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Supplementary Material for
“Estimation of Tail Risk based on Extreme Expectiles”

Abdelaati Daouia, Stéphane Girard and Gilles Stupfler

Further simulation results are discussed in Section A. The proofs of all theoretical results in the
main paper and additional technical results are provided in Section B.

A Additional simulations

The aim of this section is to explore some additional features that were briefly mentioned in Section 6.
We will illustrate the following points:

(A.1) Bias and MSE estimates.
(A.2) Quality of asymptotic approximations.

Let us first comment on some implementation details. We used in all our simulations the Hill
estimator of 7, the extreme level 77 = 0.995 for n = 100 and 7, = 0.9994 for n = 1000. The
corresponding true extreme expectiles & can be calculated by the existing function “et(r,,df)” in
the R package ‘expectreg’. In what concerns the intermediate levels 7, involved in both estimators
7 =& () and &, = &7 (7,,), we used the same considerations as in Ferreira et al. (2003). Namely,
they always considered 7,, = 1 — % with the range of intermediate integers k, say, from log(n'=¢) to
n/log(n'=¢), where e = 0.1 [this restriction allows to reject too small values or those very near n'—¢|.
The value k£ can actually be viewed as the effective sample size for tail extrapolation. A larger k leads
to estimators with more bias, while smaller k results in higher variance.

A.1 Bias and MSE estimates

Figures 1 and 2 (respectively, Figures 3 and 4) give the root-MSE estimates computed over 10,000
replications for samples of size 100 and 1000 simulated from the Student (respectively, positive Student)
t-models, while Figures 5 and 6 (respectively, Figures 7 and 8) give the bias estimates for the same
models. Each figure displays the evolution of the obtained Monte-Carlo results, for the two normalized
estimators &, (k)/& and & (k)/&, as functions of the sample fraction k. Tables 1 and 2 report the
root-MSE and bias estimates obtained by using for each estimator the optimal value of £ minimizing
its MSE.

As regards the Student distributions which correspond to real-valued profit-loss variables, our ten-
tative conclusion from Figures 1-2 and Figures 5-6 is that the indirect estimator S has a harder time
with small samples, and this can be compensated by taking larger samples. Indeed for n = 100, the
direct estimator 5* performs better than 5*, in terms of both MSE and bias, whatever the thickness of
the tails. Also, in ‘contrast to the direct estlmator s plot, the indirect one exhibits more volatility. In
what concerns n = 1000, it seems that f 7 1s superior to § 7 only in terms of MSE for slightly heavy

tails (i.e. df =7,9), whereas the accuracy of 8;7& is more respectable for heavier tails (i.e. df = 3,5),



as can be seen from Table 1. It should be, however, clear that even in the favorable case to E* , where

n = 1000 and df € {7, 9}, the estimator 5* has actually almost overall a smaller MSE except for a very
small zone of values of k, as can be seen from Figure 2 (bottom panels) Due to the tightness of that
zone, the detection of the optimal k£ which minimizes the MSE of f*, is hard to manage in practice.
By contrast, in the case of the positive Student distributions which correspond to non-negative loss
variables, it can be seen from Figures 3-4 and Figures 7-8 as well as Table 2 that the indirect estimator
&7, is superior to the direct estimator é;h in all scenarios except for the single case n = 100 and df = 3.

We repeated this kind of exercise with the Fréchet distribution F(y) = e*yfl/w, y > 0, and Pareto
distribution F(y) = 1 —y~'/7, y > 1, and arrived at the same tentative conclusion.

It may also be seen that most of the error is due to variance, the squared bias being much smaller in
all cases. It is interesting that in almost all cases the bias was positive. This may be explained by the
sensitivity of high expectiles to the magnitude of heavy tails, since they are based on “squared” error
loss minimization.

RMSE BIAS RMSE BIAS

il &, : : ) il & : : :
1. 5010 47. 9486 0. 4888 1. 7107 0. 4809 0. 5403 0. 2080 0. 2599
0.5963 2.9132 0.1253 | 0.4139 0.2867 | 0.2981 0.0816 | 0.1088
0.4385 0.8001 0.0797 | 0.2486 0.2172 0.2119 0.0666 | 0.0629
0.3753 0.6200 0.0579 0.1685 0.1908 0.1781 0.0271 0.0440
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Table 1:  Monte-Carlo results obtained for the Student ts, t5, t7 and to-distributions, using the optimal
sample fraction k minimizing the MSE of each estimator.

n = 100 n = 1000
RMSE BIAS RMSE BIAS
e & & | & Fl & & | & ] &
3 0. 9848 1. 0833 0.4923 | 0.4423 3 0.5089 | 0.4023 0. 2810 0. 1932
5 0.5762 | 0.5511 0.2098 | 0.1959 5 0.3016 | 0.2297 0.1269 | 0.0697
7 0.4122 | 0.3786 0.1392 | 0.0685 7 0.2219 | 0.1639 0.0800 | 0.0280
9 0.3509 | 0.3033 0.1181 | 0.0315 9 0.1934 | 0.1393 0.0742 | 0.0107

Table 2: Monte-Carlo results obtained for the positive Student ts, ts, t7 and to-distributions, using the
optimal sample fraction k minimizing the MSE of each estimator.

