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We consider a mathematical model which describes the frictionless contact between a
piezoelectric body and a foundation. The contact process is quasi-static and the
foundation is assumed to be insulated. The novelty of the model consists in the fact
that the material behaviour is described with an electro-elastic–visco-plastic
constitutive law and the contact is modelled with a subdifferential boundary
condition. We derive a variational formulation of the problem which is in the form of
a system coupling two nonlinear integral equations with a history-dependent
hemivariational inequality and a time-dependent linear equation. We prove the
existence of a weak solution to the problem and, under additional assumptions, its
uniqueness. The proof is based on a recent result on history-dependent
hemivariational inequalities obtained by Migórski, Ochal and Sofonea in 2011.

1. Introduction

The piezoelectric effect is characterized by the appearance of electric charges on
surfaces of some crystals after deformation. Its reverse effect consists of the gen-
eration of stress and strain in crystals under the action of the electric field on the
boundary. Materials undergoing piezoelectric effects are called piezoelectric mate-
rials. Their study requires techniques and results from electromagnetic theory and
continuum mechanics. Foundations of the theory of piezoelectricity were laid down
by Voigt [26], who provided the first mathematical model of a linearly elastic mate-
rial, which takes into account the interaction between mechanical and electrical
properties. General models for elastic materials with piezoelectric effect can be
found in [15–17,24,25], and more recent models in [1, 4, 27,28].

Currently, there is considerable interest in contact problems involving piezoelec-
tric materials. Indeed, such problems are important from a practical point of view,
since most of the measuring equipment used in radioelectronics and electro-acoustics
involve piezoelectric sensors in contact with rigid or deformable supports. Static
contact problems for electric–elastic materials were considered in [2,12], where var-
ious numerical approaches based on finite-element discretization were presented
together with numerical simulations. A slip-dependent frictional contact problem
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for electro-elastic materials was studied in [21], and a frictional problem with nor-
mal compliance for electro-viscoelastic materials was considered in [22]. In the latter
two references, weak formulations of the corresponding problems were derived and
existence and uniqueness results for the weak solutions were proved.

The present paper is devoted to the study of a mathematical model that describes
the frictionless contact between a piezoelectric body and a foundation, within the
mathematical theory of contact mechanics. We model the material behaviour by a
constitutive law of the form

σ′ = Aε(u′) − PTE(ϕ′) + G(σ, ε(u),D,E(ϕ)), (1.1)

D′ = βE(ϕ′) + Pε(u′) + G(D,E(ϕ),σ, ε(u)), (1.2)

in which σ denotes the stress tensor, u is the displacement field, ϕ is the electric
potential and D represents the electric displacement field. Also, ε(u) denotes the
linearized strain tensor, E(ϕ) = −∇ϕ is the electric field, A is the elasticity tensor,
P represents the third-order piezoelectric tensor, PT is its transpose and β denotes
the electric permittivity tensor. Moreover, G and G are given nonlinear constitutive
functions and, here and below, the prime denotes the time derivative with respect
to the time variable.

Note that when G = 0 and G = 0 the constitutive law (1.1), (1.2) leads to the
constitutive law of a linearly electro-elastic materials, that is,

σ = Aε(u) − PTE(ϕ),

D = βE(ϕ) + Pε(u).

Contact problems with such materials have been considered in [2,12,21]. Also, in the
purely mechanical case (i.e. P = 0 and G independent of D and E(ϕ)), constitutive
equations of the form (1.1) were considered in [6, 11]. There, various examples
and mechanical interpretations concerning the corresponding elastic–visco-plastic
constitutive laws were provided. In the purely electric case (i.e. P = 0 and G
independent of σ and ε(u)), electric relationships of the form (1.2) were considered
in [23]. Constitutive equations of the form (1.1), (1.2) in which G does not depend
on D and G does not depend on σ were introduced in [10]. There, the unique
solvability of a piezoelectric contact problem was proved, error estimates for fully
discrete schemes were obtained and numerical simulations were performed. Finally,
a frictionless contact problem for piezoelectric materials with a constitutive law of
the form (1.1), (1.2) has been considered in [3]. There, the contact was modelled
with normal compliance and unilateral constraint and the weak solvability of the
problem was provided by using arguments of variational inequalities and convex
analysis.

Besides the use of the general constitutive law (1.1), (1.2), the novelty of this
paper arises in the fact that here we assume that the contact is described with a sub-
differential boundary condition, associated to a non-convex potential. Considering
such conditions allows us to describe the contact with various foundations, includ-
ing foundations with a linearly elastic, elastic perfectly plastic or rigid perfectly
plastic (with or without hardening or softening) behaviour, as shown in [14, ch. 7].
Also, it leads to a new and non-standard mathematical model that we investigate
by using an abstract argument developed in [13].
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We also mention that, besides existence and uniqueness results, a complete analy-
sis of evolution mathematical models includes the investigation of the regularity and
the long-time behaviour of solutions as well as error estimates for effective approx-
imation schemes. Details can be found in [29, 30] and the references therein. This
analysis is important and, for our piezoelectric contact problem, it will be studied
elsewhere.

The rest of the paper is structured as follows. In § 2 we present some preliminary
material. In § 3 we describe the model of the process of frictionless contact between
the electro-elastic–visco-plastic body and the foundation. In § 4 we list the assump-
tions on the data and derive a variational formulation of the model. Then we state
our existence and uniqueness results (theorem 4.1). The proof of the theorem is
provided in § 5. It is based on a recent result in the study of history-dependent
hemivariational inequalities obtained in [13].

2. Preliminaries

In this section we introduce a preliminary material to be used in the variational
analysis of the piezoelectric contact problem that will be introduced in the next
section. For further details, we refer the reader to [5,7,8,19] as well as to the recent
monograph [14].

Given a normed space (E, ‖ · ‖E) we denote by E∗ its dual space, and 〈·, ·〉E∗×E

will represent the duality pairing of E and E∗. Let h : E → R be a locally Lipschitz
function. The generalized directional derivative of h at x ∈ E in the direction v ∈ E,
denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x,λ↓0

h(y + λv) − h(y)

λ

and the generalized gradient of h at x, denoted by ∂h(x), is a subset of a dual space
E∗ given by

∂h(x) = {ζ ∈ E∗ | h0(x; v) � 〈ζ, v〉E∗×E for all v ∈ E}.

