expectile estimator pξ‹τ 1n :“ ξ
‹

τ 1n
being

pξ‹τ 1n “

ˆ

1´ τ 1n
1´ τn

˙´pγ

pξτn “
`

pγ´1 ´ 1
˘´pγ

pq‹τ 1n , (11)

or we may choose ξτn to be the LAWS estimator rξτn , yielding the extreme expectile estimator

rξ‹τ 1n “

ˆ

1´ τ 1n
1´ τn

˙´pγ

rξτn , (12)

Their respective asymptotic properties are given in the next two corollaries of Theorem 3.

Corollary 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1 and ρ ă 0, and that τn, τ 1n Ò 1 with np1 ´ τnq Ñ 8 and np1 ´ τ 1nq Ñ c ă 8.

Assume further that
a

np1´ τnq

ˆ

pγ ´ γ,
pqτn
qτn

´ 1

˙

d
ÝÑ pΓ,Θq.

If
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1 ´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1 ´

τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

pξ‹τ 1n
ξτ 1n

´ 1

¸

d
ÝÑ Γ.

Corollary 4. Assume that FY is strictly increasing, there is δ ą 0 such that E|Y´|2`δ ă 8,

condition C2pγ, ρ, Aq holds with 0 ă γ ă 1{2 and ρ ă 0, and that τn, τ 1n Ò 1 with np1´τnq Ñ 8

and np1´ τ 1nq Ñ c ă 8. If in addition
a

np1´ τnqppγ ´ γq
d
ÝÑ Γ

and
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1´

τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

rξ‹τ 1n
ξτ 1n

´ 1

¸

d
ÝÑ Γ.
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4 Marginal expected shortfall

4.1 Setting and objective

With the recent financial crisis and the rising interconnection between financial institutions,

interest in the concept of systemic risk has grown. Acharya et al. (2012), Engle et al. (2015)

and Brownlees and Engle (2017) define systemic risk as the propensity of a financial insti-

tution to be undercapitalized when the financial system as a whole is undercapitalized. An

important step in constructing a systemic risk measure for a financial firm is to measure

the contribution of the firm to a systemic crisis, namely a major stock market decline that

happens once or twice a decade. The total risk measured by the expected capital short-

fall in the financial system during a systemic crisis is typically decomposed into firm level

contributions. Each financial firm’s contribution to systemic risk can then be measured as

its marginal expected shortfall (MES), i.e., the expected loss on the firm’s return X condi-

tional on the loss Y in the aggregated return of the financial market being extreme. More

specifically, the MES at probability level p1´ τq is defined as

QMESpτq “ EtX|Y ą qY,τu, τ P p0, 1q,

where qY,τ is the τth quantile of the distribution of Y . Typically, a systemic crisis defined

as an extreme tail event corresponds to a probability τ at an extremely high level that can

be even larger than p1 ´ 1{nq, where n is the sample size of historical data that are used

for estimating QMESpτq. The estimation procedure in Acharya et al. (2012) relies on daily

data from only one year and assumes a specific linear relationship between X and Y . A

nonparametric kernel estimation method has been performed in Engle et al. (2015) and

Brownlees and Engle (2017), but cannot handle extreme events required for systemic risk

measures (i.e. 1 ´ τ “ Op1{nq). Very recently, Cai et al. (2015) have proposed adapted

extreme-value tools for the estimation of QMESpτq without recourse to any parametric

structure on pX, Y q. Here, instead of the extreme τth quantile qY,τ , we shall explore the use

of the τth expectile analogue ξY,τ in the marginal expected shortfall

XMESpτq “ EtX|Y ą ξY,τu

at least for the following reason: as claimed by Newey and Powell (1987), Kuan et al.

(2009) and Sobotka and Kneib (2012) among others, expectiles make a more efficient use of

the available data since they rely on the distance of observations from the predictor, while

quantile estimation only knows whether an observation is below or above the predictor. It

would be awkward to measure extreme risk based only on the frequency of tail losses and

not on their values. An interesting asymptotic connection between XMESpτq and QMESpτq

is provided below in Proposition 2. The overall objective is to establish estimators of the

tail expectile-based MES and unravel their asymptotic behavior in a general setting.
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4.2 Tail dependence model

Suppose the random vector pX, Y q has a continuous bivariate distribution function FpX,Y q

and denote by FX and FY the marginal distribution functions of X and Y , assumed to be

increasing in what follows. Given that our goal is to estimate XMESpτq at an extreme level

τ , we adopt the same conditions as Cai et al. (2015) on the right-hand tail of X and on

the right-hand upper tail dependence of pX, Y q. Here, the right-hand upper tail dependence

between X and Y is described by the following joint convergence condition:

JCpRq For all px, yq P r0,8s2 such that at least x or y is finite, the limit

lim
tÑ8

tPpFXpXq ď x{t, F Y pY q ď y{tq “: Rpx, yq

exists, with Rp1, 1q ą 0. Here FX “ 1´ FX and F Y “ 1´ FY .

