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Further simulation results are discussed in Section A. The proofs of all theoretical results
in the main paper and additional technical results are provided in Section B.

A Additional simulations

The aim of this section is to explore some additional features that were briefly mentioned in
Section 7. We will illustrate the following points:

(A.1) Bias and MSE estimates.
(A.2) Forecast verification and validation.
(A.3) Quality of asymptotic approximations.

Let us first comment on some implementation details. We used in all our simulations
the Hill estimator of +, the extreme level 77 = 0.995 for n = 100 and 7, = 0.9994 for
n = 1000. The corresponding true extreme expectiles { can be calculated by the existing
function “et(7),df)” in the R package ‘expectreg’. In what concerns the intermediate levels 7,
involved in both estimators E;T,l = E;T,L (7,,) and g;;l = 5;7,1 (7,,), we used the same considerations
as in Ferreira et al. (2003). Namely, they always considered 7,, = 1 — % with the range of
intermediate integers k, say, from log(n!=¢) to n/log(n'~¢), where ¢ = 0.1 [this restriction
allows to reject too small values or those very near n'~¢]. The value k can actually be viewed
as the effective sample size for tail extrapolation. A larger k£ leads to estimators with more
bias, while smaller & results in higher variance.

A.1 Bias and MSE estimates

Figures 1 and 2 (respectively, Figures 3 and 4) give the root-MSE estimates computed
over 10,000 replications for samples of size 100 and 1000 simulated from the Student’s
(respectively, truncated Student’s) t-models, while Figures 5 and 6 (respectively, Figures 7
and 8) give the bias estimates for the same models. Each figure displays the evolution of the
obtained Monte-Carlo results, for the two normalized estimators 5;, (k)/& and {A;, (k)/&,
as functions of the sample fraction k. Tables 1 and 2 report the root-MSE and bias estimates
obtained by using for each estimator the optimal value of £ minimizing its MSE.

As regards the Student distributions which correspond to real-valued profit-loss variables,
our tentative conclusion from Figures 1-2 and Figures 5-6 is that the indirect estimator £*,
has a harder time with small samples, and this can be compensated by taking larger samplesn.
Indeed, for n = 100, the direct estimator & performs better than &7, in terms of both MSE
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Figure 1: Root MSE estimates of g;,L(k:)/&;l (solid line) and g;&(k:)/fﬂ (dashed line), as
functions of k, for the ts, ts, t7 and to-distributions, respectively, from top to bottom and

from left to right. Results for the sample size n = 100.

and bias, whatever the thickness of the tails. Also, in contrast to the direct estimator’s plot,
the indirect one exhibits more volatility. In what concerns n = 1000, it seems that & is
superior to E;;L only in terms of MSE for slightly heavy tails (i.e. df = 7,9), whereas the
accuracy of 8;7,1 is more respectable for heavier tails (i.e. df = 3,5), as can be seen from
Table 1. It should be, however, clear that even in the favorable case to 5;7,“ where n = 1000
and df € {7,9}, the estimator 5;7,1 has actually almost overall a smaller MSE except for a
very small zone of values of k, as can be seen from Figure 2 (bottom panels). Due to the
tightness of that zone, the detection of the optimal & which minimizes the MSE of £, is

hard to manage in practice.

By contrast, in the case of the truncated Student distributions which correspond to non-
negative loss variables, it can be seen from Figures 3-4 and Figures 7-8 as well as Table 2
that the indirect estimator &, is superior to the direct estimator £, in all scenarios except
for the single case n = 100 and df = 3. We repeated this kind of exercise with the Fréchet
distribution F(y) = ¢¥""", y > 0, and Pareto distribution F(y) = 1 —y 7, y > 1, and

arrived at the same tentative conclusion.
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Figure 2: As before—Results for the sample size n = 1000.

It may also be seen that most of the error is due to variance, the squared bias being much
smaller in all cases. It is interesting that in almost all cases the bias was positive. This may
be explained by the sensitivity of high expectiles to the magnitude of heavy tails, since they
are based on “squared” error loss minimization.

n = 100 n = 1000
RMSE BIAS RMSE BIAS
df || & & S i & | & & | &

1.5010 | 47.9486 0.4888 | 1.7107
0.5963 2.9132 0.1253 | 0.4139
0.4385 0.8001 0.0797 | 0.2486
0.3753 0.6200 0.0579 | 0.1685

0.4809 | 0.5403 0.2080 | 0.2599
0.2867 | 0.2981 0.0816 | 0.1088
0.2172 | 0.2119 0.0666 | 0.0629
0.1908 | 0.1781 0.0271 | 0.0440
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Table 1:  Monte-Carlo results obtained for the Student ts, ts, t; and to-distributions, using
the optimal sample fraction k minimizing the MSE of each estimator.

A.2 Forecast verification and validation

Another way of validating the presented estimation procedures for the extreme risk measure
& on historical data is by using the elicitability property of expectiles as pointed out in
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Figure 3: Root MSE estimates of g;,L(k:)/&;l (solid line) and g;&(k:)/fﬂ (dashed line), as
functions of k, for the truncated Student ts, t5, t; and to-distributions, respectively, from top
to bottom and from left to right. Results for the sample size n = 100.

n = 100 n = 1000
RMSE BIAS RMSE BIAS
i & 5 5, 5 il e, 5, 5 5

0.5089 | 0.4023 0.2810 | 0.1932
0.3016 | 0.2297 0.1269 | 0.0697
0.2219 | 0.1639 0.0800 | 0.0280
0.1934 | 0.1393 0.0742 | 0.0107

0.9848 | 1.0833 0.4923 | 0.4423
0.5762 | 0.5511 0.2098 | 0.1959
0.4122 | 0.3786 0.1392 | 0.0685
0.3509 | 0.3033 0.1181 | 0.0315
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Table 2: Monte-Carlo results obtained for the truncated Student tz, ts, t; and tg-
distributions, using the optimal sample fraction k minimizing the MSE of each estimator.