A locally Lipschitz function h is called regular (in the sense of Clarke) at x ∈ E
if for all v ∈ E the one-sided directional derivative Dh(x; v) exists and satisfies
h0(x; v) = Dh(x; v) for all v ∈ E. The symbol w-E is used for the space E endowed
with the weak topology. The space of all linear and continuous operators from a
normed space E to a normed space F is denoted by L(E, F ).

Let Ω ⊂ R
d be an open bounded subset of R

d with a Lipschitz continuous
boundary ∂Ω and Γ ⊆ ∂Ω. Let Y be a closed subspace of H1(Ω; Rs), s � 1,
H = L2(Ω; Rs) and Z = Hρ(Ω; Rs) with ρ ∈ (1/2, 1). Denoting by i : Y → Z the
embedding, by γ : Z → L2(Γ ; Rs) and γ0 : H1(Ω; Rs) → H1/2(Γ ; Rs) ⊂ L2(Γ ; Rs)
the trace operators, we get γ0v = γ(iv) for all v ∈ Y . For simplicity, in what follows
we omit the notation of the embedding i and we write γ0v = γv for all v ∈ Y .

From the theory of Sobolev spaces, we know that (Y, H, Y ∗) and (Z, H, Z∗) form
evolution triples of spaces and the embedding Y ⊂ Z is compact. We denote by c0

the embedding constant of Y into Z, by ‖γ‖ the norm of the trace in L(Z, L2(Γ ; Rs))
and by γ∗ : L2(Γ ; Rs) → Z∗ the adjoint operator of γ. We also introduce the spaces

Y = L2(0, T ;Y ), Z = L2(0, T ;Z) and Ĥ = L2(0, T ;H),
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where 0 < T < +∞. Since the embeddings Y ⊆ Z ⊆ H ⊆ Z∗ ⊆ Y ∗ are continuous,
it is known that the embeddings Y ⊆ Z ⊆ Ĥ ⊆ Z∗ ⊆ Y∗ are also continuous, where
Z∗ = L2(0, T ;Z∗) and Y∗ = L2(0, T ;Y ∗).

Consider now the operators A and S, and the functions j and f , which satisfy
the following conditions.

(C1) A : (0, T ) × Y → Y ∗ is such that

(a) A(·, v) is measurable on (0, T ) for all v ∈ Y ,

(b) A(t, ·) is hemicontinuous and strongly monotone for almost every (a.e.)
t ∈ (0, T ), i.e.

〈A(t, v1) − A(t, v2), v1 − v2〉Y ∗×Y � m1‖v1 − v2‖2
Y

for all v1, v2 ∈ Y with m1 > 0,

(c) ‖A(t, v)‖Y ∗ � a0(t) + a1‖v‖Y for all v ∈ Y , for a.e. t ∈ (0, T ) with
a0 ∈ L2(0, T ), a0 � 0 and a1 > 0,

(d) A(t, 0) = 0 for a.e. t ∈ (0, T ).

(C2) S : Y → Y∗ is such that

‖Su1(t) − Su2(t)‖Y ∗ � LS

∫ t

0

‖u1(s) − u2(s)‖Y ds

for all u1, u2 ∈ Y, for a.e. t ∈ (0, T ) with LS > 0.

(C3) j : Γ × (0, T ) × R
s → R is such that

(a) j(·, ·, ξ) is measurable on Γ × (0, T ) for all ξ ∈ R
s and there exists

e ∈ L2(Γ ; Rs) such that j(·, ·, e(·)) ∈ L1(Γ × (0, T )),

(b) j(x, t, ·) is locally Lipschitz on R
s for a.e. (x, t) ∈ Γ × (0, T ),

(c) ‖∂j(x, t, ξ)‖Rs � c̄0 + c̄1‖ξ‖Rs for a.e. (x, t) ∈ Γ × (0, T ), all ξ ∈ R
s with

c̄0, c̄1 � 0,

(d) (ζ1 − ζ2) · (ξ1 − ξ2) � −m2‖ξ1 − ξ2‖2
Rs for all ζi, ξi ∈ R

s, ζi ∈ ∂j(x, t, ξi),
i = 1, 2, for a.e. (x, t) ∈ Γ × (0, T ) with m2 � 0,

(e) j0(x, t, ξ;−ξ) � d̄0(1 + ‖ξ‖Rs) for a.e. (x, t) ∈ Γ × (0, T ), all ξ ∈ R
s with

d̄0 � 0.

(C4) f ∈ Y∗.

With these data we consider the problem of finding an element y ∈ Y such that

〈A(t, y(t)), z〉Y ∗×Y + 〈Sy(t), z〉Y ∗×Y +

∫

Γ

j0(t, γy(t); γz) dΓ � 〈f(t), z〉Y ∗×Y (2.1)

for all z ∈ Y , for a.e. t ∈ (0, T ). To avoid any confusion, we note that, in (2.1) and
below, the notation Sy(t) stands for (Sy)(t), i.e. Sy(t) = (Sy)(t) for all y ∈ Y and
for a.e. t ∈ (0, T ). ∂j and j0 denote the Clarke subdifferential of a locally Lipschitz
function j(x, t, ·) and its generalized directional derivative, respectively.
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Following the terminology introduced in [13] we refer to hemivariational inequal-
ities of the form (2.1) as history-dependent hemivariational inequalities. The main
feature of such inequalities consists in the fact that they contain the term in S,
which, at any moment t ∈ (0, T ), depends on the history of the solution up to
the moment t. This feature is different from the time-dependent hemivariational
inequalities studied in the literature, in which, usually, the operators involved in
are assumed to depend on the current value of the solution y(t).

The following existence and uniqueness result for the hemivariational inequality
(2.1) was recently proved in [13].

Theorem 2.1. Assume that (C1), (C2) and (C4) hold. If one of the following
hypotheses is satisfied, then inequality (2.1) has a solution y ∈ Y:

(i) conditions (a)–(d) of (C3) and m1 > max{
√

3c̄1, m2}c2
0‖γ‖2;

(ii) (C3) and m1 > m2c
2
0‖γ‖2.