A.2 Quality of asymptotic approximations

We first investigate the normality of the estimators E;, and {";, . The asymptotic normality of 5;, /& in

Corollary 3 can be expressed as 7, log(g;é /&) 4T, with r, = m. Likewise, the asymptotic

normality of E;;l /& in Corollary 4 can be expressed as ry, log(g:a /&) ~%4, T. The limit distribution
[ of the Hill estimator is N'(Ay/(1 — p),7?), as pointed out below Theorem 1. It can be shown that
the Student ¢, distributions satisfy the conditions of the two aforementioned corollaries, with v = 1/v,
p=—2/v and

v+1
v+ 2

2T ((v + 1)/2)pv=1/2
Vrl(v/2)

(Cut>72/ya Cy =

A(t) ~




Hence, we can compare the distributions of

W o= [ralog(€,/64) = Aa/(1 = p)| /7 and W, i= |ralog(E /) — Xe/(1= )| /2

with the limit distribution A/(0,1), with Ay = \/EA(%) The Q-Q-plots in Figures 9 and 10 present,

respectively, the sample quantiles of Wn and Wn, based on 10, 000 simulated samples of size n = 1000,
versus the theoretical standard normal quantiles. For each estimator, we used the optimal value of k that
minimizes its MSE as in Table 1. It may be seen that the scatters for the Student ¢, distributions, with
v = 3,5,7,9 displayed respectively from top to bottom and from left to right, are quite encouraging
especially for the LAWS estimator £, (Figure 10). Likewise, we conclude from the scatters for the
positive Student ¢, distributions, disﬁlayed in Figures 11 and 12, that the limit Theorem 3 and its
Corollaries 3 and 4 provide adequate approximations for finite sample sizes.

Next, we investigate the normality of the estimators )ZME—]/S*(T,’L) and m*(ﬂl} by comparing the
distributions of

o S X 7 XMES X
Wn_[rnlog(mup) m]m . W"‘[“k’g (mm) m]m

with the limit distribution A(0,1), where 7, = Vk/log[k/(n(1 — 7/))] and Ay = VkAx(n/k). The
scatters in Figures 13 and 14 present, respectively, the sample quantiles of Wn and Wn, based on
10,000 simulated samples of size n = 1000, versus the theoretical standard normal quantiles. For each
estimator, we used the optimal value of k& that minimizes its MSE. The obtained Q-Q-plots for the
Student ¢,-distributions on (0, c0)?, with v = 3,5, 7,9, indicate that the limit Theorems 4 and 5 provide
adequate approximations for finite sample sizes, with a slight advantage for the estimator )@*(rg)
in Figure 13.

B Proofs

For notational simplicity, let F' = Fy be the survival function of Y. It is a consequence of Theorem 2.3.9
in de Haan and Ferreira (2006, p.48) that condition Cy(v, p, A) entails the following second-order con-
dition for the related survival function F"

) 1 F(tx) s _1vx”/7—1
Vo > 0, tlggj AEQ) [F(t) — Y ] =z Y o (B.1)

Proof of Proposition 1. We start by noticing that the equation

_27’—1

fT—]E(Y) 1—7

E[Y —&),] (B.2)

entails, for 7 sufficiently large so that & > 0,

E(Y) 27-1

1— =
& 1—7

E qu _ 1] oY /e, > 1}) | (B.3)



An integration by parts yields

E ([g - 1] Y/ > 1}) = fo F(&x)de

re (1 [ R ) )

Recall that since Y has an infinite right endpoint, & — o as 7 1 1; using together Equation (B.1),
Theorem 2.3.9 in de Haan and Ferreira (2006) and a uniform inequality such as Theorem B.3.10 in de
Haan and Ferreira (2006) applied to the function F', we get after some easy computations

2([& 1o =) =T (75 + 4 <F<157>) ) ®

Plugging this equality into (B.3), we thus get

T(—&T) =07 (1 - Eg)) 271— 1 (1 A (7(157)> 7(1 —1p - 7)<1 ! O(m) _1

and therefore

) oy (1= B o) + 20 - 1+ o) - 4 (5 ) (1o

T & F(&)) v(1—p—n
In particular, as noted in Bellini et al. (2014):
F(&, -
. (&) — (y'=1) and thus & = (v'—1) ¢ (1 +0(1)) (B.5)
-7

as 7 1 1. Because v < 1, a consequence of this is that (1 —7)& = O((1 —7)¢;) > 0as 711 and so

F&) B B (y ' =1 o(1)) — O -t o
T = oy (1= R ) o) - D= A - o))

where the regular variation property of |A| was used. This completes the proof. [ ]

The key element in the proof of Corollary 1 is to apply Proposition 1 in conjunction with the
following generic result.

Lemma 1. Assume that v, V are such that v(t) 1 o0 and V(1) | 0, as 7 1 1, and there exists B > 0

such that
V(r)

F(u(r))
where e(T) — 0 as 7 1 1. If condition Cy(~, p

—U(T) =B e(r 0 T
G~ B (14 e o) + Ao |

— B(1+e(r))

—

,A) holds, with v > 0 and F strictly increasing, then

Br—1

+o(1)D as 71 1.



Proof of Lemma 1. Apply the function U to get
o) UBL eV

U1/v(r)) U(1/v(r))
By Theorem 2.3.9 in de Haan and Ferreira (2006), we may find a function Ay, equivalent to A at infinity,
such that for any € > 0, there is ¢y(¢) > 1 such that for ¢, tx = ty(e),

1 (U(t:c) B ﬂ) ]

€

7P max(z®, x7°).