Section 1. Following the ideas of Gneiting (2011), the competing estimates E;, and 5;, can
be compared from a forecasting perspective by means of the consistent loss function

LT,’L : (§7T) — LT;L(&T> = 777,@(7” - g)

which represents the penalty when the point forecast € € R is issued and the observation r € R
materializes, with 7,/ (y) = |7}, — I{y < 0}|y* being the expectile check function. For a given

simulated series of size N = 1500, the estimates g;é(k) and g;é(k‘) are computed on rolling
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Figure 4: As before—Results for the sample size n = 1000.

windows of length n = 1000, for each sample fraction k. This corresponds toT = N—n = 500
forecast cases with corresponding point forecasts <£§m)(k’), e ,éﬁm)(l{:)) and realizing
1

—

observations (rq,...,rr), where &(k) = E;, (k) and £ (k) = 5;, (k) for each t = 1,...,T.
The two competing forecast procedures can be ranked by computing their realized losses

gy~ LN (m)
£7’,{1 (k) = ?;Lnﬁ (51& (k)>rt) s
for each m = 1,2, and each sample fraction k (the lower the better). Figures 9 and 10 display
the averages of the two realized losses computed over 200 simulated series from, respectively,
the Student and truncated Student ¢3, t5, t7 and tg-distributions. In Figure 11 we considered
200 simulated series from a Garch(1,1) model with Student ¢ innovations [more sophisticated
econometric models for expectiles have been pursued in Taylor (2008), Kuan et al. (2009)
and De Rossi and Harvey (2009)]. The resulting average values of the realized loss seem
to favor the direct forecaster 5;7,1 in the case of Student t-distributions (Figures 9 and 11),

while they tend to prefer the rival indirect forecaster E;‘, in the case of truncated Student
t-distributions (Figure 10).
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Figure 5: Bias estimates of g;é(k:)/ﬁ}é (solid line) and g;k(k)/fﬂb (dashed line), as functions
of k, for the t3, t5, t7 and tg-distributions, respectively, from top to bottom and from left to
right. Results for the sample size n = 100.

A.3 Quality of asymptotic approximations

We first investigate the normality of the estimators E;, and E;,. The asymptotic nor-
mality of E;, /& in Corollary 3 can be expressed as r, log(gj, /&) 4, I, with r, =

W. Likewise, the asymptotic normality of 2“;,L /& in Corollary 4 can be expressed

as Ty, IOg(g;;L/éT;L) ~%, I'. The limit distribution I' of the Hill estimator is N'(A2/(1 — p),~2),
as pointed out below Theorem 1. It can be shown that the Student ¢, distributions satisfy
the conditions of the two corollaries, with v = 1/v, p = —2/v and

v+1l, 2 ((v + 1)/2)pv=1/2
Alt) ~ g (@t) ™ e = =

Hence, we can compare the distributions of Wn = [rn log(gja/fﬁl) — /(1 — p)] /v and
W, = [rn log (€%, /1) — Aa/(1 — ,0)] J with the limit distribution A’(0, 1), with Ay = VEA(%).
The Q—Q-plots in Figures 12 and 13 present, respectively, the sample quantiles of Wn and
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Figure 6: As before—Results for the sample size n = 1000.

Wn, based on 10,000 simulated samples of size n = 1000, versus the theoretical standard
normal quantiles. For each estimator, we used the optimal value of k& that minimizes its
MSE as in Table 1. It may be seen that the scatters for the Student ¢, distributions, with
v = 3,5,7,9 displayed respectively from top to bottom and from left to right, are quite
encouraging especially for the LAWS estimator £, (Figure 13). Likewise, we conclude from
the scatters for the truncated Student t, distributnions, displayed in Figures 14 and 15, that
the limit Theorem 3 and its Corollaries 3 and 4 provide adequate approximations for finite
sample sizes.

Next, we investigate the normality of the estimators Xfl\TE/S*(T,’L) and m*(ﬂ/) by
comparing the distributions of W, := [rn log <XME¥S*/XMES(TT’1)) — Xo/(1— px)] /vx and

—~

W, = [rn log (}EMES /XMES(T;)) ~ /(1 — px)] J~x with the limit distribution A/(0, 1),
where 7, = Vk/log[k/n(1 — /)] and Ay = VkAx(n/k). The scatters in Figures 16 and 17

present, respectively, the sample quantiles of W,, and VIN/n, based on 10, 000 simulated samples
of size n = 1000, versus the theoretical standard normal quantiles. For each estimator,
we used the optimal value of k£ that minimizes its MSE. The obtained Q-Q-plots for the
Student ¢,-distributions on (0,0)?, with v = 3,5,7,9, indicate that the limit Theorems 4
and 5 provide adequate approximations for finite sample sizes, with a slight advantage for
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Figure 7: Bias estimates of g;h(k:)/fﬁ (solid line) and g;k(k)/f% (dashed line), as functions
of k, for the truncated Student t3, t5, t; and tg-distributions, respectively, from top to bottom
and from left to right. Results for the sample size n = 100.

the estimator m*(ﬂ) in Figure 16.

n

B Proofs

For notational simplicity, let F = Fy be the survival function of Y. It is a consequence of
Theorem 2.3.9 in de Haan and Ferreira (2006, p.48) that condition Cy(v,p, A) entails the
following second-order condition for the related survival function F

. im 1 F(tzx) Y x—1/~,xp/7 —1
= X)) { (1) ] - o (B1)

Proof of Proposition 1. We start by noticing that equation (1) entails, for 7 sufficiently
large so that & > 0,

1- Eg) - 217__71153 ([g - 1] Y /¢, > 1}) . (B.2)
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Figure 8: As before—Results for the sample size n = 1000.

An integration by parts yields

E (LX _ 1] ny/e, > 1}) —fo F(&,x)da

=F(&) (ﬁ + foo l% - 1‘1”] dw) :

Recall that since Y has an infinite right endpoint, & — oo as 7 1 1; using together equa-
tion (B.1), Theorem 2.3.9 in de Haan and Ferreira (2006) and a uniform inequality such as
Theorem B.3.10 in de Haan and Ferreira (2006) applied to the function F', we get after some
easy computations

2(|e e =) =P (15 4 (F(lm) T ) B

Plugging this equality into (B.2), we thus get

) (1 - E?) o (1 w4 (ﬂl&)) T 0“”) )
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Figure 9: The average values of the realized loss Egn)(k) for both estimators E;;L(k) in dashed

line and E;, (k) in solid line, as functions of k. From top to bottom and from left to right,
the ts, ts, t7 and tyg-distributions, respectively.

and therefore

f;(_&: — (1) <1 _ Eé_f)(l +0(1)) +2(1 —7)(1 4+ o(1))

! <7(1§T)) (1 —1p —1) d+ 0(1>)) '

In particular, as noted in Bellini et al. (2014):

F(&) — (v =1) and thus & = (7_1 - 1)4 g-(1+0o(1)) (B-4)

1—7
as 7 1 1. Because 7 < 1, a consequence of this is that (1 —7){, = O((1—7)¢,) > 0as7 11
and so

F(&') _ (’7_1 B 1) (1 _ <7_1 _qlT)vEO/) (1 + 0(1))

O =D Ao
- Do)

10
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Figure 10: The average values of the realized loss Egn)(k) for both estimators 5;,L(k) in dashed

line and E;, (k) in solid line, as functions of k. From top to bottom and from left to right,
the truncated Student ts, ts, t7 and to-distributions, respectively.

where the regular variation property of |A| was used. This completes the proof. [ ]

The key element in the proof of Corollary 1 is to apply Proposition 1 in conjunction with
the following generic result.