The limit function R completely determines the so-called tail dependence function ` [Drees

and Huang (1998)] via the identity `px, yq “ x` y´Rpx, yq for all x, y ě 0 [see also Beirlant

et al. (2004), Section 8.2]. Regarding the marginal distributions, we assume that X and Y

are heavy-tailed with respective tail indices γX , γY ą 0, or equivalently, for all z ą 0,

UXptzq

UXptq
Ñ zγX and

UY ptzq

UY ptq
Ñ zγY as tÑ 8,

with UX and UY being, respectively, the left-continuous inverse functions of 1{FX and 1{F Y .

Compared with the quantile-based MES framework in Cai et al. (2015), we need the extra

condition of heavy-tailedness of Y which is quite natural in the financial setting. Under

these regularity conditions, we get the following asymptotic approximations for XMESpτq.

Proposition 2. Suppose that condition J CpRq holds and that X and Y are heavy-tailed

with respective indices γX , γY P p0, 1q. Then

lim
τÒ1

XMESpτq

UXp1{F Y pξY,τ qq
“

ż 8

0

Rpx´1{γX , 1qdx (13)

and lim
τÒ1

XMESpτq

QMESpτq
“

`

γ´1Y ´ 1
˘´γX . (14)

The first convergence result indicates that XMESpτq is asymptotically equivalent to the

small exceedance probability UXp1{F Y pξY,τ qq up to a positive multiplicative constant. Since

as usual in the financial setting 0 ă γX , γY ă 1{2, the second result shows that XMESpτq

is less extreme than QMESpτq as τ Ñ 1. This is visualised in Figure 2 in the case of the

restriction of the standard bivariate Student tν-distribution to p0,8q2, having the density

fνpx, yq “
2

π

ˆ

1`
x2 ` y2

ν

˙´pν`2q{2

, x, y ą 0, (15)

where ν “ 3 on the left panel and ν “ 5 on the right panel. It can be seen that QMESpτq

becomes overall much more extreme than XMESpτq as τ approaches 1.
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Figure 2: QMESpτq in solid line and XMESpτq in dashed line, as functions of τ P r0.95, 1q.
Case of the Student tν-distribution on p0,8q2. Left: ν “ 3, right: ν “ 5.

4.3 Estimation and results

The asymptotic equivalences in Proposition 2 are of particular interest when it comes to

proposing estimators for the tail expectile-based MES. Two approaches will be distinguished.

We consider first asymmetric least squares estimation by making use of the asymptotic

equivalence (13). Subsequently we shall deal with a nonparametric estimator derived from

the asymptotic connection (14) with the tail quantile-based MES.

4.3.1 Asymmetric least squares estimation

On the basis of the limit (13) and then of the heavy-tailedness assumption on X, we have

for τ ă τ 1 ă 1 that, as τ Ñ 1,

XMESpτ 1q «
UXp1{F Y pξY,τ 1qq

UXp1{F Y pξY,τ qq
XMESpτq «

ˆ

F Y pξY,τ q

F Y pξY,τ 1q

˙γX

XMESpτq.

It follows then from Proposition 1 that

XMESpτ 1q «

ˆ

1´ τ 1

1´ τ

˙´γX

XMESpτq. (16)

Hence, to estimate XMESpτ 1q at an arbitrary extreme level τ 1 “ τ 1n, we first consider the

estimation of XMESpτq at an intermediate level τ “ τn, and then we use the extrapola-

tion technique of Weissman (1978). For estimating XMESpτnq “ EtX|Y ą ξY,τnu at an

intermediate level τn Ñ 1 such that np1´ τnq Ñ 8, as nÑ 8, we use the empirical version

ČXMESpτnq :“

řn
i“1Xi1ItXi ą 0, Yi ą rξY,τnu

řn
i“1 1ItYi ą rξY,τnu

,
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where rξY,τn is the LAWS estimator of ξY,τn . As a matter of fact, in actuarial settings, we

typically have a positive loss variable X, and hence 1ItXi ą 0u “ 1. When considering a

real-valued profit-loss variable X, the MES is mainly determined by high, and hence positive,

values of X as shown in Cai et al. (2015).