Ao(t) \ U(1) o | S [@By 7+ (B2 I[2B) + (B/2) 7]
Thus, for 7 sufficiently close to 1, using this inequality with ¢ = 1/V(7) and x = B[1 + e(7)] gives that
1 UB[L+e(n)]/V(r) (1))
AV oty o)
= B+ ey 2Lt ep“)) - 1‘ <e
and therefore
1 UB[L+e(n))/VI(r) o) LB —1 s o
TV oty B )~ M
The desired result follows by a simple first-order Taylor expansion. ]

Proof of Corollary 1. We have in view of Proposition 1 that

I—7 —1 -1
with (1 1) ( )
_b - o 7=y — 7))t 0 as T
e(r) = = —(E(¥) +o(1)) + - 7)A((l ) ) (1 +0(1)) (RS
Using Lemma 1 and recalling that U(1/(1 — 7)) = ¢, gives the result. n

Proof of Theorem 1. The consistency statement is an immediate consequence of the convergence
Yn—[n(l—fn)J,n _ Yn—[n(l—Tn)J,n _ Yn—[n(l—Tn)J,n
G, U1 =m)")  Un/[n(l—m)])
which follows from the regular variation of U and Corollary 2.2.2 in de Haan and Ferreira (2006, p.41).
The asymptotic distribution is obtained by writing

(1+0(1) =1

b o _ (M _ 1> N <§_ _ ) (1+ 0p(1)) — () (1 + 0p(1)),

§Tn (7_1 - 1)—’}/ QTn
where /n(1 — 7,,)r(1,) — A in view of Corollary 1. Since

Va e (0,1), % (7' =1)") =@ "'=1)"{(1-2)" —log(z~" = 1)},
the delta-method entails

=) (=07 1) 1= ) —logly ™ — DT = m()r (B
NG Y ’
from which the result easily follows. ]



Before moving to the proof of Theorem 2, we shall show a handful of useful preliminary results. The
next two lemmas are entirely based on non-probabilistic arguments. In the first one, we use the fact
that 7,(y)/2 is continuously differentiable with derivative

er(y) = |7 — I{y < O}y.
Lemma 2. For all z, ye R and 7 € (0,1),

30 =) = 1e(w) = (@) — [ (rla = 1) = oo

0

Proof of Lemma 2. The result is a simple consequence of the equality

=Y

o= =l = [ s = = [ oalo -y

obtained by the change of variables s = x — t. [ ]

The next result gives a Lipschitz property for the derivative ¢,.

Lemma 3. For all z, he R and 7 € (0,1), we have
pr(x—h) = ¢r(x) = —h|t — Kz < O} + (1 = 27)(z — h)(Hz < h} — Kz < 0}),

and in particular |, (x — h) — @, ()| < |h|(1 — 7 + 20{z > min(h,0)}).

Proof of Lemma 3. Write
¢r(x —h) =, (x) = =h|T — H{z < O} + (z — h)(|7 — Hz < h}| - |7 — Hz < 0})).
Besides,

|7 — {x < h}| — |7 — Iz < 0}
= (1—7)(I{zx < h}— H{zx <0}) +7(f{x > h} — I{z > 0})
= (1-27)(f{z < h} — Kz < 0}),

from which the desired equality follows. The required bound on |¢,(z — h) — ¢, ()] is then obtained
by noting that

T—H{x <0} =7H{z>0}+(1—7)I{x <0} <1—7+ I{z >0} (B.7)

and
|z — h||I{x < h} — I{z < 0}| < |h||H{z < h} — I{zx < 0}] < |h|Z{x > min(h,0)}. (B.8)
Combining (B.7) and (B.8) completes the proof. u



The last result will be useful to derive the limit distribution of the objective function v, (u) described
in (8).

Lemma 4. Pick a > 1 and assume that E|Y_|* < 0 and 0 <y < 1/a. Then
E(lp-(Y = &)I") = a2 (1 = 7)(v"' = 1)B(a,y™" —a)(1 +o(1)) as 711,

where B(s,t) = Sé uw* (1 — )"~ 1du is the Beta function evaluated at (s,t).

Proof of Lemma 4. As a first step, write
E(le-(Y = &)I") = (1= 7)°E([& = Y]" Y < &) + 7°E([Y - &]° Y > &) (B.9)
Furthermore, for any z, y such that = <y, (y — 2)* < 2*7(|z|* + |y|*) by Holder’s inequality, so that
E([& —Y]"HY < &}) < 2 'E([l&]" + Y THY < &}).

The condition v < 1/a ensures that E|Y|* < oo. Recall that {; 1 o0 as 7 1 1 and use the dominated
convergence theorem to get

E(l& —Y]"I{Y <&}) =0(&F) as 711 (B.10)
Besides, an integration by parts and a change of variables entail
a—1
B(IY —&°HY > &) = agt f (£-1) Fouw
N L F(&v)
= 2F (&, . dv.
€FE) | -1 o

Using a uniform convergence theorem such as Proposition B.1.10 in de Haan and Ferreira (2006, p.360)

gives
Q0

E([Y =&Y > &}) = aéﬁ(&)f (v =1 Vdu(l +o(1)) as 71 1.