Lemma 1. Assume that v, V are such that v(t) T o0 and V(1) | 0, as 7 1 1, and there
exists B > 0 such that
V(r)
F(u(r))
where e(1) — 0 as 7 1 1. If condition Co(7, p, A) holds, with v > 0 and F strictly increasing,
then

= B(1+e(r))

v(7)

i e(r 0 7 e
v B (Hy (7)(1 + o(1)) + A(L/V( )>[

p

+o(1)D as 71 1.

Proof of Lemma 1. Apply the function U to get

& _ B = U(B[1 +e(n)]/V (7))
U(1/v(r)) U(1/v(r))

- B7.

11
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Figure 11: The average values of the realized loss ,an)(k) for both estimators f;a(k) in dashed

line and E;, (k) in solid line, as functions of k. From top to bottom and from left to right,
Garch(1,1) models with ts, ts, t; and tg innovations, respectively.

By Theorem 2.3.9 in de Haan and Ferreira (2006), we may find a function Ay, equivalent to
A at infinity, such that for any € > 0, there is to(¢) > 1 such that for ¢, tx > ty(e),

L (U)o = c 27"P max(2®, 27°)
Ao(t) \ U(t) p | @By + (B/2)+][(2B)° + (B/2) 7] T
Thus, for 7 sufficiently close to 1, using this inequality with ¢t = 1/V (1) and x = B[1 + e(7)]
gives that

‘ 1 (U(B[l eIV gy e(r))”)

Ap(1/V (7)) U(/v(r))
— B4yl (”ep@) i P

and therefore

1 U(B[l—i—e(T)]/V(T))_ N o) LB -1 s 7
RV (v ) =

The desired result follows by a simple first-order Taylor expansion. ]

12
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Figure 12: Q-Q-plots on quality of asymptotic approzimations. Each plot shows the sample
quantiles of W,, versus the theoretical standard normal quantiles, based on 10,000 samples of
size n = 1000. Data are simulated from the Student t, with v = 3,5,7,9, respectively, from
top to bottom and from left to right.

Proof of Corollary 1. We have in view of Proposition 1 that

l—7 —1 -1
)
with
_ O -DEY) L O =D 1~ Y1 4 o(1)) as -
e(r) = m (14 0(1)) + S _p_W)A((l ) ) (1L +0o(1)) (RS
Using Lemma 1 and recalling that U(1/(1 — 7)) = ¢, gives the result. u

Proof of Theorem 1. The consistency statement is an immediate consequence of the
convergence

Yn— n(l—mn)|,n Yn— n(l—7n)|n Yn— n(l—mn)|n
ln(=7n)|n _ ln(1 n)iﬁ1 _ [n(1—7n)], (1+0(1)) P9
ar, U((L=m)"")  Un/[n(l —7)])

13
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Figure 13: As before—Scatters for Wn

which follows from the regular variation of U and Corollary 2.2.2 in de Haan and Ferreira
(2006, p.41). The asymptotic distribution is obtained by writing

g_ - (@_1;1):: _ 1) N (‘?— _ 1) (14 0p(1)) = r(7)(1 + op(1)),

(=1 G,
where 4/n(1 — 7,)7(7,) — A in view of Corollary 1. Since
d

Va e (0,1), e (7' =1)") =@ '=1)"{1l-2)" —log(z™" = 1)},
the delta-method entails
=) (oo —1) =) —dogl = DIP = () (B3)

from which the result easily follows. [ ]

Before moving to the proof of Theorem 2, we shall show a couple of useful preliminary
results. The next two lemmas are entirely based on non-probabilistic arguments. In the first
one, we use the fact that 7,(y)/2 is continuously differentiable with derivative

e (y) = |7 — Iy < 0}ly.

14
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Figure 14: Q-Q-plots on quality of asymptotic approzimations. Each plot shows the sample
quantiles of W,, versus the theoretical standard normal quantiles, based on 10,000 samples
of size n = 1000. Data are simulated from the truncated Student t, with v = 3,5,7,9,
respectively, from top to bottom and from left to right.

Lemma 2. For all xz, y € R and 7 € (0,1),

300 =) = 1e(2)) = —wele) = [ orta = 0) = rla.

Proof of Lemma 2. The result is a simple consequence of the equality

1 z—y y
S =) @) = | enlo)ds = = [ gl vy
T 0
obtained by the change of variables s = x — t. [ ]

The next result gives a Lipschitz property for the derivative ¢, .

Lemma 3. For all x, he R and 7 € (0,1), we have
(i — ) — pa(a) = —hlr — Bz < 0)] + (1 — 2r)(x — W)(H{x < h} — Tz < 0}),
and in particular |p.(z —h) — o (x)] < |h[(1 — 7 + 21{z > min(h,0)}).

15
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Figure 15: As before—Scatters for Wn

Proof of Lemma 3. Write
or(x—h) = (x) = —h|T — Kz < O} + (z — h)(|7 — Kz < h}| — |7 — Kz < 0}]).
Besides,

|7 — H{x < h}| — |7 — {z < 0}
= (1—7)({x<h}— Mz <0})+7(l{x>h}— I{x > 0})
= (1-27)(H{z < h} — [z < 0}),

from which the desired equality follows. The required bound on |¢,(z — h) — ¢, ()| is then
obtained by noting that

T— e <0}|=7H{z>0}+(1—7)IH{x <0} <1—7+ I{z >0} (B.6)
and
|z — h||{z < h} — Iz < 0}| < |h||H{x < h} — I{x < 0} < |h| I{z > min(h,0)}. (B.7)

Combining (B.6) and (B.7) completes the proof. u

16
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Figure 16: Q-Q-plots of the sample quantiles of Wn versus the theoretical standard normal
quantiles, based on 10,000 samples of size n = 1000. Data are simulated from the Student
t,-distribution on (0,0)* with v = 3,5,7,9, respectively, from top to bottom and from left to
right.

The last result will be useful to derive the limit distribution of the objective function
¥ (u) described in (6).
Lemma 4. Pick a > 1 and assume that 0 <y < 1/a. Then
E(lo,(Y —&)|*) =a&l(1—=7)(v"' = 1)B(a,7 ' —a)(1 +0(1)) as 711,

where B(s,t) = Sl

o w1 — )" du is the Beta function evaluated at (s,t).

