
HAL Id: hal-01142078
https://hal.science/hal-01142078v1

Submitted on 14 Apr 2015 (v1), last revised 14 Apr 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reactive Visual Programs in OpenMusic
Jean Bresson

To cite this version:
Jean Bresson. Reactive Visual Programs in OpenMusic. [Research Report] IRCAM. 2014. �hal-
01142078v1�

https://hal.science/hal-01142078v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reactive Visual Programs for Computer-Aided
Composition

EFFICACe WP-1.2 – ANR-13-JS02-0004-01

Jean Bresson

2014

1 Introduction

OpenMusic (OM) is a visual programming language based on Common Lisp (Bresson et al., 2009). It
implements a demand-driven computation model, evaluating functional expressions after user requests
(see Figure 1a). This approach differs from real-time musical systems which react to internal clocks,
external stimuli or data streams following a “data-driven” approach (Puckette, 1991) (see Figure 1b).

H

F G

E

A

B D

C

(a)

H

F G

E

A

B D

C

(b)

Figure 1: Data-driven vs. Demand-driven execution. (a) Demand-driven (the default model in OpenMusic):
The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in
order to provide C with input values. (b) Data-driven (e.g. realtime musical systems): The node H triggers the
execution and “send” a value that propagates down in the functional graph.

These two different approaches are usually associated respectively to the domains of composition and
performance. They correspond to different ways of using computer systems for music: on the one hand,
advanced symbolic manipulation of complex and structured data involved during the composition of
a piece of music (scores, but also sounds or any other musical data), and on the other hand, real-
time audio processing and live interaction during concerts. Demand-driven computer-aided composition
systems generate “off-line” material (event sequences, scores, sounds) that are played, read or interpreted
by a performer (if this data is output or converted to a score) or sequenced/rendered by another system
(e.g. a player or sound synthesizer). On the other hand, real-time (data- or event-driven) systems react
to user inputs and process incoming messages or signals during their activation time.

This long-standing partition has perpetuated along the years, and is perceived by musicians as a
frustrating constraint at developing applications mixing interaction and formal compositional processes.
One of the objectives of the EFFICACe project is to combine these two approaches and propose a
renewed conception of computing and interaction in computer-aided composition.

In our working context, the systems we are considering happen to be programming environments (and
in particular, visual programming environments). From a technical point of view, the two highlighted
approaches (computer aided composition vs. real-time) can be thought in terms of a distinction between
transformational and reactive systems (Harel and Pnueli, 1985).

1

The computing power of standard workstations is today no longer an obstacle at the integration of com-
plex symbolic computations in reactive systems. The relevance of a convergence between the expressive
power of declarative composition-oriented languages and the interactive features of real-time data-flow
emerges through several recent trends in computer music, such as live-coding, where programming activ-
ity is embedded in the concert performances (Wang and Cook, 2004), or in computer accompaniment or
automatic improvisation systems, where complex and structured musical parts are generated from live
musical inputs (Assayag et al., 2006; Nika and Chemillier, 2012). We believe these are premises for a
radical conceptual evolution in computer music, mixing the declarative, compositional and interactive
aspects.

Our objective here is to propose a programming framework in OM that will combine these two ap-
proaches of music and computation in a common compositional environment. This objective does not
necessarily involve processing audio signals or events in real time, but is motivated by the need to develop
interactive compositional processes that can be integrated in interactive contexts, assuming that a best
effort strategy is acceptable. We propose to integrate the notion of reactivity in OM visual programming,
without giving up the off-line paradigm that makes the specificity of the computer-aided composition
approach.

2 The Reactive Model

This works builds upon a formal semantic model of reactive programming in OM.1 This model, as well
as several aspects of the reflection and tools presented in this report, are published in (Bresson and
Giavitto, 2014). In this first section we present a brief overview of the theoretical model introduced in
this paper.

2.1 Basic semantics

Figure 2: An OM visual program. This pro-
gram calculates a musical score of 8 notes ; each
one with a pitch and rhytmic figure randomly
picked among a set of values, respectively for
durations and successive intervals.

A semantic basis for the default (demand-driven) evalua-
tion model of the OpenMusic visual programming language
is required to introduce the reactive aspects.

Visual Programs

Visual programs in OM are made of boxes and connec-
tions, that the user/programmer assembles into directed
acyclic graphs representing functional expressions. Every
box represents a function (defined in Lisp or graphically
as an internal visual program) or a data-structure gener-
ator/container (actually, a class constructor or factory, as
usually defined in object-oriented systems). A number of
inlets (at the top of the boxes) represent the inputs or ar-
guments of the functions, and their outlets (at the bottom
of the boxes) represent the returned value(s). The connec-
tions between box inputs and outputs therefore determine
the functional composition of the programs.