If, in addition,

either j(x, t, ·) or −j(x, t, ·) is regular on R
s for a.e. (x, t) ∈ Γ × (0, T ), (2.2)

then the solution of (2.1) is unique.

3. The contact problem

The physical setting is as follows. An electro-elastic–visco-plastic body occupies a
bounded domain Ω ⊂ R

d (d = 1, 2, 3) with a Lipschitz boundary ∂Ω. The body
is subject to the action of body forces of density f0 and volume electric charges
of density q0. The boundary of the body is subject to mechanical and electrical
constraints. To describe the mechanical constraints we consider a partition of ∂Ω
into three measurable parts, ΓD, ΓN and ΓC , such that meas(ΓD) > 0. We assume
that the body is fixed on ΓD and surface tractions of density fN act on ΓN . On
ΓC , the body is (or can arrive) in contact with an insulated obstacle, the so-called
foundation. The contact is frictionless and it is modelled with a subdifferential
boundary condition. To describe the electrical constraints we consider a partition
of ΓD∪ΓN into two measurable sets, Γa and Γb, such that meas(Γa) > 0. We assume
that the electrical potential vanishes on Γa and surface electric charges of density qb

are prescribed on Γb. Also, since the foundation is insulated, the electrical charges
vanish on the potential contact surface. We assume that the problem is quasi-
static, and we study the problem in the time interval (0, T ) with T > 0. We also
use the shorthand notation Q = Ω × (0, T ), ΣD = ΓD × (0, T ), ΣN = ΓN × (0, T ),
ΣC = ΓC × (0, T ), Σa = Γa × (0, T ) and Σb = Γb × (0, T ) and we denote by S

d

the space of second-order symmetric tensors on R
d or, equivalently, the space of

symmetric matrices of order d.
Then, the classical formulation of the contact problem described above is as

follows.
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(P) Find a displacement field u : Q → R
d, a stress field σ : Q → S

d, an electric
potential ϕ : Q → R and an electric displacement field D : Q → R

d such that

σ′ = Aε(u′) − PTE(ϕ′) + G(σ, ε(u),D,E(ϕ)) in Q, (3.1)

D′ = βE(ϕ′) + Pε(u′) + G(D,E(ϕ),σ, ε(u)) in Q, (3.2)

Div σ + f0 = 0 in Q, (3.3)

div D = q0 in Q, (3.4)

u = 0 on ΣD, (3.5)

σν = fN on ΣN , (3.6)

ϕ = 0 on Σa, (3.7)

D · ν = qb on Σb, (3.8)

−σν ∈ ∂jν(uν − g) on ΣC , (3.9)

στ = 0 on ΣC , (3.10)

D · ν = 0 on ΣC , (3.11)

u(0) = u0,σ(0) = σ0, ϕ(0) = ϕ0,D(0) = D0 in Ω. (3.12)

We present brief comments on the equations and conditions in problem (P) and
we refer the reader to [14] for more details and mechanical description. First, we
note that, here and below, in order to simplify the notation we do not indicate
explicitly the dependence of various functions on the variables x ∈ Ω ∪ ∂Ω and
t ∈ (0, T ). Also, we use the notation ν for the outward unit normal at ∂Ω.

Equations (3.1) and (3.2) represent the electro-elastic–visco-plastic constitutive
law of the material introduced in § 1 (see (1.1) and (1.2), respectively). Equa-
tions (3.3) and (3.4) are the balance equations for the stress and the electric displace-
ment fields, respectively, in which we recall that Div and div denote the divergence
operators for tensor and vector-valued functions. Conditions (3.5) and (3.6) are the
displacement and traction boundary conditions, respectively, and conditions (3.7)
and (3.8) represent the electric boundary conditions.

Condition (3.9) is the contact condition in which uν and σν represent the normal
displacement and the normal stress, respectively, g is the gap function and jν is
a given function that may depend explicitly on the time variable. As usual, ∂jν

denotes the Clarke subdifferential of jν with respect to the last variable. Condi-
tion (3.10) is the frictionless condition, and it shows that the friction force, denoted
by στ , vanishes on the contact surface, during the process. Condition (3.11) shows
that there are no electric charges on the potential contact surface, and we use it here
since the foundation is assumed to be insulated. Nevertheless, we mention that it
is possible to treat contact models in which (3.10) and (3.11) are replaced by more
general subdifferential boundary conditions (see [13,14] for details). Finally, (3.12)
represents the initial conditions in which u0, σ0, ϕ0 and D0 denote the initial
displacement, the initial stress, the initial electric potential and the initial electric
displacement, respectively.

Concrete examples of frictional models that lead to subdifferential boundary
conditions of the form (3.9) in which the function jν satisfies assumption (C10)
can be found in [14, ch.7]. Here, we restrict ourselves to remarking that these
examples model a contact with normal compliance, in both the single-valued and the
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multi-valued cases. Such examples describe a wide variety of foundations, including
foundation with a linear elastic, elastic perfectly plastic or rigid perfectly plastic
(with or without hardening or softening) behaviour. Our results below are valid
for the corresponding quasi-static frictionless contact problems. Moreover, we note
that the explicit dependence of the function jν on the time variable allows us to
model situations when the contact conditions depend on the temperature, which
plays the role of a parameter.

4. Variational formulation and the main result

The system (3.1)–(3.12) represents the classical formulation of the piezoelectric
frictionless contact problem we are interested in, and by this we mean that the
unknowns and the data are smooth functions such that all the derivatives and all
the conditions are satisfied in the usual sense, i.e. at each point and at each time
instant. However, it is well known that, in general, the classical formulations of
contact problems do not have any solution. Therefore, in order to provide results
concerning the well posedness of the model, we need to reformulate problem (P) in
a weaker sense, i.e. to derive its variational formulation.

To this end we need to introduce further notation. First, recall that we use x =
(xi) for a typical point in Ω ∪ ∂Ω and ν = (νi) for the outward unit normal at ∂Ω.
Here and below the indices i and j run between 1 and d and, unless stated otherwise,
the summation convention over repeated indices is used. Also, the index that follows
a comma indicates a partial derivative with the corresponding component of the
spatial variable x. Moreover, the canonical inner products and the corresponding
norms on R

d and S
d are given by

u · v = uivi, ‖v‖Rd = (v · v)1/2 for all u = (ui), v = (vi) ∈ R
d,

σ : τ = σijτij , ‖τ‖Sd = (τ : τ )1/2 for all σ = (σij), τ = (τij) ∈ S
d.