Proof of Lemma 4. As a first step, write
E(ler (Y = &)%) = (L =7)'B([& = Y]"HY < &}) + mE([Y - & H{Y > &) (B.g)

Furthermore, for any x, y such that x < y, (y—z)® < 2¢7(|z|*+|y|*) by Holder’s inequality,
so that
E([& —Y]"HY < &}) < 27 'E([l&]" + Y THY < &)

17
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Figure 17: As before—Scatters for Wn

The condition v < 1/a ensures that E|Y|* < co. Recall that & 1 oo as 7 1 1 and use the
dominated convergence theorem to get

E(l& = Y]"I{Y <&}) = 0(&7) as 711 (B.9)

T

Besides, an integration by parts and a change of variables entail

BY -~ Y > &) - ot | (£- 1)a_1m)dx

T * F(fﬂ'v)
= ang(fT) J ('U — 1)a_1_—d7j.
| F(&r)
Using a uniform convergence theorem such as Proposition B.1.10 in de Haan and Ferreira
(2006, p.360) gives

Q0

BY - &' 1Y > &) = aF(E) | (0= D" 0 el + o) as 711

1
Combining this equality with (B.4) yields

0

E([Y —&]° Y > &,}) = a53(1—7)(71—1)J (v—1)"" o Y 7dv(1+0(1)) as 71 1. (B.10)

1
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Combining (B.8), (B.9), (B.10) and using the change of variables u = 1 — v™! gives the
desired result. |

Proof of Theorem 2. Use Lemma 2 to write, for any u,

wn(u) = —uly n T 15 n( ) (Bll)
with 77, \/7%2 e — o, (Vi — &) = Z;sn

and 75, (u)

ury, /A/n(1—7n)
ZJ (SOTn (Y; - frn - t) - P (Y; - £Tn>>dt

Tnzl

The random variables S, ; are independent, identically distributed, and centered since

an = argminueRE(nTn (}/'L - U) - nTn (}/'L)) = E(QDTTL (YL - 5’7'11)) = 0
(where a differentiation under the expectation sign was used). We shall prove that

Tl,n

d
—Var(Tl,n) — N(0,1) (B.12)

for which it is sufficient to show that for some § > 0,

nE|S, 1>
[n Var(S,,1)] 92

—0 as n—

and use Lyapunov’s criterion. Choose 6 > 0 small enough so that v < 1/(2 4+ §) and apply
Lemma 4 to get
nE|[S,,1|**°
[n Var(S,, 1)]'+%/2

= O([n(1 —7)]7%*) - 0 as n — w.

Convergence (B.12) follows and, especially, Lemma 4 entails

Ty~ N <0, el ) . (B.13)

1—2y

We now turn to the control of the second term 75, (u). Write

n ury, /A/n(1—7n)
Tg’n (u) = Tgm(U) ~

Tn

) [E(pr, (Y =&, —t) —E(p,, (Y = &.,))]dt. (B.14)

The random term T3,(u) is a sum of independent, identically distributed and centered
random variables, which we shall examine after having controlled first the nonrandom term
on the right-hand side of (B.14). By Lemma 3, we obtain

E(So‘rn (Y - an - t)) - E(Spm (Y - 6%))
= (1-2m)E((Y = &, - (Y <&, +1} - [{Y <&.,.}))
— {E(m — [{Y < &) (B.15)

19



Clearly B
E(lm = Y <&, ) = mF(&,) + (1= ) F(&,)-
It therefore follows from (B.4) that

E(lra — HY <&,}) =77 (1 = 7)(1 + 0(1)) (B.16)
as n — oo0. Let further ¢(t) := E((Y —¢) I{Y > t}) and observe that
E(Y =&, =Y <&, +1) - Y <&.,}))

(
= B((Y =&, —t) (1Y > &} — I{Y > &, +1}))
= V(&) = P&, +1) — (&)

Integrating by parts entails

1+t/&7, F(& U)

— dv
F(&r,)

Erp +t
BEn) —b(En, + 1) = j Fla)de = &, F(6,,) j

™

from which we deduce that

E((Y =&, =Y <&, +t} - {Y <&.,}))
_ 7 &y [T F(&r0)
= tF(&,) (TL Fe) dv — 1) :

We now bound the term into brackets as follows: let I,,(u) = [0, |ul&,, /4/n(1 —7,)] and

write

1+t/ér, T
ng f F(g’f'nv) dv _ 1
1

sup |2 —
[t|eln (u) t F(g'?'n)
Ltfr, [T
< sup b J lM— 1/7] dv| + o(1)
tletn(u) 12 |1 F(&,)
= o(1)

by the uniform convergence theorem for regularly varying functions [see Theorem 1.5.2 in
Bingham et al. (1987), p.22], the continuity of v — v~'/7 at 1 and the convergence n(1—7,) —
. As a consequence, by (B.4), the equality

E((Y =&, =t)({Y <&, + 1} — H{Y <&,}) = t(1 = 7)ra(t) (B.17)

holds with r,(t) — 0 uniformly in ¢ such that |¢| € [,(u). Combine (B.14), (B.15), (B.16)
and (B.17) to get

2

Ton() = 5-(1+0(1) + Tyn(u), (B.18)
n_ g y/a(=)
™ =1
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where the S, ;(v) := ¢, (Y; —v) —E(¢,, (Y; —v)) are independent copies of S,,(v) := ¢, (Y —
v) — E(p,, (Y —v)). Thus

Var(Tzn(u)) = =

™n

n ( W [/ (1)
Var f

0

[Sn(&r, +1) — Sn(gm)]dt> .

We now notice that for any v, S,,(v) is centered and thus

n
&2 Jio,ue, jn/n(—mm)2

(where the integrability properties of Y were used to switch integrals and expectation). By
the Cauchy-Schwarz inequality,

fufm/\/n(l—m)

0

Var(TB,n(u)) E([Sn(fm + S) - Sn(gv'n)] [Sn(g'rn + t) o Sn(ng)DdS dt

Tn

Var(Ty (u) < - ( VE(ISa(&r, +1) — Sﬂ(an)|2>dt> : (B.19)

Applying Lemma 3, we get for any ¢
S (&, + 1) — Sn(&)| < 20t[1 — 70 + Y > &, + min(t,0)} + F(&, + min(t,0))].
Using the inequality |a + b + c|*> < 3(a® + b* + ¢?) yields
E(|Sn(&r+1) =Sn(&n)?) < 126[(1-7)* + F (&, +min(t, 0)) (1 + F (&, +min(t, 0)))]. (B.20)
Finally, using again the regular variation property of F and the convergence n(1 —7,) — oo,

F(&, +3)
F(&,)

in view of (B.4). Using (B.4) once again and combining (B.19), (B.20) and (B.21) yields

u£7'n/ TL(I—Tn) 1
[l o)
n(l—1,)