1
Combining this equality with (B.5) yields

0

E([Y — &)Y > &) =a(1—7) (v ' — 1)f (v =1 Vvl +0(1)) as 711.  (B.11)

1

Combining (B.9), (B.10), (B.11) and using the change of variables u = 1 —v~! gives the desired result.
u

Proof of Theorem 2. Use Lemma 2 to write, for any u,

Ynlu) = —uT1n+T2n( ) (B.12)

n

ﬁzsm% (¥ = &) = 2,

1 & u€ry /A/n(1=Tn)
J (()07'” (Y; - £Tn - t) - P (E/Z - ng))dt

with Tl,n

and Tgm(U) = —TZ
Tn =10



The random variables S,,; are independent, identically distributed, and centered since

(where a differentiation under the expectation sign was used). We shall prove that

Tl,n

d

for which it is sufficient to show that for some 6 > 0,

nk|S, 1|+
[n Var(S,,1)]'+%/?2

— 0 as n—

and use Lyapunov’s criterion. Choose 0 > 0 small enough so that v < 1/(2 + 9) and apply Lemma 4 to
get
nE|S, 1>

[n Var(S,,1)]'+92

Convergence (B.13) follows and especially, Lemma 4 entails

— O([n(1 —7,)]7%?) - 0 as n — .

2
Ty~ N (0, : _727) . (B.14)

We now turn to the control of the second term T ,(u). Write

n u€r, /A/n(1—Ty)
Tgm(u) = Tgm(u) ~

0 [E(SOTn (Y - ng - t)) - E(gpm (Y - f,rn))]dt (B15)

The random term T3, (u) is a sum of independent, identically distributed and centered random variables,
which we shall examine after having controlled first the nonrandom term on the right-hand side of (B.15).
By Lemma 3, we obtain

E(@Tn (Y - éTn - t)) - E(SOTTL (Y - ng))
— (1=2n)E(Y =&, —t)(H{Y <&, +t} — I{Y <&.}))
— {E(|r — Y <&3)). (B.16)

Clearly B
E(lr, — Y < &) = 1 '(&) + (1= ) F(&).
It therefore follows from (B.5) that

E(lr, — Y <&, }) =77 (1 = 7)(1 +0(1)) (B.17)
as n — 0. Let further ¢(t) := E((Y — t) I{Y > t}) and observe that

E(Y =&, —t)(HY <&, +t} - Y <&.1) = E((Y =&, —0)IY > &, } - Y > &, +1}))
= Q/}(ng) - 1/}<§Tn + t) - tﬁ(&m)



Integrating by parts entails

Erntt . 1+t/r, T

from which we deduce that

t F(&,)

We now bound the term into brackets as follows: let I,,(u) = [0, |u|&;, /A/n(1 — 7,)] and write

& [T F6w)
J

o Wt/ B(E.
E((Y &, — (Y <&, + 1} - HY <£,}) = (F(&,) (f—f Fent) g, 1) .

sup

ST gy — 1
tleln(u) | T

F(&s,)

f1+t/§m [F_’(ffnv) -~ U—l/V] dv
1 F(&,)

< sup gﬂ
itleln(u) ||

= o(1)

+o(1)

by the uniform convergence theorem for regularly varying functions [see Theorem 1.5.2 in Bingham et
al. (1987), p.22], the continuity of v — v~'/7 at 1 and the convergence n(1—7,) — 0. As a consequence,
by (B.5), the equality

E((Y &, — )(IY <&, +1} — [Y < &,})) = t(1 — 7)ra(0) (B.18)

holds with 7,(¢) — 0 uniformly in ¢ such that |t| € I,,(u). Combine (B.15), (B.16), (B.17) and (B.18) to
get
2

Tia(w) = 5 (1 0(1)) + Tya(u), (B.19)
n u€r, /A/n(1—Tn)
Tn j=1 Y0

where the S, ;(v) == ¢, (Y —v) — E(p,,(Y; — v)) are independent copies of S,,(v) := ¢, (Y —v) —
E(¢s, (Y —wv)). Thus

Var(T5 ,,(u)) = % Var

Tn

0

Ury /A/n(1=Tn)
(J [Sn(&r, +1) — Sn(ffn)]dt> .

We now notice that for any v, S,(v) is centered and thus

n

Var(Ty.n(u) = - J
& Ji0,ugr, /n(i=—mm)]2

(where the integrability properties of Y were used to switch integrals and expectation). By the Cauchy-
Schwarz inequality,

E([S(&r, + 8) — Sn(&n)1[Sn(&r + 1) — Su(&n))ds dt

J\uf-,—n/q /n(1—7y)

0

Var(Ty (u) < - ( VE(S: (&, +1) — Sn(&n)P)dt) : (B-20)

Tn

9



Applying Lemma 3, we get for any ¢
1S, (&ry +1) — Sn(&)] < 2JH[1 — 7 + T{Y > &, + min(t,0)} + F(&,, + min(t,0))].
Using the inequality |a + b + ¢|* < 3(a® + b* + ¢?) yields
E(Sn(&r, +1) = Sul&r,)I*) < 126°[(1 = 7)* + F(&, + min(t,0))(1 + F(&, + min(t, 0)))].
Finally, using again the regular variation property of F' and the convergence n(1 — 7,) — o,

F(&, + )
F(&,)

in view of (B.5). Using (B.5) once again and combining (B.20), (B.21) and (B.22) yields

ey /(1 70) 1
[ )-oir) -
n(l—7,)

0

sup [F(&, +5) — F(&,)| = F(&,) sup

|sleln (u) |sleln (u)

1] = ofF(€.) = o1 = )

n

Var (T3, (u)) = O T(l —Ty)

Tn

1t] dt

as n — . Whence the convergence T3 ,,(u) -, 0; combining (B.12), (B.14) and (B.19) entails

2 2
wn(u)—d>—uZ 1_727—1—3—7 as n — oo

(B.21)

(B.22)

(with Z being standard Gaussian) in the sense of finite-dimensional convergence. As a function of u,

this limit is almost surely finite and defines a convex function which has a unique minimum at

. [ 2y d 2 27
v 1—2y N<O’71—27

Applying Theorem 5 in Knight (1999) completes the proof.