Figure 2 shows and example of an OM visual program.
At the moment, we consider first-order functional graphs
only for this reactive extension, that is, the “top-level”
graphical elements of the visual programs.

Formally, we define a visual program with :

• B the set of box identifiers (boxes b, b′, b1... range
over B).

• E the set of edge identifiers (edges e, e′, e1... range
over E).

1This theoretical model was initially developed in the context of the INEDIT project (ANR-12-CORD-0009).

2

The functions in and out are total functions from B to N giving respectively the number of inputs and
the number of outputs of a box. A visual program, or patch, is a quadruple G = (B,E, s, t), where B ⊂ B
is the finite set of boxes of G, E ⊂ E is the finite set of connections between these boxes, and s (source
of an edge) and t (target of an edge) are total functions from E to B × N representing the connectivity
in the patch.

The connectivity is guaranteed by the following conditions on s and t:

1. if s(e) = (b, k) then 1 ≤ k ≤ out(b);

2. if t(e) = (b, k) then 1 ≤ k ≤ in(b);

3. the function t is injective;

4. let <G be the binary relation on B × B defined by b <G b′ iff there exists e, k and k′ such that
t(e) = (b, k) and s(e) = (b′, k′). Let ≺G be the transitive closure of <G. The relation ≺G is a strict
partial order (i.e. an irreflexive, asymmetric and transitive binary relation).

The strict partial order ≺G formalizes the functional dependencies induced by G. A chain in G is a
sequence (b1, b2, . . .) of boxes of G such that bi ≺ bi+1. There is no infinite chain because ≺ is a strict
partial order and B is finite. We define b+ to be the set upper bounds of b by b+ = {b′ | b � b′} and the
set of lower bounds of b as b− = {b′ | b′ � b}.

Evaluation

The construction of a program in OM is an incremental process interleaved with data inputs and partial
evaluations. The nodes in the graph can be computed at any time on user request, depending on the
values or data structures he/she wishes to calculate or update. Evaluations produce chains of function
calls following the connections in the graphs. For instance, the request for the RESULT box value in
Figure 2 would recursively call rotate-tree, RHYTHM, mktree, repeat-n, etc., then PITCHES SEQ, dx-
>x, etc. Upstream terminal box calls return a value and stop the recursive call chain. The returned
values then generate a data flow stream down to the initial requested box value.2

We call V set of values handled in OM, and suppose a distinguished element ? of V used to represent
a default value. Each box b ∈ B, is associated to out(b) functions JbKk giving its semantics:

JbKk : V in(b) → V, 1 ≤ k ≤ out(b),

The semantics of a patch G = (B,E, s, t), is a function J·KG(·) : B × N → V, which associates a value
to each output k of a box b ∈ B and is defined by the recursive equation:

JbKG(k) = JbKk(v1, . . . , vin(b)),

where

vi =

{
Jb′KG(j) if b i<j b

′

? otherwise
for 1 ≤ i ≤ in(b).

This function is well defined because there is at most one pair (b′, j) such that b i<j b
′ and because

there is no infinite chain in G.
The computation of JbKG(k) requires only the boxes of b+: the value JbKG(k) of a box b can be easily

computed by substitutions in the set of equations corresponding to the values vi of the boxes in b+. This
corresponds to the demand-driven evaluation of a box as done by following the functional dependencies
of a patch, and as displayed for instance in Figure 1a.

Note that boxes in OM can be set to special “states” which will impact their evaluation. For instance,
a box can be considered as a higher-order function and to produce its own functional definition as value
if its state is “lambda”. In this case,

JbKG(k) = λxj1 . . . xjp .JbKk(w1, . . . , win(b)), (1)

2Note that not all boxes are pure functions: in Figure 2 for instance, the boxes nth-random pick a random element in
their respective input lists, and the boxes repeat-n collect the results of n successive calls to their first input connection.

3

where jk is the index of the kth not connected input of b in Gt and

wj =

{
Jb′K(k) if b j<k b

′

xj otherwise

→ If input j is not connected to a box output, then wj is a variable bound by the lambda abstraction.