0
as n — 0. Whence the convergence 75, (u) -2, 0; combining (B.11), (B.13) and (B.18)

entails )
2
Un(u) -5 —uZ T Y s n— o
1—2v 2y

(with Z being standard Gaussian) in the sense of finite-dimensional convergence. As a
function of u, this limit is almost surely finite and defines a convex function which has a

unique minimum at
2y d 2 2
* J = 0 .
A Vi N(’71—2fy

sSup |F(€Tn +5) _F(gmﬂ = F(ﬁm) sup

Isleln(w) |s|eln (u)

- 1] _ o(F(6,)) = of1-7,) (B21)

2
n

Var(Ts,(u) = O [ (1 —7,)

Tn

t] dt

Applying the convexity lemma of Geyer (1996) completes the proof. [
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Proof of Theorem 3. By the equality (8), we have

log r, = log <q > + log € — log <QT"> + log (67") — log (ﬂ) :
g'r qr 57—" qr, qr, qr:

Furthermore, the convergence log[(1 — 7,,)/(1 — 7/,)] — o0 entails

n(l—1,) Z]\ié .
log[(1 —7,)/(1 —72)] log <qn,l> L, (B.22)

n(l—m7,) g, _ . . .
log[(1 — 7)/(1 — 7] log (g) = Op(1/log[(1 —7,)/(1 = 7,)])

— op(1), (B.23)

n(l—7,) T\ _ (1o L
log[(1 — 7,)/(1 — 7] log ( Tn) Op (1/log[(1 — 7,,)/(1 — 7,,)])
= op(1), (B.24)

Tiery : [10g(£ﬂ)—log<€i>] _ O(\/ﬂ 7,) + (7, )])

log[(1 = 7,)/(1 =7, ™ G, log[(1 —7,)/(1 = 7;)]

[
o

— o(1). (B.25)

Here, Theorem 4.3.8 in de Haan and Ferreira (2006, p.138) was used to show (B.22),
while (B.23) and (B.24) follow from Theorem 2 above and from Theorem 2.4.1 in de Haan and
Ferreira (2006, p.50), respectively. Convergence (B.25) is a consequence of Corollary 1 and,
in what concerns the relationship (7)) = O(r(7,)), of the regular variation of s — ¢;_¢-1
and |A|. Combining these convergence results and using the delta-method gives the desired
conclusion. |

Proof of Proposition 2. By Corollary 1,

XES(r :—f eoda— (! — )_7{$qua(l+r(a))da}

where (o) — 0 as @« — 1. It is then clear that

1 1
XES(r) ~ (7 = )7 {2 [ dada} = (07 - ) 7QES() as 71
—7 )
This proves that
XES() &
~ —1)7"~ > as 7—1,
qEs() " VT
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by applying Corollary 1 again. Besides, the equality ¢, = U((1 — «)™!) and a change of
variables entail

QBS() 1 (Ta, [ U= y)dy
qr a 1_7—L qu Jl Y U((l_T)_l) y.

The condition 7 < 1 and a uniform convergence theorem such as Proposition B.1.10 in de
Haan and Ferreira (2006, p.360) entail

E 0 ¢]
M — f yvf2dy - as T — 1.
qr 1
Consequently
XES(7) QES(7) 1
~ as 7 — 1.

gfr qr -~ 1- Y
Let us now turn to the terms XTCE(7)/QTCE(7) and XTCE(7)/&,. On the one hand, we
have
EYIY >&)] _ ELY —&)+]

MCED = =%y = Fey &

where y, = max(y,0). On the other hand, it follows from the proof of Theorem 11 in Bellini
et al. (2014) that

E [(Y _ 57’)4-] N 57’

= — as 17— 1.
F(&) vl
XTCE 1
Therefore CE(7) ~ as 7 — 1. Likewise, we have
57’ 11— Y
E|YI(Y . E[(Y —q,
F(gr F(q-)
with ENY
Ol e
F(qr) v -1
TCE 1 XTCE
Then QTCE(7) ~ as 7 — 1. Whence C—(T) ~ g—T as 7 — 1, which completes the
G- 1—vy QTCE(T) ¢,
proof. [ ]

Proof of Proposition 3. The starting point is Corollary 1, which yields
1 1
XES = — od
") = = | &do

= Cfl—1Y”<QE&T%+7W‘“—D”MYM1+OOD

T {W_l ) A Gty Rt 0(1)} ! fl G A((1 - a)_l)da>.

L—p—n P
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Use a change of variables to get

et -ty o [ A

This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan
and Ferreira (2006, p.360), that

T

o]

[ A=) e ~ U= A= |y
QTA((l - 7')_1)
l—p—vy =

Since QES(7) ~ ¢-/(1 — ), our earlier expansion yields

XES(7) IR Y1 =) (v = 1)E(Y)
Qs - 0 U <1+ ar

1 _1)r 1) -1
N vv )L b )
l—p—2vy p

(1+0(1))

1—

+ 0(1)} ﬁfl((l - 7)1)> (B.26)

Furthermore, it is a consequence of a uniform inequality such as Theorem B.3.10 in de Haan
and Ferreira (2006) applied to the function U that

QES(r) _ (7 LU((L-7) ") dy
@ T y

[ -

[ (yv FA(( =)y

J1 P
o A((1=7)Y ™

o [ A |

J1 P

[

Loy o<1>>) dy

Y

1 (P2 =y %) dy(1 + o(1))
1 1 »
- = (1 P (R R [ 0(1))) | (B.27)

Finally, Corollary 1 reads

T - <v—1—1>”(1‘w1_1)VE(Y)<1+0<1)>

& ¢-
O'-H" ('-1r-1 1
- <1—p—7 + P +ND>A«1—7))). (B.28)

The identity
XES(r)  XES(7) y QES(7) O
&r QES(7) Gr &
and a combination of (B.26), (B.27) and (B.28) complete the proof of the first part after
some straightforward computations.
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Let us now turn to the second part of the proposition. The starting point is equation (2),
which is equivalent to

XTCE(T) 1—7 1 < E(Y))
— =1t =—(1-—").
E: Fe)2r—1\ &
We have by Proposition 1 and (B.4), with the notation therein, that
l-7 9 1 (y'-1y
= = 1—e(m)(1+o0o(1 and — = -——(1+0(1)),
FE) 1_7[ (7)(1 +o(1))] € . (1+0(1))

where the o(+) terms have to be understood in the asymptotic sense as 7 1 1. Using a Taylor
expansion thus yields:

XTCE(r) 1 N o
& - 1_7+1_VPU )(1+0(1)) — e(r)(1 + o(1))
(0t = 1) E(Y)
- = o)

The condition v < 1 entails (1 — 7)g, — 0 as 7 1 1, so that

XTCE(r) 1 v i o (v P =1)E(®Y) o
- | o) + = o)
Using once again Proposition 1 gives
e() + O~ - )E) = — O -p7 A((1—=7)"H(1 4+ 0o(1)) +o(g 1),

Gr Y1 =p—=7)

whence

XTCE(r) 1 [1+(7_1—1)_p
Y

- 1—p—ry

A fﬂﬂ—frﬂa+ou»+o@fﬂ.