We shall show under general conditions that the estimator ČXMESpτnq is
a

np1´ τnq-

relatively consistent. By plugging this estimator into approximation (16) together with a
a

np1´ τnq-consistent estimator pγX of γX , we obtain the following estimator of XMESpτ 1nq:

ČXMES
‹

pτ 1nq ”
ČXMES

‹

pτ 1n; τnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγX
ČXMESpτnq. (17)

To determine the limit distribution of this estimator, we need to quantify the rate of con-

vergence in condition J CpRq as follows:

JC2pR, β, κq Condition J CpRq holds and there exist β ą γX and κ ă 0 such that

sup
xPp0,8q
yPr1{2,2s

ˇ

ˇ

ˇ

ˇ

tPpFXpXq ď x{t, F Y pY q ď y{tq ´Rpx, yq

minpxβ, 1q

ˇ

ˇ

ˇ

ˇ

“ Optκq as tÑ 8.

This is exactly condition (a) in Cai et al. (2015) under which an extrapolated estimator of

QMESpτ 1nq converges to a normal distribution. See also condition (7.2.8) in de Haan and

Ferreira (2006). We also need to assume that the tail quantile function UX (resp. UY )

satisfies the second-order condition C2pγX , ρX , AXq (resp. C2pγY , ρY , AY q). The following

generic theorem gives the asymptotic distribution of ČXMES
‹

pτ 1nq. The asymptotic normality

follows by using for example the Hill estimator pγX of the tail index γX .

Theorem 4. Suppose that condition J C2pR, β, κq holds, that there is δ ą 0 such that

E|Y´|2`δ ă 8, and that UX and UY satisfy conditions C2pγX , ρX , AXq and C2pγY , ρY , AY q
with γX , γY P p0, 1{2q and ρX ă 0. Assume further that

(i) τn, τ 1n Ò 1, with np1´ τnq Ñ 8, np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´

τ 1nqs Ñ 8 as nÑ 8;

(ii) 1´ τn “ Opnα´1q for some α ă min

ˆ

´2κ

´2κ` 1
,

2γXρX
2γXρX ` ρX ´ 1

˙

;

(iii) The bias conditions
a

np1´ τnqq
´1
Y,τn

Ñ λ1 P R,
a

np1´ τnqAXpp1 ´ τnq
´1q Ñ λ2 P R

and
a

np1´ τnqAY pp1´ τnq
´1q Ñ λ3 P R hold;

(iv)
a

np1´ τnqppγX ´ γXq
d
ÝÑ Γ.

Then, if X ą 0 almost surely, we have that

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ČXMES
‹

pτ 1nq

XMESpτ 1nq
´ 1

¸

d
ÝÑ Γ.
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This convergence remains still valid if X P R provided

(v) E|X´|1{γX ă 8; (18)

(vi) np1´ τnq “ o
`

p1´ τ 1nq
2κp1´γXq

˘

as nÑ 8. (19)

Let us point out here that condition (ii), which also appears in Theorem 1 of Cai et al.

(2015), is a strengthening of the condition 1 ´ τn “ op1q. It essentially allows to control

additional bias terms that appear in conditions J C2pR, β, κq and C2pγX , ρX , AXq. Condition

(vi), which is also utilized in Cai et al. (2015), is another bias condition that makes it

possible to control the bias coming from the left tail of X.

4.3.2 Estimation based on tail QMES

On the basis of the limit (14), we consider the alternative estimator

{XMES
‹

pτ 1nq :“
`

pγ´1Y ´ 1
˘´pγX

{QMES
‹

pτ 1nq, (20)

where pγX , pγY and {QMES
‹

pτ 1nq are suitable estimators of γX , γY and QMESpτ 1nq, respectively.

Here, we use the Weissman-type device

{QMES
‹

pτ 1nq “

ˆ

1´ τ 1n
1´ τn

˙´pγX
{QMESpτnq (21)

of Cai et al. (2015) to estimate QMESpτ 1nq, where

{QMESpτnq “
1

tnp1´ τnqu

n
ÿ

i“1

Xi1ItXi ą 0, Yi ą pqY,τnu,

with pqY,τn :“ Yn´tnp1´τnqu,n being an intermediate quantile-VaR. As a matter of fact, Cai et

al. (2015) have suggested the use of two intermediate sequences in pγX and {QMESpτnq to

be chosen in two steps in practice. To ease the presentation, we use the same intermediate

sequence τn in both pγX and {QMESpτnq. Next, we derive the asymptotic distribution of the

new estimator {XMES
‹

pτ 1nq.