Proof of Theorem 3. By the equalities (9) and (10), we have

= ~ = ~
log gi = log (qT’IL) + log gﬂ — log (%) + log <§ﬂ> — log <§i> .
f T} QT,’l 5 Tn qr, qr, QT;L

10



Furthermore, the convergence log[(1 — 7,,)/(1 — 7/,)] — o0 entails
n(l—7,) ((/1\;—’ ) d
log({ —=| — T, B.23
log[(1 = 7,)/(1 = 7,)] G, (B2

n(l—1,) Eﬂ _ N . .
log[(1 — 7,)/(1 — 72)] 1Og< ) = Op(1/log[(1 —7,)/(L = 7,)])

— op(1), (B.24)

n(l—7,) I\ _ ol (1 L
logl(1 — )/ — 7] ( ) Op (1/10g[(1 = 7)/(1 = 7))
= oe(l), (B.25)

1og[<1_n(7i>;<?im] [1g<§_)_1g(§_)] - o ﬂ)

log[(1 —7,)/(1 —7})]
= o(1). (B.26)

Here, Theorem 4.3.8 in de Haan and Ferreira (2006, p.138) was used to show (B.23), while (B.24)
and (B.25) follow from the distributional convergence assumption on gm and from Theorem 2.4.1 in de
Haan and Ferreira (2006, p.50), respectively. Convergence (B.26) is a consequence of Corollary 1 and,
in what concerns the relationship (7)) = O(r(7,)), of the regular variation of s — ¢;_s—1 and |A|. A
combination of these convergence results and a use of the delta-method give the desired conclusion. =

Proof of Proposition 2. We shall actually prove the more general statement

lim EXY > J R(zY7x 1)d (B.27)
t—o0 UX 1/Fy

which contains both Proposition 1 in Cai et al. (2015) and our desired result (13), because &y, — ©
as 7 7 1. For any ¢t > 0,

E(X]Y > t) _ 1 fooIP’(X>s,Y>t)
Ux(1/Fy(t)) Ux(1/Fy(t)) Jo B Fy(t) B B B
UX(l/EY(t)) B B FY(t_) B
_ JOO P(Fx(X) < Fx(Ux(1/Fy(t))2), Fy(Y) < Fy(?)) (B.28)
0 Fy(t) . '

Note now that because X is heavy-tailed, Fx(Tx) ~ 7/ Fx(T) as T — oo and we have that:

Vo >0, Fx(Ux(1/Fy(t)z) ~ 2 YXFy(t) as t — oo,

11



Thus, by condition JC(R):

P(Fx(X) < FX(UX(%FY@))@:FY(Y) < Fy(t))
Fy(t)

Ve >0, lim = R(z7V7x 1), (B.29)
It only remains to show that the integral in (B.28) and the limit in (B.29) can be interchanged, and
this can be done exactly in the same way as in the proof of Proposition 1 of Cai et al. (2015), so we
omit the details.

To show the second convergence result (14), we apply (B.27) successively to ¢t = &y, and ¢t = ¢y, in
conjunction with (4) to get

XMES Ux(1/Fy &y, Fy(gy )\ _
lim SMEST) _ jyg Ix B ) _ gy (ﬂ) T R
T QMES(T) U Ux(1/Fy(qvy)) 711 \Fy(§vr)
u
Proof of Theorem 4. We start by the case when X > 0 almost surely. In this situation,
— L XY > &y,
XMES(r,) = Zﬁj i > fvin}
i {Yi > &vir )
Write then
XMES (/) XMES(7,) XMES(7,)) (1 =7\ %
log | ——=+| = log| ==+ +log
XMES(77) XMES(7,,) XMES(72) \1—7,
1—-r71
Yx — 1 “ .
+ (9x —7x)log (1_77,1)
Using the delta-method, the proof shall then be complete provided that
XMES(7,)
Lo [ =222 1) = 0p(1 B.30
n(i—7) <XMES(Tn) ) (1) (1.30)
and
XMES(7,) (1—71\ ¥
1— L — 11 =0(1). B.31
n(l =) (XMES(T,Q) (1—Tn) o) (B-31)
To show (B.30), write
XMES(7n) _ E(lysern)) 5 Simt Xilivisern) et Lvisern) 2imt Kilyisdy,,) (B.32)
XMES(r.) 3 200 Lyviseyry BE(XLpysgy ) 2001 Lying,, ) 2ict Xilivisey,,)
Firstly,
127? I
1= {}/7:>EYT }
n(l—7,) <” L s 1) = Op(1) (B.33)
EMy>ey..,})
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because the variance of the term on the left-hand side is bounded in view of Proposition 1. Secondly,

i i1 Xilysey ) 1)] (1 - 7)E(X°Lpysey,, )
E(XLiy>ey.,,}) [E(XTy ey, 1))
1-7) EX4Y >&,)
P(Y > &yr) [E(XTY > &vir)]?