Proof of Proposition 4. As indicated in the main paper, the coherence of XES(7) is a
straightforward consequence of the coherence of the expectile-based VaR. Here, we focus on
the translation invariance, monotonicity and positive homogeneity of the Tail Conditional

Expectation
XTCE(r; X) := E(X|X > &.(X))

where &, (X)) denotes the 7—th expectile of the random variable X. Recall that the expectile
is itself a coherent risk measure, and hence satisfies these properties.

1. To prove translation invariance, let ¢ € R and write
XTCE(T; X +¢) =E(X +¢X+c>&(X +¢) = EX|X+e>&(X +0))+
= EX|X+c¢>&(X)+c¢) +
= E(X[X > &(X)) +c
= XTCE(1; X) +c.
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2. Positive homogeneity is shown in the same way: for any a > 0,

XTCE(1;aX) = E(aX|aX > & (aX)) = aE(X|aX > & (aX))
= aE(X|aX > a& (X))
— (XX > £(X)

= aXTCE(T; X).

3. To show monotonicity, let X and Y be two integrable random variables such that X <Y.
We first show the following intuitive lemma:

Lemma 5. Let X and Y be two integrable random variables such that X <Y, and let s <t
be such that P(X > t) > 0. Then

E(X|X > s) <EY|Y > t).
Proof of Lemma 5. We start by the case X =Y. Write

E(XI{X > t})P(X > s) — E(XI{X > s})P(X > t)
P(X > s)P(X > t) '

E(X|X >t) - E(X|X > s) =
The numerator is taken care of by noting that {X > s} = {s < X <t} U {X > ¢} and
re-writing it as

E(XI{X > t})P(X > s) — E(XI{X > sHP(X > t)
E(XI{X > t})P(s < X <t) — E(XI{s < X < tHP(X > )
(
(

<
<

WV

E(XKX > t})P(s < X <t) — sP(X > t)P(s < X < t)
= E(X —s)[{X >t})P(s < X <t) = 0.
As a consequence, E(X|X > s) < E(X|X > t) and thus it is enough to show the lemma
with s = ¢. Write then
EYT{Y > t})P(X > t) — E(XI{X > t})P(Y > ¢)
P(Y > t)P(X > t) '

E(Y|Y >t) —E(X|X >t) =

The numerator is handled by writing {Y >t} = {X <t <Y} u {X > ¢} and therefore

EYL{Y > t})P(X > t) — E(XI{X > t})P(Y > t)

E(Y - X)I{X > t)P(X > t) + EYT{X <t < YHP(X > 1) - E(XI{X > t)P(X <t <Y)
EYHKX <t<Y}P(X >t)—tP(X >t)P(X <t<Y)

= E(Y -t)[{X <t<Y}P(X >1t)=0.

\Y

This ends the proof of the lemma. ]

Back to the proof of Proposition 4, use the monotonicity of the expectile together with
Lemma 5 to get

XTCE(1; X) = E(X|X > &(X)) < E(X|X > &(Y)) <EYY > &.(Y)) = XTCE(r;Y).

This completes the proof of the proposition. [ ]
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Proof of Proposition 5. We shall actually prove the more general statement

E(X|Y > t) _JOO

lim m R(z=Y* 1)dx (B.29)

0

which contains both Proposition 1 in Cai et al. (2015) and our desired result, because
& —owas 7111 Foranyt>0,

E(X|Y >t) _ 1 JOOP(X>S’Y>t>ds
Ux(I/Fy(®)  Ux(/Fy®) o Fy) _
_ 1 JOO IP’(FX(X)gFX(S),FY(Y)ng(t))dS
GOEM D RO
_ JOO P(FX(X> < FX(UX(l/FY(t))I)7FY(Y) < FY(t))dl‘ (B 30)
0 Fy(t) o

Note now that because X is heavy-tailed, Fyx(Tx) ~ 2~ Y"XFx(T) as T — oo and we have
that: B B B
Vo >0, Fx(Ux(1/Fy(t)z) ~ 2 Y%Fy(t) as t — oo.

Thus, by condition JC(R):

P(Fx(X) < Fx(Ux(1/Fy(t))z), Fy(Y) < Fy(t))
Fy(t)

vz >0, lim = R(z""x 1), (B.31)
It only remains to show that the integral in (B.30) and the limit in (B.31) can be interchanged,
and this can be done exactly in the same way as in the proof of Proposition 1 of Cai et al.
(2015), so we omit the details.

To show the second convergence result (17), we apply (B.29) tot = &y, and ¢t = gy, in
conjunction with (4) to get

XMES(7) .. Ux(1/Fy(&vr)) . (M) X — (1)

lim 22\ r
" QMES(7) 1 Ux(1/Fy(qy,))

Proof of Theorem 4. We start by the case when X > 0 almost surely. In this situation,

XMES(r, RLERN
( ) 2?21 ]1{1/7: > ngTn}

Write then
N XMES (7)) N XMES(,,) g [(SMES(r) (1-7\ T
S\ XMES() ) T ®\ XMES(r) &\ XMES(m) \1 -7,

A~ 1_Tn
b G s (122

n
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Using the delta-method, the proof shall then be complete provided that

g (% - 1) _ 0s(1) (B.32)
and )
n(l— 1) (iﬁgg&i G - :Z) = 1) - 0(1). (B.33)

To show (B.32), write

XMES(r,)  E(lyse.y) 230 Xiliyisey, ) oy Iyviseyy 2im1 Xilpyog, )

XMES(,) N % Z?=1 Livis ey} E(XH{Y>§Y,W}) Z?:l H{ng}ﬁn} Z?:l Xilyi>ey.r,} .
(B.34)

Firstly,

n(l—7,) (% Zica Iz, 1) — Op(1) (B.35)
E(lyseyr,})

because the variance of the term on the left-hand side is bounded in view of Proposition 1.
Secondly,

it Xil(yisevn) 1)] (=7 E(XLysgy )
E(XTy>ey..,)) [E(XTy>ey,,) ]
(1-7) EXY > &n)
P(Y > &yr,) [E(X]Y > &y )]