We use standard notation for Lebesgue spaces and Sobolev spaces. For v ∈
H1(Ω; Rd) we still denote by v the trace of v on ∂Ω and we use the notation vν

and vτ for the normal and tangential components of v on ∂Ω given by

vν = v · ν, vτ = v − vνν.

We recall that the normal and tangential components of the stress field σ on the
boundary are defined by

σν = (σν) · ν, στ = σν − σνν.

For the mechanical variables u and σ we introduce the spaces

H = L2(Ω; Rd),

H = {τ = (τij) | τij = τji ∈ L2(Ω)} = L2(Ω; Sd),

V = {v ∈ H1(Ω; Rd) | v = 0 on ΓD},

H1 = {τ ∈ H | Div τ ∈ H}.

Recall that condition v = 0 on ΓD in the definition of the space V is understood
in the sense of trace, i.e. γv = 0 almost everywhere on ΓD. It is well known that
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the spaces H, H, V and H1 are Hilbert spaces equipped with the inner products

(u,v)H =

∫

Ω

u · v dx, (σ, τ )H =

∫

Ω

σ : τ dx,

(u,v)V = (ε(u), ε(v))H, (σ, τ )H1
= (σ, τ )H + (Div σ,Div τ )H ,

where ε : H1(Ω; Rd) → H and Div : H1 → H denote the deformation and the
divergence operators, respectively, given by

ε(u) = (εij(u)), εij(u) = 1
2 (ui,j + uj,i), Div σ = (σij,j).

The associated norms in H, H, V and H1 are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖V

and ‖ · ‖H1
, respectively. Note that the completeness of the space (V, ‖ · ‖V ) follows

from the assumption meas(ΓD) > 0, which allows us to use the Korn inequality.
Moreover, if σ is sufficiently smooth, the following Green-type formula holds:

∫

Ω

σ : ε(v) dx +

∫

Ω

Div σ · v dx =

∫

∂Ω

σν · v dΓ for all v ∈ H1(Ω; Rd). (4.1)

For the electrical unknowns ϕ and D we need the spaces

W = {D ∈ H | div D ∈ L2(Ω)}, Φ = {ϕ ∈ H1(Ω) | ϕ = 0 on Γa},

which are Hilbert spaces equipped with the standard inner products. Recall that,
here and below, div : H → L2(Ω) represents the divergence operator given by

div D = (Di,i).

Moreover, since meas(Γa) is positive, it can be shown that Φ is a Hilbert space with
the inner product and the corresponding norm given by

(ϕ, ψ)Φ = (∇ϕ, ∇ψ)H , ‖ψ‖Φ = ‖∇ψ‖H .

In addition, it is well known that the inclusions Φ ⊂ L2(Ω) ⊂ Φ∗ are continuous and
compact, where Φ∗ denotes the dual space of Φ. And, finally, if D is a sufficiently
regular function, then

∫

Ω

D · ∇ψ dx +

∫

Ω

div Dψ dx =

∫

∂Ω

D · νψ dΓ for all ψ ∈ H1(Ω). (4.2)

In the study of problem (P) we assume that the elasticity tensor, the piezoelectric
tensor and the electric permittivity tensor satisfy the following conditions.

(C5) A = (aijkl) : Ω × S
d → S

d is such that

(a) aijkl = aklij = ajikl ∈ L∞(Ω), 1 � i, j, k, l � d,

(b) there exists mA > 0 such that A(x)τ : τ � mA‖τ‖2
Sd for all τ ∈ S

d, for
a.e. x ∈ Ω.

(C6) P = (pijk) : Ω × S
d → R

d is such that

pijk = pikj ∈ L∞(Ω), 1 � i, j, k � d.
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(C7) β = (βij) : Ω × R
d → R

d is such that

(a) βij = βji ∈ L∞(Ω), 1 � i, j � d,

(b) there exists mβ > 0 such that β(x)ξ · ξ � mβ‖ξ‖2
Rd for all ξ ∈ R

d, for
a.e. x ∈ Ω.

The nonlinear constitutive functions G and G are assumed to satisfy the following.

(C8) G : Ω × S
d × S

d × R
d × R

d → S
d is such that

(a) there exists LG > 0 such that

‖G(x,σ1, ε1,D1,E1) − G(x,σ2, ε2,D2,E2)‖Sd

� LG(‖σ1 − σ2‖Sd + ‖ε1 − ε2‖Sd + ‖D1 − D2‖Rd + ‖E1 − E2‖Rd)

for all σ1,σ2, ε1, ε2 ∈ S
d, D1,D2,E1,E2 ∈ R

d, for a.e. x ∈ Ω,

(b) the mapping x �→ G(x,σ, ε,D,E) is measurable on Ω, for all σ, ε ∈ S
d

and D,E ∈ R
d,

(c) the mapping x �→ G(x,0,0,0,0) belongs to H.

(C9) G : Ω × R
d × R

d × S
d × S

d → R
d is such that

(a) there exists LG > 0 such that

‖G(x, D1,E1,σ1, ε1) − G(x, D2,E2,σ2, ε2)‖Rd

� LG(‖D1 − D2‖Rd + ‖E1 − E2‖Rd + ‖σ1 − σ2‖Sd + ‖ε1 − ε2‖Sd)

for all D1,D2,E1,E2 ∈ R
d, σ1,σ2, ε1, ε2 ∈ S

d, for a.e. x ∈ Ω,

(b) the mapping x �→ G(x, D,E,σ, ε) is measurable on Ω, for all D,E ∈ R
d

and σ, ε ∈ S
d,

(c) the mapping x �→ G(x,0,0,0,0) belongs to H.

These assumptions are reasonable from physical point of view (see, for example, the
comments in [6,9,11,18,20,23]). In some applications, G and G are linear functions.

The contact potential jν satisfies the following hypothesis.