v [V = )

Applying Proposition 1 and then (13) in Proposition 2,

%Z?:l Xilyi>ey..,) _ _ E(X?Y > &y,
Var [ il =) ( E(XTpoe,) 1)] =0 ([Uxu/ﬁy@y,m))]?) |

Notice then that condition JC(R) is equivalent, for all z and y which are not both infinite, to

lim tP(X > Ux(t/x),Y = Uy(t/y)) = R(z,y).
—00
Since (Ux)? = Ux2 (because X > 0), this entails

lim P(X? > Ux2(t/2),Y = Uy (t/y)) = R(z,y).

t—0o0

Hence, (X?,Y) also satisfies condition JC(R). Thus, by (13) in Proposition 2,

EQCY > bvm)  EQC)Y > &)
[Ux(1/Fy (&) Ux2(1/Fy(éy.r,))

1 _ n i=1 7 [ Y, ™ _ 1 _ 1
Var[ (=) ( E(XTiysey, y) )] 04)

- o)

which entails

and therefore Lo
2 21 Xillvisey )
E(XTy>¢y.. 1)

Thirdly, by Theorem 2, Ey,m is 4/n(1 — 7,)-relatively consistent, so that for any € > 0, we may find
K > 0 such that

n(l - 7,) ( - 1) — Op(1). (B.34)

gyﬂ—n _ 1‘ < K

&y h n(l—1,)

with probability larger than 1 — ¢ eventually. In what follows we assume that K is chosen so that this
is the case. With probability larger than 1 — ¢ eventually, we then have

-1

‘Z’L 1 {Y>§y7—n}

Z I]I{Y>§Y‘rn}

C Zim Lyioey, 0okt B N
Y1 Lyvisey) ’ Y1 Lyvisey)

) |

13



By straightforward variance calculations,

Yiic1 ]I{Yi>§y’7_n(1iK/\/m)}
Zi:l ]I{Yvi>€y,7'n}

P(Y > &y (1 £ K/y/n(1 — 7)) .

]P)(Y > gYﬂ"n)

= Op ( n(l—1,)

By a uniform inequality such as Theorem B.3.10 in de Haan and Ferreira (2006) applied to the function

Fy, we get
P(Y > &y, (1 £ K/\/— 1=0 (%) (B.35)

PY > &vr,) n(l —1,)

and therefore

i Lyisg
n(1— ) | S =) 1) 2 0p(1). (B.36)
Zi:l ]I{Yi>§Y,7—n}

Lastly, write with probability larger than 1 — ¢ eventually:

i Xilyog, )
Z?:l Xi]I{Yi>§Y,Tn}

< max Zi:IXiH{mgy,m(Hmen_1 ZileiH%fm(l—K/mﬂ_1
Yic1 Xilyiey ., ’ 2o Xilvizey.r,)

By a straightforward modification of (B.36),

I (Zz p Xl (Yi>€y r (1£K /A /n(1—70) 1)

-1

Zi:l X%]I{Ypfy,m}

]E(X]I{Y>§Y,m (1£K/4/ n(l—Tn))})

1
E(XLysey,.})

= Op ( n(l—1,)

) |

Applying (B.35) and (13) in Proposition 2, we obtain
Zi:l Xi]I{Yi>€Y,m(1iK/\/ n(1-mn))}
n(l—r1,) — —1
2ic1 Xilviey 1)
_ 0 T IE(X|Y>§y77n(1iK/«/n(1—Tn)))_1
’ " E(XTY > &)

- 0 (1_ (X|Y>§Y’T 1+K/\/T7'n X|Y>§YTn)
-\ ™) Ux(1/Fy(&vr,))

It is therefore enough to show that

E(X|Y > &y, (1+ K/A/n(1— 1)) = B(X|]Y > &) =Op< 1 ) |
n(

UX(l/FY(ﬁY,m)) 1—1,)

14



Because expectiles and quantiles are asymptotically proportional in view of Corollary 1:

_ -1 _ 1\—w 1
& = (8 =D gy, <1+O< n(l_Tn)»,

this can be achieved by using condition JCy(R, 8, k) in the same way followed by Cai et al. (2015)
to examine the convergence of the term J, that they introduce in the proof of their Proposition 3, see
pp-438-439 therein. We then get

et Xi]I{Y->§ }
n(l—r) [ =2 o) ) Z 0p(1). (B.37)
<Zi_1 Xi]I{Yi>5Y,m}

Combining (B.32), (B.33), (B.34), (B.36) and (B.37) concludes the proof of (B.30).
Now, to prove (B.31), notice first that

o XMES(r) (% o e 1)
S ">(Ux(1/Fy<£yTn>> J, ’”d) o) (B.38)
(

and +/n(1—m7,) < XMES(r,) —JOOR($_1/7X,1)daZ) = 0O(1); (B.39)

Ux(1/Fy(&vr))  Jo

this can be verified using condition JCs(R, 3, k) along the lines of proof of Lemma 3 and (28) in Cai et
al. (2015), because expectiles and quantiles are asymptotically proportional. Besides, by Proposition 1,

W =7) (_F—Y(f”” -6 =) = o)

1-—7,
F !
and +/n(1 —7,) < r(bvn) _ (! — 1)) - 0(1)
1—-7
so that by condition Cy(vx, px, Ax) and convergence /n(1 — 7,)Ax((1 — 7,) ') = Ay € R,
nl A\ X
T Ux(l/iY(fY,rn)) (1 Tn> 1] =0q). (B.40)
Ux(1/Fy(&yq)) \1 —n

Combining (B.38), (B.39) and (B.40) completes the proof of (B.31).