Theorem 5. Suppose that condition J C2pR, β, κq holds, and UX and UY satisfy conditions

C2pγX , ρX , AXq and C2pγY , ρY , AY q with γX P p0, 1{2q and ρX ă 0. Assume further that

(i) τn, τ 1n Ò 1, with np1´ τnq Ñ 8, np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´

τ 1nqs Ñ 8 as nÑ 8;

(ii) 1´ τn “ Opnα´1q for some α ă min

ˆ

´2κ

´2κ` 1
,

2γXρX
2γXρX ` ρX ´ 1

˙

;

(iii) The bias conditions
a

np1´ τnqq
´1
Y,τn

Ñ λ P R and
a

np1´ τnqAXpp1 ´ τnq
´1q Ñ 0

hold;
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(iv)
a

np1´ τnqppγX ´ γXq
d
ÝÑ Γ and

a

np1´ τnqppγY ´ γY q “ OPp1q.

Then, if X ą 0 almost surely, we have that
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

{XMES
‹

pτ 1nq

XMESpτ 1nq
´ 1

¸

d
ÝÑ Γ.

This convergence remains still valid if X P R provided that (18) and (19) hold.

5 Extreme expectile level selection

An important question that remains to be addressed is the choice of the extreme expectile

level τ 1n in the instruments of risk protection ξτ 1n and XMESpτ 1nq.

In the case of quantile-based risk measures qαn and QMESpαnq, it is customary to choose

tail probabilities αn Ñ 1 with np1 ´ αnq Ñ c, a finite constant, as the sample size n Ñ 8,

to allow for more ‘prudent’ risk management. In response to the many turbulent episodes

that have been experienced by financial markets during the last few decades, academics are

nowadays more interested in once-in-a-decade or twice-per-decade events (see, e.g., Cai et

al., 2015 and Brownlees and Engle, 2017). In the case of expectiles, we propose to select

τ 1n so that each expectile-based risk measure has the same intuitive interpretation as its

quantile-based analogue. This translates into choosing τ 1n such that ξτ 1n ” qαn for a given

relative frequency αn. Bellini and Di Bernardino (2017) have already suggested to pick out

τ 1n which satisfies ξτ 1n ” qαn , but for a normally distributed Y . Here, we wish to extend this

elegant device to a general random variable Y without any a priori specification.

Thanks to the connection (2), it is immediate from ξτ 1n ” qαn that τ 1npαnq :“ τ 1n satisfies

1´ τ 1npαnq “
E t|Y ´ qαn | 1I pY ą qαnqu

E |Y ´ qαn |
.

As a matter of fact, under the model assumption of Pareto-type tails, it turns out that the

expectile level τ 1npαnq depends asymptotically only on the quantile level αn and on the tail

index γ, but not on the quantile qαn itself.

Proposition 3. Suppose FY satisfies (3) with 0 ă γ ă 1. Then

1´ τ 1npαnq „ p1´ αnq
γ

1´ γ
, as nÑ 8.

Hence, by substituting the estimated value

pτ 1npαnq “ 1´ p1´ αnq
pγ

1´ pγ
(22)

in place of τ 1n, both extreme expectile estimators pξ‹τ 1n in (11) and rξ‹τ 1n in (12) estimate the

same Value at Risk ξτ 1npαnq ” qαn as the Weissman quantile estimator pq‹αn in (10). It is easily
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seen that the latter estimator is actually identical to the indirect expectile estimator pξ‹
pτ 1npαnq

.

Indeed, we have in view of (10), (11) and (22) that

pξ‹
pτ 1npαnq

“
`

pγ´1 ´ 1
˘´pγ

ˆ

1´ pτ 1npαnq

1´ τn

˙´pγ

pqτn “ pq‹αn .

This quantile-based estimator pq‹αn ”
pξ‹
pτ 1npαnq

may be criticized for its reliance on a single

order statistic pqτn “ Yn´tnp1´τnqu,n, and hence because it may not respond properly to the

very extreme losses. By contrast, the direct expectile-based estimator rξ‹
pτ 1npαnq

relies on the

asymmetric least squares estimator rξτn , and hence bears much better the burden of rep-

resenting a sensitive risk measure to the magnitude of infrequent catastrophic losses. The

next result shows that the asymptotic behavior of the original extrapolated estimators pξ‹τ 1n
and rξ‹τ 1n , established in Corollaries 3 and 4, remains still valid for the resulting composite

estimators pξ‹
pτ 1npαnq

and rξ‹
pτ 1npαnq

, under the same technical conditions.

Theorem 6. (i) Suppose the conditions of Corollary 3 hold with αn in place of τ 1n. Then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

pξ‹
pτ 1npαnq

qαn
´ 1

¸

d
ÝÑ Γ.