(C10) jν : ΣC × R → R is such that

(a) jν(·, ·, r) is measurable on ΣC for all r ∈ R and there exists e1 ∈ L2(ΓC)
such that jν(·, ·, e1(·)) ∈ L1(ΣC),

(b) jν(x, t, ·) is locally Lipschitz on R for a.e. (x, t) ∈ ΣC ,

(c) |∂jν(x, t, r)| � c0ν + c1ν |r| for all r ∈ R, for a.e. (x, t) ∈ ΣC with
c0ν , c1ν � 0,

(d) (ζ1−ζ2)(r1−r2) � −mν |r1−r2|2 for all ζi ∈ ∂jν(x, t, ri), ri ∈ R, i = 1, 2,
for a.e. (x, t) ∈ ΣC with mν � 0,

(e) j0
ν(x, t, r;−r) � dν(1+ |r|) for all r ∈ R, for a.e. (x, t) ∈ ΣC with dν � 0.
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We also assume that the densities of body forces, tractions, volume and surface
electric charge have the regularities

f0 ∈ L2(0, T ;H), fN ∈ L2(0, T ;L2(ΓN ; Rd)), (C11)

q0 ∈ L2(0, T ;L2(Ω)), qb ∈ L2(0, T ;L2(Γb)). (C12)

The initial data satisfy

u0 ∈ V, σ0 ∈ H, ϕ0 ∈ Φ, D0 ∈ H, (C13)

and the gap function is such that

g ∈ L∞(ΓC), g � 0 almost everywhere on ΓC . (C14)

Finally, we recall that the link between the tensor P and its transpose, denoted
PT, is given by

Pσ · ξ = σ : PTξ for all σ ∈ S
d, ξ ∈ R

d, almost everywhere in Ω. (4.3)

We turn now to the variational formulation of problem (P). Assume in what
follows that (u,σ, ϕ, D) are sufficiently regular functions that satisfy (3.1)–(3.12)
and let t ∈ [0, T ] be given. We integrate (3.1) and (3.2) over (0, t) with the initial
conditions (3.12) to obtain

σ(t) = Aε(u(t)) − PTE(ϕ(t)) +

∫ t

0

G(σ(s), ε(u(s)),D(s),E(ϕ(s))) ds

+ σ0 − Aε(u0) + PTE(ϕ0), (4.4)

D(t) = βE(ϕ(t)) + Pε(u(t)) +

∫ t

0

G(D(s),E(ϕ(s)),σ(s), ε(u(s))) ds

+ D0 − βE(ϕ0) − Pε(u0). (4.5)

Let v ∈ V . Then, using (3.3), (3.6), (3.10) and (4.1), we have

(σ(t), ε(v))H = (f0(t),v)H +

∫

ΓN

fN (t) ·v dΓ +

∫

ΓC

σν(t)vν dΓ for a.e. t ∈ (0, T ).

(4.6)
On the other hand, combining the definition of the Clarke subdifferential with

(3.9), we have
∫

ΓC

σν(t)vν dΓ � −
∫

ΓC

j0
ν(t, uν(t) − g; vν) dΓ for a.e. t ∈ (0, T ). (4.7)

Consider the function f : (0, T ) → V ∗ given by

〈f(t), v〉V ∗×V = (f0(t),v)H + (fN (t),v)L2(ΓN ;Rd) (4.8)

for all v ∈ V and for a.e. t ∈ (0, T ). We combine (4.6)–(4.8) to obtain

(σ(t), ε(v))H +

∫

ΓC

j0
ν(t, uν(t) − g; vν) dΓ � 〈f(t),v〉V ∗×V for a.e. t ∈ (0, T ).

(4.9)
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Similarly, for all ψ ∈ Φ, from (3.4), (3.8), (3.11) and (4.2) we deduce that

(D(t),∇ψ)H + 〈q(t), ψ〉Φ∗×Φ = 0 for a.e. t ∈ (0, T ), (4.10)

where q : (0, T ) → Φ∗ is given by

〈q(t), ψ〉Φ∗×Φ = (q0(t), ψ)L2(Ω) − (qb(t), ψ)L2(Γb) (4.11)

for all ψ ∈ Φ and for a.e. t ∈ (0, T ).
We gather the equalities (4.4), (4.5), (4.10) and inequality (4.9) to obtain the

following variational formulation of problem (P).

(PV ) Find a displacement field u : (0, T ) → V , a stress field σ : (0, T ) → H1, an
electric potential ϕ : (0, T ) → Φ and an electric displacement field D : (0, T ) →
W such that

σ(t) = Aε(u(t)) − PTE(ϕ(t)) +

∫ t

0

G(σ(s), ε(u(s)),D(s),E(ϕ(s))) ds

+ σ0 − Aε(u0) + PTE(ϕ0) for a.e. t ∈ (0, T ), (4.12)

D(t) = βE(ϕ(t)) + Pε(u(t)) +

∫ t

0

G(D(s),E(ϕ(s)),σ(s), ε(u(s))) ds

+ D0 − βE(ϕ0) − Pε(u0) for a.e. t ∈ (0, T ) (4.13)

and

(σ(t), ε(v))H +

∫

ΓC

j0
ν(t, uν(t) − g; vν) dΓ

� 〈f(t),v〉V ∗×V for all v ∈ V for a.e. t ∈ (0, T ), (4.14)

(D(t),∇ψ)H + 〈q(t), ψ〉Φ∗×Φ = 0 for all ψ ∈ Φ for a.e. t ∈ (0, T ). (4.15)

Note that problem (PV ) represents a system involving two nonlinear integral
equations, a hemivariational inequality and a time-dependent linear differential
equation. One of the main features of this system arises in the coupling between the
mechanical unknowns u, σ with the electrical unknowns ϕ and D, which appears
in the nonlinear equations (4.12) and (4.13).

In order to study the solvability of (PV ) we need the space Z̃ = Hδ(Ω; Rd), where
δ ∈ (1/2, 1) is fixed. We denote by ce > 0 the embedding constant of V into Z̃.
Moreover, we introduce the trace operator γ̃ : Z̃ → L2(ΓC ; Rd) and denote by ‖γ̃‖
its norm in L(Z̃, L2(ΓC ; Rd)).

Our main result in the study of problem (PV ) that we state here and prove in
the next section is the following.