We now show how the condition that X > 0 almost surely can be dropped in our framework. Define
X, = max(X,0) and
XMES™(7,,) :== E(X4|Y > &t ),

i.e. XMES™ is the marginal expected shortfall of the positive part of X, and write

XMES (7))  XMES () XMES™ (7"
XMES(r) ~ XMES* (/) XMES(7/)

(B.41)

15



The first part of the proof of Theorem 2 in Cai et al. (2015), see pp.440-441 and in particular condition
(35) there, shows that X satisfies condition JCs(R, 3, k). As a consequence, we may apply the result
we have just shown to the random variable X, to get

n(l—7,) M*(Tﬁ) AR
Togll1 — )/ — 2] (XMES*(%) 1) L (B.12)

Let now X_ = X — X, so that

XMES(7)) E(X_|Y > &)
Sl S VA | I’ B.4
XMES*(77) " XMES™ (/) (B.43)

Since &y, T 00, we have for n large enough that

XMES*(7})  XMES*(r})
Ux(1/Fy(&vm))  Ux+(1/Fy(Evm))
so that XMES+( 3 ”
=2 ) | R(z"Y% 1)d
iy el NG

as n — oo and therefore

XMES() | (E(X_IY > éy;,g)) | (B.A44)

XMES*(r;) Ux(1/Fy(§viry))
Since extreme expectiles and extreme quantiles are asymptotically proportional, we have as in Cai et
al. (2015) that

1
IE(X_|Y > &) = O ((1— 7)) 07007 and — =0 ((1—7)%). (B.45)
( ) Ux(1/Fy(§v.r))
Plugging this into (B.44) entails
XMES(7) s 1
) 14 0((1=7) ) =1 - . B.46
XuEs ()~ O )=+l e (B.46)
Plugging (B.46) and (B.42) into (B.41) concludes the proof. n

Proof of Theorem 5. Write

XMES (7)) QMES (7)) (Fyt — 1) e XMES(7)
o ( XMES(7) ) o (W) s (#) s ((W Y —) |

Firstly, by Theorem 2 in Cai et al. (2015),

(1 — 7) QMES (1) \
logl[(1 — r)/(1 — )] % ( QMES(7/) ) b (B.47)

16




Secondly, writing

tog (%) = —[(Ax — vx)1log(Ay" — 1) + vx (log(Ay" — 1) —log(hy' — 1)) ]

we get

) G-
tog(1 — /(1 — )] 8 ( ) 0 (B.48)

Thirdly, by (B.39), which is

n(l—1,) ( XMES™(r,) JOO R(z~Yx 1)dx> =0(1)

Ux+(1/Fy(&vr))  Jo

together with (B.46) and the equality Uy+ = Ux in a neighborhood of infinity, we obtain

—— XMES(a) (% o i )
5 ")<UX<1/FY<§Y,¢>> J, " ’”d> O)

The similar relationship (Cai et al., 2015)

QMES(r,) *
n(l=7) (UX(l/FY(qY,T{l)) N J

0

then yields

1 vy XMES(7) o e Ux (U Fy (via)) 1
og (05 - 1 —QMES(%))—lg(wY 1 UX<1/Fy<qy,¢>>>+O<—n<1—m>>' (B.49)

Now, by Proposition 1,

/
T'I’L

w7 (% i - 1>> - o)

and Fy(Qyﬂ-yll) = 1 — 7/ by continuity of Fy, so that by condition Cy(vx,px,Ax) and convergence

A/l —1)Ax((1—7,)"1) — 0,

Ux(1/Fy (Eyn
a0 [t -y R S]] ) o

Ux(1/Fy(av,))

In conjunction with (B.49), this entails
nl— 1) B XMES(7!)
1 — 1)< B.50
e (07 Qs (B

A combination of (B.47), (B.48), (B.50) and the delta-method completes the proof. n
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Proof of Proposition 3. We start by obtaining an equivalent for the numerator of 1 — 7/ (ay,), which
is equal to

G E ([i _ 1] IY g, > 1}) |

Qn

Just as in the proof of Proposition 1, we integrate by parts to obtain

Since ¢q, — % as n — o, we can apply Proposition B.1.10 in de Haan and Ferreira (2006) to the
function F' to get

E ([i - 1] Y Jgu, > 1}> — Flga) (L + 0(1)) (1= o) —L—(1 + o(1)).