(ii) Suppose the conditions of Corollary 4 hold with αn in place of τ 1n. Then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

rξ‹
pτ 1npαnq

qαn
´ 1

¸

d
ÝÑ Γ.

Let us now turn to ČXMES
‹

ppτ 1npαnqq in (17) and {XMES
‹

ppτ 1npαnqq in (20) that estimate

the same marginal expected shortfall XMESpτ 1npαnqq ” QMESpαnq as Cai et al. (2015)’s

estimator {QMES
‹

pαnq defined in (21). Actually, {XMES
‹

ppτ 1npαnqq is nothing but {QMES
‹

pαnq.

Theorem 7. (i) Suppose the conditions of Theorem 4 hold with αn in place of τ 1n. Then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

ČXMES
‹

ppτ 1npαnqq

QMESpαnq
´ 1

¸

d
ÝÑ Γ.

(ii) Suppose the conditions of Theorem 5 hold with αn in place of τ 1n. Then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

{XMES
‹

ppτ 1npαnqq

QMESpαnq
´ 1

¸

d
ÝÑ Γ.

6 Simulation study

The aim of this section is to highlight some of the theoretical findings with numerical simula-

tions. We will briefly touch on the presented tail expectile estimators in Section 6.1 and tail
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XMES estimators in Section 6.2. Both sections provide Monte-Carlo evidence that the direct

estimation method is more efficient relative to the indirect method in the case of real-valued

profit-loss variables, whereas the rival indirect method tends to be the winner in the case of

non-negative loss distributions. The latter method seems to be also superior in the case of

extremely heavy tails.

6.1 Expectile-based VaR

To evaluate the finite-sample performance of the extreme expectile estimators rξ‹τ 1n ”
rξ‹τ 1npτnq

and pξ‹τ 1n ”
pξ‹τ 1npτnq, we have considered simulated samples from the Student tν-distribution

pν “ 3, 5, 7, 9q, which corresponds to real-valued profit-loss variables, and from the marginal

of the bivariate Student tν-distribution described in (15), which corresponds to non-negative

loss variables. We shall refer to this marginal distribution on p0,8q as ‘positive Student

tν-distribution’. We used in all our simulations the Hill estimator of γ, the extreme level

τ 1n “ 0.995 for n “ 100 and τ 1n “ 0.9994 for n “ 1000, and the intermediate levels τn “ 1´ k
n
,

where the integer k can actually be viewed as the effective sample size for tail extrapolation.

We only present here the results for n “ 1000 and ν P t3, 5u, a full comparison including

additional results for optimal k is given in Supplement A.1.

In the case of Student t-distributions, Figure 3 gives the root Mean-Squared Error (MSE)

in top panels and bias estimates in bottom panels, computed over 10, 000 replications for

samples of size 1000. Each figure displays the evolution of the obtained Monte-Carlo results,

for the two normalized estimators rξ‹τ 1npkq{ξτ 1n and pξ‹τ 1npkq{ξτ 1n , as functions of the effective

sample size k. Our tentative conclusion is that the accuracy of the direct estimator rξ‹τ 1n is quite

respectable relative to the indirect estimator pξ‹τ 1n . Our experience with other simulated data

indicates, however, that the direct estimator is no longer the winner in the case of extremely

heavy-tailed distributions such as, for instance, Student tν-distributions with 1 ă ν ď 2.

The resulting Monte-Carlo estimates in the case of positive Student distributions, dis-

played in Figure 4, indicate that the indirect estimator pξ‹τ 1n is superior to the direct estimator
rξ‹τ 1n : the use of the Pareto distribution FY pyq “ 1 ´ y´1{γ, y ą 1, and of the Fréchet dis-

tribution FY pyq “ e´y
´1{γ

, y ą 0, lead to the same conclusion. It may also be seen in

both Student and positive Student scenarios that most of the error is due to variance, the

squared bias being much smaller in all cases. This may be explained by the sensitivity of

high expectiles to the magnitude of heavy tails, since they are based on “squared” error loss

minimization. It is interesting that in almost all cases the bias was positive.

We also investigate the normality of the estimators pξ‹τ 1n and rξ‹τ 1n in Supplement A.2, where

the Q–Q-plots indicate that the limit Theorem 3 and its Corollaries 3 and 4 provide adequate

approximations for finite sample sizes.
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Figure 3: Root MSE estimates (top panels) and Bias estimates (bottom panels) of rξ‹τ 1npkq{ξτ 1n
(solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k, for the t3 and t5-distributions,
respectively, from left to right.
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Figure 4: As before—Results for the positive Student t3 and t5-distributions.