Theorem 4.1. Assume (C5)–(C9), (C11)–(C14) and let one of the following hy-
potheses hold:

(i) conditions (a)–(d) of (C10) and min{mA, mβ} > max{
√

3c1ν , mν}c2
e‖γ̃‖2;

(ii) (C10) and min{mA, mβ} > mνc2
e‖γ̃‖2.
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Then problem (PV ) has at least one solution that satisfies

u ∈ L2(0, T ;V ), (4.16)

σ ∈ L2(0, T ;H1), (4.17)

ϕ ∈ L2(0, T ;Φ), (4.18)

D ∈ L2(0, T ;W ). (4.19)

If, in addition, we assume that

either jν(x, t, ·) or −jν(x, t, ·) is regular for a.e. (x, t) ∈ ΣC , (4.20)

then problem (PV ) has a unique solution.

A quadruple of functions (u,σ, ϕ, D) which satisfies (4.12)–(4.15) is called a weak
solution of problem (P). Assume that (C5)–(C9) and (C11)–(C14) hold. Then, it
follows from theorem 4.1 that, under the assumptions (i) or (ii) above, there exists
at least unique weak solution of problem (P), with regularity (4.16)–(4.19). And if,
in addition, (4.20) holds, the weak solution is unique.

5. Proof of theorem 4.1

The proof of theorem 4.1 will be carried out in several steps. Below in this section we
assume that (C5)–(C9) and (C11)–(C14) hold, without recalling these hypotheses
explicitly. Moreover, if X1 and X2 are two Hilbert spaces endowed with the inner
products (·, ·)X1

and (·, ·)X2
and the associated norms ‖ · ‖X1

and ‖ · ‖X2
, we denote

by X1 ×X2 the product space together with the canonical inner product (·, ·)X1×X2

and the associated norm ‖ · ‖X1×X2
. Everywhere in this section c will denote a

positive generic constant whose value may change from place to place. In addition,
in order to simplify the writing, in the following lemma we shall write

G̃(u, ϕ, σ,D)

instead of

G(Aε(u) − PTE(ϕ) + σ, ε(u),E(ϕ),βE(ϕ) + Pε(u) + D)

and

G̃(u, ϕ, σ,D)

instead of

G(βE(ϕ) − Pε(u) + D,E(ϕ), ε(u),Aε(u) − PTE(ϕ) + σ).

The first step is given by the following existence and uniqueness result.

Lemma 5.1. For all u ∈ L2(0, T ;V ) and ϕ ∈ L2(0, T ;Φ) there exists a unique pair
of functions

(σI(u, ϕ),DI(u, ϕ)) ∈ W 1,2(0, T ;H × H)
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such that

σI(u, ϕ)(t) =

∫ t

0

G̃(u(s), ϕ(s),σI(u, ϕ)(s),DI(u, ϕ)(s)) ds

+ σ0 − Aε(u0) + PTE(ϕ0)

and

DI(u, ϕ)(t) =

∫ t

0

G̃(u(s), ϕ(s),σI(u, ϕ)(s),DI(u, ϕ)(s)) ds

+ D0 − βE(ϕ0) − Pε(u0),

for all t ∈ [0, T ].

Proof. Let (u, ϕ) ∈ L2(0, T ;V × Φ) be given. We introduce the operator

Λ : L2(0, T ;H × H) → W 1,2(0, T ;H × H) ⊂ L2(0, T ;H × H)

defined by

Λ(σ,D)(t) = (Λ1(σ,D)(t), Λ2(σ,D)(t)) for all (σ,D) ∈ L2(0, T ;H × H),

Λ1(σ,D)(t) =

∫ t

0

G̃(u(s), ϕ(s),σ(s),D(s)) ds + σ0 − Aε(u0) + PTE(ϕ0),

Λ2(σ,D)(t) =

∫ t

0

G̃(u(s), ϕ(s),σ(s),D(s)) ds + D0 − βE(ϕ0) − Pε(u0)

for all t ∈ [0, T ]. The operator Λ depends on the pair (u, ϕ) but, for simplicity, we
do not indicate this dependence explicitly.

Let (σ1,D1), (σ2,D2) ∈ L2(0, T ;H × H) and let t ∈ [0, T ]. Then

‖Λ(σ1,D1)(t) − Λ(σ2,D2)(t)‖H×H

�

∥∥∥∥
∫ t

0

G̃(u(s), ϕ(s),σ1(s),D1(s)) ds −
∫ t

0

G̃(u(s), ϕ(s),σ2(s),D2(s)) ds

∥∥∥∥
H

+

∥∥∥∥
∫ t

0

G̃(u(s), ϕ(s),σ1(s),D1(s)) ds −
∫ t

0

G̃(u(s), ϕ(s),σ2(s),D2(s)) ds

∥∥∥∥
H

.

We use (C8) and (C9) to deduce that

‖Λ(σ1,D1)(t) − Λ(σ2,D2)(t)‖H×H

� c

∫ t

0

(‖σ1(s) − σ2(s)‖H + ‖D1(s) − D2(s)‖H) ds,

and therefore

‖Λ(σ1,D1)(t) − Λ(σ2,D2)(t)‖H×H

� c

∫ t

0

‖(σ1(s),D1(s)) − (σ2(s),D2(s))‖H×H ds,

where c > 0. It is clear that the operator Λ is well defined and takes values in
W 1,2(0, T ;H × H). We iterate this inequality n times and use a standard argument
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to see that, for n large, the operator Λn is a contraction on the space L2(0, T ;H×H).
Therefore, the Banach fixed argument shows that the operator Λ has a unique fixed
point, denoted (σI(u, ϕ),DI(u, ϕ)), which concludes the proof.

We continue with the following equivalence result.

Lemma 5.2. A quadruple of functions (u,σ,D, ϕ) is a solution to problem (PV ) if
and only if, for a.e. t ∈ (0, T ), we have

σ(t) = Aε(u(t)) + PT∇ϕ(t) + σI(u, ϕ)(t), (5.1)

D(t) = −β∇ϕ(t) + Pε(u(t)) + DI(u, ϕ)(t), (5.2)

(Aε(u(t)), ε(v))H + (PT∇ϕ(t), ε(v))H + (σI(u, ϕ)(t), ε(v))H

+

∫

ΓC

j0
ν(t, uν(t) − g; vν) dΓ � 〈f(t),v〉V ∗×V

for all v ∈ V, (5.3)

(β∇ϕ(t), ∇ψ)H − (Pε(u(t)),∇ψ)H − (DI(u, ϕ)(t),∇ψ)H = 〈q(t), ψ〉Φ∗×Φ

for all ψ ∈ Φ. (5.4)

Proof. Lemma 5.2 is a direct consequence of the notation E(ϕ) = −∇ϕ combined
with the definition of the functions σI and DI , introduced in lemma 5.1.