Var [Vl = 5 (

Applying Proposition 1 and then Proposition 5,

7 2 Xilpyiser ) 1)] _0 ( E(X?)Y > &v.r,) )
E(XIysgy.,,)) [Ux(L/Fy &y )2/

Notice then that condition JC(R) is equivalent, for all z and y which are not both infinite,
to

Var |Vl = 5 (

lim tP(X = Ux(t/x),Y = Uy (t/y)) = R(z,y).

t—00

Since (Ux)? = Uyz, this entails

lim tP(X? = Ux:(t/z),Y = Uy (t/y)) = R(z,v).

t—00

Hence, (X?2,Y) also satisfies condition JC(R). Thus, by Proposition 5,

E(XCY > &y,) BV > &)
[Ux(1/Fy (&) Ux2(1/Fy(§vin,)

3 Xl
1 _ n =1 7 [3 Y, ™ _ 1 _ 1
Var [ n(l =) ( E(XIyse,. y) )] o)

- o(1)

which entails
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and therefore

2y Xilyisey )

1—7,) (&=l =l 1) = Op(1). B.36
i T>( E(XTy>¢y..,}) ) P (B.36)

Thirdly, by Theorem 2, Ey,m is 4/n(1 — 71,)-relatively consistent, so that for any € > 0, we
may find K > 0 such that

K
< —
n(l—7,)
with probability larger than 1 — ¢ eventually. In what follows we assume that K is chosen
so that this is the case. With probability larger than 1 — ¢ eventually, we then have

gY, n

61/, Tn

i1 Lyiogy )
Yot Lyisey )

< max < 2ict vy kgl B

22;1 H{Yi>fY,rn}
By straightforward variance calculations,
2in1 H{Y¢>£y,m(1iK/\/N(1—Tn))}
n(l—7,) — -1
Zi:l Lvis ey}

o (m P(Y > fy,Tﬁ)Elyi>l§i@)) _1 ) _

By a uniform inequality such as Theorem B.3.10 in de Haan and Ferreira (2006) applied to
the function F'y, we get

P(Y > &r (1 K/y/n(L—7))) | _ (%) (B.37)
n(

P(Y > éY,Tn) 1 - Tn)

-1

D ]I{)fi>§Y,Tn(1—K/\/M)} _

1 D
Zi:l H{Yi>£y,m}

1

)

) |

and therefore

n(l— ) (Z"‘lﬂ{mg"m} - 1) — Op(1). (B.38)

i1 lvisev.n,)
Lastly, write with probability larger than 1 — ¢ eventually:

‘ i Xilyog, )

2iim1 Xilpyisey 1,
< max Zimt Xl (sl 1
Qi Xilpyisey 1)
By a straightforward modification of (B.38),
w7 Diic1 XiH{ngy,m(uK/\/M)} 1
2iim Xilpyisey 1)

E(XLyoe, . ex/\/ni—mm)))
E(XTy>ey,,3)

-1

Dici Xi]l{ypgy,mu—K/\/m» -
Z?:l Xi]I{Yz‘>§Y,m}

1

bl

) |

-1

= O]p( n(l—Tn)

) |
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Applying (B.37) and Proposition 5, we obtain

w7 Z:’L:I XiH{ngy,W(liK/\/M)} .
" i1 Xilyisey... )

_ 0 W=7 E(X\Y>§Y,Tn(1iK/«/n(1—Tn)))_1
’ " E(X|Y > &)
- 0 n(l— 1) E(X|Y > &y, (1 £ K/y/n(l —7,))) — E(X]Y > &v.r,)
’ " Ux(1/Fy (&) .

It is therefore enough to show that

EXNY > b, (15 K/l = 7)) ~BXIY > &)l _ ( 1 )
Ux(1/Fy (€vs,)) n(l-7))

Because expectiles and quantiles are asymptotically proportional in view of Corollary 1:

1
&virn = (' — 1) v, (1 + 0O (m)) ;

this can be achieved by using condition JCs(R, 3, k) in the same way followed by Cai et al.
(2015) to examine the convergence of the term J, that they introduce in the proof of their
Proposition 3, see pp.438-439 therein. We then get

Z?:lXiH{Y->E }
n(l— ) [ =2 o) g ) 2 Op(1). (B.39)
(ZH Xilyisey,r,)

Combining (B.34), (B.35), (B.36), (B.38) and (B.39) concludes the proof of (B.32).
Now, to prove (B.33), notice first that

n<1—7n)<UXXMES(T") - FR(;E—W,QM) — 0O(1)  (B.40)

(1/Fy(&vm)) o
XMES(7) @ Ak B '
and /n(1—7,) <UX(1/FY( ) —L R(z™Y ,1)dx> = O(1); (B.41)

this can be verified using condition JCy(R, 3, k) along the lines of proof of Lemma 3 and
(28) in Cai et al. (2015), because expectiles and quantiles are asymptotically proportional.
Besides, by Proposition 1,

e ) I
wa Vit (GO - 71 -0) - ow



so that by condition Cy(vx, px, Ax) and convergence 4/n(1 — 7,)Ax((1 — 7,)7%) = Ay € R,
inl 1\ Tx
n(l — Tn) (UX(l/FY(SY,Tn)) (1 Tn) _ 1) _ O(l) (B.42)

Ux(1/Fy(&vr)) \1 = Ta
Combining (B.40), (B.41) and (B.42) completes the proof of (B.33).
We now show how the condition that X > 0 almost surely can be dropped in our framework.
Define X, = max(X,0) and
XMES™ (7)) := E(X4|Y > &),

i.e. XMES™ is the marginal expected shortfall of the positive part of X, and write

XMES () XMES (r/,) XMES* (/)

XMES(7,)  XMES* (7)) XMES(7;)

The first part of the proof of Theorem 2 in Cai et al. (2015), see pp.440-441 and in particular
condition (35) there, shows that X, satisfies condition JC2(R, 3, k). As a consequence,
we may apply the result we have just shown to the random variable X, to get

11— /
e et (ihhgssi% - 1) —r (B4
Let now X_ = X — X so that
/ E(X_|Y > ,
%% —1+ (Xl\’AES (Ti’;Tn). (B.45)
Since {y,r; T 00, we have for n large enough that
XMES* (7)) - XMES* (7))
Ux(1/Fy(vm))  Ux+(1/Fy(&viry))

(B.43)

so that

XMES™* (7/) foo

— R(z~Y"% 1)dz
Ux(1/Fy (&) ( 1)

0
as n — oo and therefore

XMES(r) | E(X_|Y > &)
XMES™ (7)) Ux(1/Fy(&vm)) )

Since extreme expectiles and extreme quantiles are asymptotically proportional, we have as
in Cai et al. (2015) that

(B.46)