6.2 Expectile-based MES

Here, we compare the composite estimators ČXMES
‹

ppτ 1npαnqq and {XMES
‹

ppτ 1npαnqq that es-

timate the same MES, XMESpτ 1npαnqq ” QMESpαnq, as the Cai et al. (2015) estimator
{QMES

‹

pαnq. The latter is actually identical to the indirect estimator {XMES
‹

ppτ 1npαnqq. All

the experiments have sample size n “ 1000 and extreme level αn “ 0.9994.
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To investigate the finite sample performance of the two rival estimators ČXMES
‹

ppτ 1npαnqq

and {XMES
‹

ppτ 1npαnqq, the simulation experiments first employ the Student tν-distribution on

p0,8q2 with density fνpx, yq described in (15). It can be shown that this distribution satisfies

the conditions J C2pR, β, κq and C2pγX , ρX , AXq of Theorems 4 and 5 (see Cai et al., 2015,

for the case ν “ 3). Other motivating examples of distributions that satisfy these conditions

can also be found in Section 3 of Cai et al. (2015). All the experiments have ν P t3, 5, 7, 9u.

As they point towards the same conclusions, we only present the results for ν “ 3, 5. For

the choice of the intermediate level τn, we used the same considerations as in Section 6.1.

In Figure 5 we present the root-MSE (top panels) and bias estimates (bottom panels)

computed over 10, 000 simulated samples. Each picture displays the evolution of the obtained

Monte-Carlo results, for the two normalized estimators ČXMES
‹

ppτ 1npαnqq{XMESpτ 1npαnqq and
{XMES

‹

ppτ 1npαnqq{XMESpτ 1npαnqq, as functions of the effective sample size k. We observe that

the latter indirect estimator is clearly the winner in all cases in terms of both root-MSE and

bias. As can also be seen in Supplement A.2, the limit Theorems 4 and 5 provide adequate

approximations for finite sample sizes, with a slight advantage for {XMES
‹

ppτ 1npαnqq.
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Figure 5: Root MSE estimates (top panels) and Bias estimates (bottom panels) of
ČXMES

‹

{XMES (solid line) and {XMES
‹

{XMES (dashed line), as functions of k, for the
bivariate t3 and t5-distributions on p0,8q2, respectively, from left to right.

To illustrate the case of real-valued profit-loss random variables, we consider a trans-

formed Student tν-distribution on the whole of the plane R2 defined as

pX, Y q “
´

Z
ν{4
1 1IpZ1 ě 0q ´ p´Z1q

ν{81IpZ1 ă 0q, Z2

¯

,

where pZ1, Z2q is a random pair having a standard Student tν-distribution on R2, namely,

with density p2πq´1 p1` px2 ` y2q {νq
´pν`2q{2

on R2. Built on this standard bivariate dis-
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tribution, the basic idea is to generate in a simple way a sample of data which is neither

concentrated on the positive quadrant nor isotropic, and whose marginal tail behavior is

straightforward to evaluate. The resulting Monte-Carlo estimates for ν P t3, 5u, displayed

in Figure 6, indicate that ČXMES
‹

ppτ 1npαnqq is more efficient relative to {XMES
‹

ppτ 1npαnqq. This

superiority of the direct estimator is, however, no longer valid in the case of extremely heavy

tails such as, for instance, ν “ 2 and the transformed Cauchy distribution considered in Cai

et al. (2015).
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Figure 6: As before—Results for the transformed t3 and t5-distributions on R2.

7 Applications

In this section, we apply our estimation methods to first estimate the tail VaR for the Society

of Actuaries (SOA) Group Medical Insurance Large Claims, and then to estimate the tail

MES for three large investment banks in the USA.

7.1 VaR for medical insurance data

The SOA Group Medical Insurance Large Claims Database records all the claim amounts

exceeding 25,000 USD over the period 1991-92. As in Beirlant et al. (2004), we only deal

here with the 75,789 claims for 1991. The histogram and scatterplot shown in Figure 7 (a)

give evidence of an important right-skewness. Insurance companies are then interested in

estimating the worst tail value of the corresponding loss severity distribution. One way

of measuring this value at risk is by considering the Weissman quantile estimate pq‹αn “