To proceed, we denote by X the space X = V × Φ and let X = L2(0, T ;X). We
also consider the operators A : X → X∗, S : X → X ∗ and the function f ∈ X ∗

defined by

〈Ax, y〉X∗×X = (Aε(u), ε(v))H + (PT∇ϕ, ε(v))H

− (Pε(u),∇ψ)H + (β∇ϕ, ∇ψ)H

for all x = (u, ϕ), y = (v, ψ) ∈ X, (5.5)

〈Sx(t), y〉X∗×X = (σI(u, ϕ)(t), ε(v))H − (DI(u, ϕ)(t),∇ψ)H

for all x = (u, ϕ) ∈ X , y = (v, ψ) ∈ X, t ∈ [0, T ], (5.6)

f = (f , q). (5.7)

Note that the definition of the operators A and S follows from Riesz’s represen-
tation theorem.

The next step is provided by the following result.

Lemma 5.3. The functions u ∈ L2(0, T ;V ) and ϕ ∈ L2(0, T ;Φ) satisfy (5.3) and
(5.4) if and only if x = (u, ϕ) ∈ X satisfies the hemivariational inequality

〈Ax(t), y〉X∗×X + 〈Sx(t), y〉X∗×X +

∫

ΓC

j0
ν(t, uν(t) − g; vν) dΓ � 〈f(t), y〉X∗×X

for all y = (v, ψ) ∈ X, for a.e. t ∈ (0, T ). (5.8)

Proof. We add inequality (5.3) and equality (5.4). Then we use the definitions
(5.5)–(5.7) to obtain (5.8).
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Conversely, assume that x = (u, ϕ) ∈ X represents a solution of (5.8). We
test (5.8) with y = (v, 0) ∈ X, then with y = (0,±ψ) ∈ X, where v is an arbi-
trary element of V and ψ is an arbitrary element in Φ. As a result we obtain (5.3)
and (5.4), respectively, which concludes the proof.

We continue with the following existence and uniqueness result.

Lemma 5.4. Assume (C5)–(C9), (C11)–(C14) and let one of the hypotheses (i)
and (ii) of theorem 4.1 hold. Then there exists at least one solution x ∈ X of the
hemivariational inequality (5.8). In addition, if (4.20) holds, the solution is unique.

Proof. We apply theorem 2.1 on the space Y = X. To this end, we show that
the assumptions (C5) and (C7) on the tensors A and β imply that the operator
A : X → X∗ defined by (5.5) satisfies (C1). Indeed, it is obvious that (a) of (C1)
holds and, since A is linear, (d) of (C1) holds too. Moreover, from the Hölder
inequality, we have

|〈Ax, y〉X∗×X |

�

∫

Ω

(‖Aε(u)‖Sd‖ε(v)‖Sd + ‖PT∇ϕ‖Sd‖ε(v)‖Sd

+ ‖Pε(u)‖Rd‖∇ψ‖Rd + ‖β∇ϕ‖Rd‖∇ψ‖Rd) dx

� ‖A‖‖u‖V ‖v‖V + ‖P‖(‖ϕ‖Φ‖v‖V + ‖u‖V ‖ψ‖Φ) + ‖β‖‖ϕ‖Φ‖ψ‖Φ

for all x = (u, ϕ), y = (v, ψ) ∈ X, where

‖A‖ = max
i,j,k,l

‖aijkl‖L∞(Ω),

‖P‖ = ‖PT‖ = max
i,j,k

‖pijk‖L∞(Ω),

‖β‖ = max
i,j

‖βij‖L∞(Ω).

Therefore, we conclude that

‖Ax‖X∗ � (‖A‖ + 2‖P‖ + ‖β‖)‖x‖X for all x ∈ X,

i.e. (c) of (C1) holds with a0 ≡ 0 and a1 > 0. Thus, A is a bounded operator; hence,
it is also continuous.

On the other hand, using (C5)–(C7), we have

〈Ax, x〉X∗×X

= (Aε(u), ε(u))H + (PT∇ϕ, ε(u))H + (Pε(u),∇ϕ)H + (β∇ϕ, ∇ϕ)H

� mA‖ε(u)‖2
H + mβ‖∇ϕ‖2

H

� min{mA, mβ}‖x‖2
X

for all x = (u, ϕ) ∈ X. Here we exploited the equality

(PT∇ϕ, ε(u))H = (Pε(u),∇ϕ)H for all u ∈ V, ϕ ∈ Φ,

which is a direct consequence of (4.3). We deduce that the coercivity, and therefore
the strong monotonicity condition (b) of (C1), holds with m1 = min{mA, mβ}.
This implies that the operator A satisfies (C1).
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Next, we check that the operator S : X → X ∗ defined by (5.6) satisfies condi-
tion (C2). To this end we note that, for any t ∈ [0, T ] and xi = (ui, ϕi) ∈ X ,
i = 1, 2, we have

‖S(u1, ϕ1)(t) − S(u2, ϕ2)(t)‖X∗

� c(‖σI(u1, ϕ1)(t) − σI(u2, ϕ2)(t)‖H + ‖DI(u1, ϕ1)(t) − DI(u2, ϕ2)(t)‖H).
(5.9)

Then, using the definitions of σI and DI introduced in lemma 5.1, by (C8) and (C9)
we obtain

‖σI(u1, ϕ1)(t) − σI(u2, ϕ2)(t)‖H + ‖DI(u1, ϕ1)(t) − DI(u2, ϕ2)(t)‖H

� c

∫ t

0

(‖σI(u1, ϕ1)(s) − σI(u2, ϕ2)(s)‖H + ‖DI(u1, ϕ1)(s) − DI(u2, ϕ2)(s)‖H

+ ‖u1(s) − u2(s)‖V + ‖ϕ1(s) − ϕ2(s)‖Φ) ds.