Qn 1_,)/

To obtain an equivalent of the denominator, we note that

E ’Y - qan| = qanE

Y
1] = g1+ 0(1)
where we used the dominated convergence theorem together with the fact that q,, — 2. Wrapping
up, we obtain
E(Y = go, | Y > qa,}) gl
i 2 = (1 —a,)——(1 +0(1))
E|Y — ¢a,] 1—n~

which is the desired result. [ |

Proof of Theorem 6. Our first goal is to show that

1 -7 (an)
— < 1= 1). B.51
1 -7/ () Oe(1) (B.51)
To this end, we write
L fa) A 1-q (G-ep
ST T T T 7 (B.52)
1 =77 (an) 717 1-7(an)
The delta-method yields
v, 1-79
n( 7')<7><1_7 ) Op(1) (B.53)

Recall now (B.4) in the proof of Proposition 1 which here translates into

(1—ap)—L—
= 1= O[A(/F(,))] = O[A((L—a,) )]
© = o)

— O(1/\/n(1— 7)), (B.54)

18



because qa, = & (a,) and using the regular variation property of A. Write further

Bl 1] = Bl e |+ B[ (1 ) e | 1
v E(Y 1 _
_ E[q__l'ﬂ{y>qan}:| _w_F(qan)

= O(max{l —an,1/¢s,}) = O (1/qa,) = o(1//n(1l —7,)) (B.55)

where we successively used (B.54), the dominated convergence theorem, the relationship 1 — o, =
0(1/q,,,) valid because 0 < v < 1, and the regular variation property of ¢t — ¢;_;—1. Combining (B.52),
(B.53), (B.54) and (B.55) with the definition

E{|Y - qOén| ﬂ(Y > qan)}

=7 () =

results in (B.51).

The idea to prove (i) is now to write

n (1= T (1= [ (1) T
N G e =) X{(ﬁ) f} (:50)

We have

140 (—n(ll_ m) (B.57)

by a Taylor expansion. Furthermore

(1 — Tn(an)

1—m7,

7% R R
) & = &1 (am)

by definition of the class of estimators E*. From Proposition 3, we conclude that the conditions of
Corollary 3 are satisfied if the parameter 7, there is replaced by 7/ (cv,). By Corollary 3 then:

n(l— 1) Eow R
log[(1 = 7,) /(1 = 77 ()] (%(an) 1) -

19




Finally

| 1—17, | 1—m7, . 1—a,
og|l—— | =log| —— og|——
& 1— 7 () & 1—a, & 1 =7 ()

and the first term above tends to infinity, while the second term converges to a finite constant in view
of Proposition 3. Consequently

log [%] — log “:;’;] (1+ o(1)).

Together with the equality £ (a,) = ¢a, Which is true by definition of 7} (), this entails
n(l—m,) g:/ (an) d
-1 —T. B.58
TogI(1 — 7)/(1 — )] ( o (8:58)

Combining (B.56), (B.57) and (B.58) completes the proof of (i). The proof of (ii) is similar (just apply
Corollary 4 instead of Corollary 3 when needed) and is therefore omitted. [ ]

Proof of Theorem 7. Again, we only show how to prove (i), the proof of (ii) being similar. Write

o ¥y
1= Tlan) T”(O‘”>> XMES(7,)

1—m7,

N (G

The first term is controlled by using (B.51), and the second one is handled by arguing just as in the proof

OIES (i) =

of Theorem 6, with 5 replaced by XMES throughout and by applying Theorem 4 instead of Corollary 3.
We omit the details. m
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Figure 1: Root MSE estimates of E;, (k)/&r (solid line) and E;, (k)/&r (dashed line), as functions of k,
for the ts3, ts, t7 and to-distributions, respectively, from top to bottom and from left to right. Results for
the sample size n = 100.
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Figure 2: As before—Results for the sample size n = 1000.
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Figure 3: Root MSE estimates of E;, (k)/&r (solid line) and f;, (k)/&r (dashed line), as functions of k,
for the positive Student ts, ts, t7 and to-distributions, respectively, from top to bottom and from left to
right. Results for the sample size n = 100.
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Figure 4: As before—Results for the sample size n = 1000.
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Figure 5: Bias estimates of E;, (k)/& (solid line) and f;, (k)/&r (dashed line), as functions of k, for
the ts, ts, t7 and ty-distributions, respectively, from top to bottom and from left to right. Results for the
sample size n = 100.

26



2.0~

BIAS

1.0 -

40

40

80 120 160

80 120 160

Figure 6: As before—Results for the sample size n = 1000.
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Figure 7: Bias estimates of E;, (k)/& (solid line) and f;, (k)/&r (dashed line), as functions of k, for
the positive Student ts3, ts, t7 and to-distributions, respectively, from top to bottom and from left to right.
Results for the sample size n = 100.
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Figure 8: As before—Results for the sample size n = 1000.
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Figure 9: (-Q-plots on quality of asymptotic approzimations. Each plot shows the sample quantiles of
W,, versus the theoretical standard normal quantiles, based on 10,000 samples of size n = 1000. Data
are simulated from the Student t, with v = 3,5,7,9, respectively, from top to bottom and from left to
right.
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Figure 11: Q-Q-plots on quality of asymptotic approximations. Each plot shows the sample quantiles of
W,, versus the theoretical standard normal quantiles, based on 10,000 samples of size n = 1000. Data
are simulated from the positive Student t,, with v = 3,5,7,9, respectively, from top to bottom and from
left to right.
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Figure 13: Q—-Q-plots of the sample quantiles of W\n versus the theoretical standard normal quantiles,
based on 10,000 samples of size n = 1000. Data are simulated from the Student t,-distribution on
(0,00)? with v = 3,5,7,9, respectively, from top to bottom and from left to right.
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Figure 16: (a) Hill estimates 7y based on weekly loss returns of market index (dashed), along with yx
based on weekly loss returns of three investment banks: Goldman Sachs (solid), Morgan Stanley (dashed-

dotted), T. Rowe Price (dotted). (b)-(d) The estimates MS*(()(”) in dashed line and MS*(?;L(%L))
in solid line for the three banks, with n = 522 and o,, =1 —1/n.
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