Yn´k,n

´

k
npn

¯

pγH
as described in (10), where pγH is the Hill estimator defined in (6), with
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αn “ 1´ pn and τn “ 1´ k
n
. According to the earlier study of Beirlant et al. (2004, p.123),

insurers typically are interested in pn “
1

100,000
« 1

n
for these medical insurance data, that is,

in an estimate of the claim amount that will be exceeded (on average) only once in 100,000

cases. Similar recent studies in the context of the backtesting problem, which is crucial in

the current Basel III regulatory framework, are Chavez-Demoulin et al. (2014) and Gong

et al. (2015), who estimate quantiles exceeded on average once every 100 cases with sample

sizes of the order of hundreds. Figure 7 (b) shows the quantile-VaR estimates pq‹αn against the

sample fraction k (solid line). A commonly used heuristic approach for selecting a pointwise

estimate is to pick out a value of k corresponding to the first stable part of the plot [see,

e.g., Section 3 in de Haan and Ferreira (2006)]. Here, a stable region appears for k from

150 up to 500, leading to an estimate between 3.73 and 4.12 million. This estimate does not

exceed the sample maximum Yn,n “ 4, 518, 420 (indicated by the horizontal line), which is

consistent with the earlier analysis of Beirlant et al. (2004, p.125 and p.159).
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Figure 7: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the log-claim

amounts. (b) The VaR plots tpk, rξ‹
pτ 1npαnq

pkqquk in dashed line and tpk, pq‹αnpkqquk in solid line,
along with the sample maximum Yn,n in horizontal line.

The alternative expectile-based estimator rξ‹
pτ 1npαnq

introduced in Section 5, which estimates

the same VaR qαn ” ξτ 1npαnq as the quantile-based estimator pq‹αn ”
pξ‹
pτ 1npαnq

, is also graphed in

Figure 7 (b) in dashed line. As an asymmetric-least-squares estimator, it is more affected

by the infrequent great claim amounts visualized in the top figure. Its plot indicates a more
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conservative risk measure between 3.92 and 4.33 million, over the stable region k P r150, 500s.

7.2 MES of three large US financial institutions

We consider the same investment banks as in the studies of Cai et al. (2015) and Brownlees

and Engle (2017), namely Goldman Sachs, Morgan Stanley and T. Rowe Price. For the

three banks, the dataset consists of the loss returns, i.e., the negative log-returns pXiq

on their equity prices at a daily frequency from July 3rd, 2000, to June 30th, 2010. We

follow the same set-up as in Cai et al. (2015) to extract, for the same time period, daily

loss returns pYiq of a value-weighted market index aggregating three markets: the New

York Stock Exchange, American Express Stock Exchange and the National Association of

Securities Dealers Automated Quotation system.

Cai et al. (2015) used {QMES
‹

pαnq, as defined in (21), to estimate the quantile-based

MES, QMESpαnq “ EtX|Y ą qY,αnu, where αn “ 1 ´ 1
n
“ 1 ´ 1

2513
, with two intermediate

sequences involved in pγX and {QMESpτnq to be chosen in two steps. Instead, we use our

expectile-based method to estimate QMESpαnq ” XMESpτ 1npαnqq “ EtX|Y ą ξY,τ 1npαnqu,

with the same extreme relative frequency αn that corresponds to a once-per-decade systemic

event. We employ the rival estimator {QMES
‹

pαnq with the same intermediate sequence

τn “ 1 ´ k
n

in both pγX and {QMESpτnq. The conditions required by the procedure were

already checked empirically in Cai et al. (2015). It only remains to verify that γY ă
1
2

as

it is the case for γX . This assumption is confirmed by the plot of the Hill estimates of γY

against the sample fraction k (dashed line) in Figure 8 (a). Indeed, the first stable region

appears for k P r70, 100s with an averaged estimate pγY “ 0.35. Hence, by Proposition 2, the

estimates {XMES
‹

pαnq and ČXMES
‹

pαnq are expected to be less extreme than the benchmark

values {QMES
‹

pαnq. This is visualised in Figure 15 in the supplement to this article, where

the three estimates are graphed as functions of k for each bank. As a matter of fact, both
{XMES

‹

pαnq and ČXMES
‹

pαnq estimate the less extreme risk measure XMESpαnq and not the

desired intuitive tail measure XMESpτ 1npαnqq ” QMESpαnq.

The interest here is rather on the composite estimators {XMES
‹

ppτ 1npαnqq and ČXMES
‹

ppτ 1npαnqq,

where {XMES
‹

ppτ 1npαnqq is actually nothing but {QMES
‹

pαnq. The two rival estimates {QMES
‹

pαnq

and ČXMES
‹

ppτ 1npαnqq represent the average daily loss return for a once-per-decade market cri-

sis. They are graphed in Figure 8 (b)-(d) as functions of k for each bank: (b) Goldman Sachs;

(c) Morgan Stanley; (d) T. Rowe Price. The first stable regions of the plots (b)-(d) appear,

respectively, for k P r80, 105s, k P r90, 140s and k P r75, 100s. The final estimates based

on averaging the estimates from these stable regions are reported in the left-hand side of