Now, using a Gronwall argument, it follows that

‖σI(u1, ϕ1)(t) − σI(u2, ϕ2)(t)‖H + ‖DI(u1, ϕ1)(t) − DI(u2, ϕ2)(t)‖H

� c

∫ t

0

(‖u1(s) − u2(s)‖V + ‖ϕ1(s) − ϕ2(s)‖Φ) ds. (5.10)

We combine (5.9) and (5.10) to obtain

‖S(u1, ϕ1)(t) − S(u2, ϕ2)(t)‖X∗ � c

∫ t

0

‖(u1(s), ϕ1(s)) − (u2(s), ϕ2(s))‖X ds,

and therefore (C2) holds.
Subsequently, we define the function j : ΣC × R

d+1 → R by

j(x, t, ξ, r) = jν(x, t, ξν − g(x))

for all (ξ, r) ∈ R
d × R for a.e. (x, t) ∈ ΣC . We verify that j satisfies condition

(C3). It is obvious to see that j satisfies(a) of (C3) with e ∈ L2(ΓC ; Rd+1) given by
e(x) = ((e1(x) + g(x))ν, 0) for a.e. x ∈ ΓC , and j(x, t, ·, ·) is locally Lipschitz for
a.e. (x, t) ∈ ΣC . Moreover, from [14, lemma 3.39 and proposition 3.37], we obtain

j0(x, t, ξ, r;̺, s) � j0
ν(x, t, ξν − g(x); ̺ν), (5.11)

∂j(x, t, ξ, r) ⊆ ∂jν(x, t, ξν − g(x))ν × {0} (5.12)

for all (ξ, r), (̺, s) ∈ R
d × R and a.e. (x, t) ∈ ΣC .

From the inequality

‖∂j(x, t, ξ, r)‖Rd+1 � |∂jν(x, t, ξν − g(x))|
� c0ν + c1ν |ξν − g(x)|
� c0ν + c1ν |g(x)| + c1ν‖(ξ, r)‖Rd+1 ,

which is valid for all (ξ, r) ∈ R
d ×R for a.e. (x, t) ∈ ΣC , we deduce that (c) of (C3)

holds with c̄0 = c0ν + c1ν‖g‖L∞(ΓC) and c̄1 = c1ν .
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Next, let (ζi, ηi) ∈ ∂j(x, t, ξi, ri), where (ζi, ηi) ∈ R
d × R, (ξ, ri) ∈ R

d × R,
i = 1, 2. By (5.12), it follows that ζi = ζiν with ζi ∈ ∂jν(x, t, ξiν − g(x)), ηi = 0
and

((ζ1, η1) − (ζ2, η2)) · ((ξ1, r1) − (ξ2, r2)) = (ζ1 − ζ2)ν · (ξ1 − ξ2)

= (ζ1 − ζ2)(ξ1ν − ξ2ν) � −mν |ξ1ν − ξ2ν |2

� −mν‖(ξ1, r1) − (ξ2, r2)‖2
Rd+1

for a.e. (x, t) ∈ ΣC . This proves that (d) of (C3) holds with m2 = mν .
From the inequality (5.11), the subadditivity of the function j0

ν(x, t, q; ·) for all
q ∈ R and a.e. (x, t) ∈ ΣC and hypothesis (d) of (C10), we deduce

j0(x, t, ξ, r;−ξ,−r)

� j0
ν(x, t, ξν − g(x);−ξν)

� j0
ν(x, t, ξν − g(x);−(ξν − g(x))) + j0

ν(x, t, ξν − g(x);−g(x))

� dν(1 + |ξν − g(x)|) + max{η(−g(x)) | η ∈ ∂jν(x, t, ξν − g(x))}
� dν(1 + ‖ξ‖Rd + ‖g‖L∞(ΓC)) + |g(x)|(c0ν + c1ν |ξν − g(x)|)
� d̃(1 + ‖(ξ, r)‖Rd+1)

for all (ξ, r) ∈ R
d ×R and a.e. (x, t) ∈ ΣC with d̃ > 0. We conclude from the above

that the function j satisfies (C3).
Next, it follows from (C11), (C12), (4.8), (4.11) and (5.7) that f ∈ X ∗, and

therefore condition (C4) is also satisfied. We also observe that, with the notation
above, the assumptions (i) and (ii) in theorem 4.1 are equivalent to the correspond-
ing assumptions (i) and (ii) in theorem 2.1. Finally, the regularity hypothesis (4.20)
implies the Clarke regularity (2.2).

Lemma 5.4 is now a consequence of theorem 2.1.

We now have all the ingredients to provide the proof of our main existence and
uniqueness result.

Proof of theorem 4.1. Assume that either (i) or (ii) holds. Then, using lemma 5.4 we
obtain the existence (and the uniqueness if (4.20) holds) of a solution x = (u, ϕ) ∈ X
for the hemivariational inequality (5.8). Moreover, by lemma 5.3, we know that
x = (u, ϕ) is a solution (the unique solution if (4.20) holds) of the system (5.3), (5.4).

Consider now the functions σ and D defined by equalities (5.1), (5.2), for a.e.
t ∈ (0, T ). It follows that σ ∈ L2(0, T ;H) and D ∈ L2(0, T ;H) and, moreover,
by lemma 5.2 we deduce that quadruple of functions (u,σ,D, ϕ) is a solution to
problem (PV ). We test (4.14) with v ∈ C∞

0 (Ω; Rd). Then we take ψ ∈ C∞
0 (Ω)

in (4.15) to obtain that

Div σ(t) + f0(t) = 0, div D(t) = q0(t)

almost everywhere in Ω for a.e. t ∈ (0, T ). Next, we use assumptions (C11) and
(C12) to deduce that Div σ ∈ L2(0, T ;H), div D ∈ L2(0, T ;L2(Ω)), and there-
fore σ ∈ L2(0, T ;H1) and D ∈ L2(0, T ;W ). We conclude from the above that
the quadruple of functions (u,σ,D, ϕ) satisfies (4.16)–(4.19), which completes the
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existence part of the theorem. The uniqueness part (under the additional assump-
tion (4.20)) is a consequence of lemma 5.2 combined with the unique solvability of
the system (5.3), (5.4), proved above.
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