1

E(X_|Y > &) = O ((1 — 7)1 0=m0=)) and — =0 ((1—7,)™).
(B.47)
Plugging this into (B.46) entails
XMES(1/) e 1
o 140 ((1—7) ) =1 _ . B.48
XMES*(7!) +0((=m) ) =1+o n(l —,) (45)
Plugging (B.48) with (B.44) into (B.43) concludes the proof. n
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Proof of Theorem 5. Write

XMES (7)) . ( QMES () (Bt — 1)~ L1y XMES(7))
. (Wsm) S (Wsm) v (i) o (0510 s )

Firstly, by Theorem 2 in Cai et al. (2015),

n{l = 7) QMES (1) | o
loa[(1 — 7)/(1 — 7] 1°g< ) r (B.49)

Secondly, writing

vt B 1 —Ax
10g ((,yY )

(T = 1)”) = —[(Ax —1x)log(A7" — 1) + 7x (log(35" — 1) —log(r5" — 1))]

we get

07 Gl =Y e
log[<1—m>/<1—m>]log<< D ) 0 (B.50)

Thirdly, by (B.41), which is

n(1—7n)( XMEST(r)) J : R(a;l/vx,mdx) _ o)

Ux+(1/FY(§Y,T,’L)) 0

together with (B.48) and the equality Ux+ = Ux in a neighborhood of infinity, we obtain

XMES(7)) @ 1y _
1 =) <UX<1/Fy<sY,T;L>> -] w ’l)dx> = 0w

The similar relationship (Cai et al., 2015)

e Qs
“\Ux(1/Fy(qvs))

- JOO R(z~ Y=, 1)d3:> =0(1)

0
then yields

G XMESEN L U(Fy () 1
log(”’” 1) QMES(%))‘lg((W ) UX<1/FY<qY,¢>>>+O( n<1—fn>)'
51)

(B

Now, by Proposition 1,

/
1—7

n(i—7) (—FY“"*) i - 1)) - o)

and Fy(qym/l) = 1 — 7/ by continuity of Fy, so that by condition Co(vx, px, Ax) and con-

vergence /n(1 — 7,)Ax((1 —7,)7) — 0,

L&) )
n(l—7,) ((’yy - 1) Ux(1/Fy(arm) 1) =0(1).
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In conjunction with (B.51), this entails

n(l —7,)

. XMES(7))\ »
1 Py — ) — 0. B.52
log[(1 = 7)/(L =] <(”Y ) QMES(%)> (2
A combination of (B.49), (B.50), (B.52) and the delta-method completes the proof. n

Proof of Proposition 6. We start by obtaining an equivalent for the numerator of 1 —
7! (av,), which is equal to
Y
qa”E (|:_ - 1:| ﬂ{Y/qom > 1}) .

Qn

Just as in the proof of Proposition 1, we integrate by parts to obtain

R e~ )

Since ¢,, — ®© as n — o0, we can apply Proposition B.1.10 in de Haan and Ferreira (2006)
to the function F' to get

E (li - 1] 1Y /g, > 1}) — Flq,) (ﬁ + 0(1)) — (1 - an)——(1+0(1)).

Qn ]‘_’y

To obtain an equivalent of the denominator, we note that

E |Y - qan‘ = qOénE

31—4=q%u+ou»

Qn

where we used the dominated convergence theorem together with the fact that ¢,, — .
Wrapping up, we obtain

E(Y = ¢a,| Y > a,}) gl
Z = =(1—a,)—— (1 +o0(1
ElY — ga,| ( )1—7( @)
which is the desired result. [ ]
Proof of Theorem 6. Our first goal is to show that
1 -7 (o)
L —1=0p(1). B.53
1 _ 7_7/1<an) P( ) ( )
To this end, we write
f‘y
A ~ 1—a,)——
]- -7 n n 1 - ( " -
L=flon) g O 127 l=7 (B.54)
1— 7/ (an) vo1=F 0 1—7h(ow)
The delta-method yields
Y 1— :)\/n
1—7) (| = — 1] =0p(1). B.55
=) (22 1) = o) (3.55)



Recall now (B.3) in the proof of Proposition 1 which here translates into

?|
= o(l/a/n(l —1,)), (B.56)

because ¢a, = & (a,) and the regular variation property of A. Write further

(- o)
1= O[A(/F(4,))] = O[A((1— )™

2 fe)

Y Y Y
E ——1'—1 = El——l‘ﬁ{wqa }] +El<1——) —”{quan}] -1
qOén Qan (679
Y E(Y 1 _
R A [ P

= O(max{l —ay,1/¢s,}) = O(1/qa,) = o(1//n(l —1,)) (B.57)

where we successively used (B.56), the dominated convergence theorem, the relationship
1 —«a, = 0(1/q,,) valid because 0 < v < 1, and the regular variation property of ¢ — q;_4-1.
Combining (B.54), (B.55), (B.56) and (B.57) with the definition

E{lY — ¢o, | I(Y > qu,)}

1—17(ay) =
() EY —qo]

results in (B.53).

The idea to prove (i) is now to write

S T 17 AN PSR & Ut ;1 (O AN 6 T /4 (01 A s
S (7)) - () X{(T) f} (5%)

We have

bl )

1

by a Taylor expansion. Furthermore

1 -7 (o)
(),
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by definition of the class of estimators fA*. From Proposition 6, we conclude that the con-
ditions of Corollary 3 are satisfied if the parameter 7/ there is replaced by 7/ (). By

Corollary 3 then: ~
n(l—m,) & o) ) 4
log[(1 = 7)/(1 = 7 ()] \ &m @)

| 1—m7, | 1—7, . 11—«
og | ——— | =log | —— og|l———
& 1 =7 (ay) & 1—a, & 1 -7 (ay)

and the first term above tends to infinity, while the second term converges to a finite constant
in view of Proposition 6. Consequently

Finally

log l%] - log[l — ] (1+o(1)).

4 1—oa,
Together with the equality £ (a,) = ¢a,, Which is true by definition of 7} (), this entails
n(l —7,) g;/ (an) d
-1 — T B.60
log[(L — 7.)/(1 — )] ( o (B0

Combining (B.58), (B.59) and (B.60) completes the proof of (i). The proof of (ii) is similar
(just apply Corollary 4 instead of Corollary 3 when needed) and is therefore omitted. |

Proof of Theorem 8. Again, we only show how to prove (i), the proof of (ii) being similar.
Write

XMES (7! (an)) = (L’W)_%W&m)

1—17,

- - ) v
(A mlen) ) (L mlen) ) s ) L
1 -7 () 1—7,
The first term is controlled by usmg (B.53), and the second one is handled by arguing just as

in the proof of Theorem 6, with § replaced by XMES throughout and by applying Theorem 4
instead of Corollary 3. We omit the details. [
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