Table 1, along with the asymptotic 95% confidence intervals derived from Theorem 7 with

the bias condition λ2 “ 0 (the asymptotic distribution then being N p0, γ2Xq due to the use

of the Hill estimator of γX , see the discussion below Theorem 1). It may be seen that
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both expectile- and quantile-based MES levels for Goldman Sachs and T. Rowe Price are

almost equal. However, the MES levels for Morgan Stanley are largely higher than those for

Goldman Sachs and T. Rowe Price. It may also be noted that the estimates {QMES
‹

pαnq,

obtained here with a single intermediate sequence, are slightly smaller than those obtained in

Table 1 of Cai et al. (2015) by using two intermediate sequences. Also, these quantile-based

estimates appear to be less conservative than our asymmetric least squares-based estimates,

but not by much: this minor difference can already be visualized in Figure 8 (b)-(d), where

the plots of {QMES
‹

pαnq, in dashed line, and ČXMES
‹

ppτ 1npαnqq, in solid line, exhibit a very

similar evolution for the three banks.

Daily loss

Bank ČXMES
‹

ppτ 1npαnqq {QMES
‹

pαnq

Goldman Sachs 0.3123 (0.20,0.42) 0.3077 (0.19,0.41)
Morgan Stanley 0.5622 (0.34,0.78) 0.5552 (0.33,0.77)
T. Rowe Price 0.3308 (0.25,0.52) 0.3098 (0.23,0.50)

Weekly loss
ČXMES

‹

ppτ 1npαnqq {QMES
‹

pαnq

0.3423 (0.17,0.51) 0.3375 (0.16,0.50)
0.6495 (0.26,1.03) 0.6641 (0.26,1.05)
0.3407 (0.19,0.48) 0.3405 (0.19,0.48)

Table 1: Expectile- and quantile-based MES of the three investment banks. The second and
third columns report the results based on daily loss returns (n “ 2513 and αn “ 1´ 1

n
). The

last two columns report the results based on weekly loss returns from the same sample period
(n “ 522 and αn “ 1´ 1

n
). Each MES estimate is followed by the 95% confidence interval.

In our theoretical results we do not enter into the important question of serial dependence.

We only consider independent and identically distributed random vectors pX1, Y1q, . . . , pXn, Ynq.

One way to reduce substantially the potential serial dependence in this application is by us-

ing lower frequency data. As suggested by Cai et al. (2015), we choose weekly loss returns in

the same sample period. This results in a sample of size n “ 522. The estimates of γY and

QMESpαnq ” XMESpτ 1npαnqq, with αn “ 1´ 1
n
, are displayed in Figure 16 of the supplement

to this article as functions of k. The averaged estimate pγY “ 0.37 is obtained from the

first stable region k P r25, 35s of the plot (a). The first stable regions of the plots (b)-(d)

appear, respectively, for k P r27, 36s, k P r23, 33s and k P r25, 33s. The final results based

on averaging the estimates from these stable regions are reported in the right-hand side of

Table 1. They are very similar to those obtained in Cai et al. (2015) by resorting to two

intermediate sequences. Both expectile- and quantile-based MES estimates are qualitatively

robust to the change from daily to weekly data: they are still almost equal for Goldman

Sachs and T. Rowe Price, while almost twice higher for Morgan Stanley.

There remains a lot to be done, especially on the extension of our expectile-based methods

to a time dynamic setting. Already, Taylor (2008) and Kuan et al. (2009) have initiated

the use of expectiles to estimate VaR and ES in conditional autoregressive expectile models.

The use of expectiles to estimate MES may also work by allowing for dynamics in the

covariance matrix via a multivariate GARCH model, similarly to the quantile-based method
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Figure 8: (a) Hill estimates pγY based on daily loss returns of market index (dashed), along
with pγX based on daily loss returns of Goldman Sachs (solid), Morgan Stanley (dashed-

dotted), and T. Rowe Price (dotted). (b)-(d) The estimates {QMES
‹

pαnq in dashed line and
ČXMES

‹

ppτ 1npαnqq in solid line for the three banks, with n “ 2513 and αn “ 1´ 1{n.

of Brownlees and Engle (2017). From the perspective of extreme values, one way to deal

with the heteroskedasticity present in series of financial returns, similarly to Diebold et
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al. (2000), McNeil and Frey (2000) and McNeil et al. (2005, p. 283), is by applying our

method to residuals standardized by GARCH conditional volatility estimates. Also, similarly

to extreme value analysis under mixing conditions in a univariate setting (see e.g. Drees,

2000), our theorems may work under serial dependence with enlarged asymptotic variances.
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