Generations

Programs change incrementally during an OM session, and are evaluated on request to be partially
updated. We call a generation an evaluation triggered by the user requiring the value of some arbitrary
box in the visual program. This concept is formalized in the semantics by the state Gt = (Bt,Et, st, tt)
of a patch at a given generation t. The successive generations are identified by integers, starting from 0
and for the sake of the simplicity, we assume that the initial patch is empty:

G0 = (∅, ∅, s, t).

Accordingly, the completion of a user evaluation request invokes the transition Gt → Gt+1.
Between two generations, the program G can change because some edges and boxes may have been

added or deleted. Box values in OM visual programs can also be manually edited thanks to graphical
editors, and set to a “locked” state in order to prevent reinitializations on future updates (a locked box
behaves like a terminal box in the call graph).

Box States

We have seen in the previous paragraphs that the evaluations could actually be influenced by the state of
the different boxes in G (“locked” state, “lambda” state, etc.). In order to give account for this specificity
of the visual language, we introduce flagt : Bt → {�,�,�e ,�λ }, giving the state of the boxes in the patch
Gt:

• � corresponds to a box with the standard behaviour,

• �λ corresponds to an abstracted (“lambda”) box,

• � corresponds to a locked box,

• �e corresponds to a locked box whose output values have been manually edited.

H

F G

E!

A

B D

C

Figure 3: Call graph including a “locked” box.

We have outlined previously that the computation of
the outputs of a box b depends only on the outputs of
the boxes in b+. The different possible states of a box
makes the determination of this dependency set slightly
less straightforward.

We call ancestors ↑A of a set of boxes A in Gt the boxes
that can be reached from the boxes of A going from inputs
to outputs, without having passing through a locked box.
Let <�denotes the restriction of the binary relation < to
the standard boxes: b <� b′ iff b < b′ and flagt(b) =
flagt(b′) = �. Then: ↑A = { b ∈ Bt | ∃b′ ∈ A, b′ <∗� b },
where <∗� is the reflexive transitive closure of <�.

Figure 3 is similar to Figure 1a with a box in state �.
The ancestors ↑{C} of C are coloured in gray: F, G and H are excluded from this set because of the
state � of E.

Staggered Evaluation

We describe the successive generations of a patch by a sequence of quadruples (Gt,flagt, et, rt)t∈N, each
describing a generation, where the function et(b, k) gives the edited value of the k-th output of every box
b ∈ Bt such that flag(b) = �e , and rt ∈ Bt is the box on which the user requests the evaluation.

4

The complete semantics leads to a staggered evaluation: J·Kt(·) : B × N→ V, where only the values of
the boxes required to compute the outputs of rt are updated:

JbKt(k) =

? if b 6∈ Bt

et(b, k) if flagt(b) = �e

JbKt−1(k) if flagt(b) = �

JbKk(v1, . . . , vin(b)) if b ∈↑{rt}
JbKt−1(k) otherwise

with

vi =

{
Jb′Kt(j) if b i<j b

′

? otherwise

Note that we do not include the case flagt(b) = �λ in the equation above, which remains as in (1).

2.2 Reactive Extension

The incremental creation of visual programs in OM involves frequent evaluation requests, visualization,
data input and modifications. Despite these interactive aspects, programs execute with very limited
connection to their external environment, and are triggered exclusively on user requests.

Introducing reactivity in the visual program execution model will enable a number additional be-
haviours such as the automatic update of downstream parts of a visual programs after changes or user
actions, or the reaction to events sent by external applications or input devices.

A number of extensions are added to the semantic framework:

Event. An event is the subset of the boxes in G that may lead to an update. This notion abstracts the
edition operations on G (e.g. user actions or modification of the data in a patch) as well as the response
to external events.

Request. We call request a subset of the boxes ofG on which the user requires an evaluation. Requesting
an evaluation is not subsumed by the notion of event: the evaluation of a box leads to the evaluation of
its ancestors, while the computations triggered by an event apply to its descendants.

This notion of request, which is the default way to trigger computations in OM, is still meaningful in
the reactive context, because some parts of the patch may not be reactive (see below), and hence need
an explicit request to be updated. It also provides a finer control in case of non-functional boxes (e.g.
boxes with a mutable state).

Active Boxes. For the same reasons that motivates the locking of a box, it is not always desirable to
update the values of a box in response to an arbitrary event. In addition it is important that the OM
reactive extension be conservative and do not interfere with existing programs semantics and behaviour:
reactivity must be optional and potentially applicable locally to any part of an existing program. Thus,
we add an additional attribute to the boxes in the form of a predicate activet specifying if a box must
be sensitive to events.

Updated Semantics

In the reactive semantics, a run is a sequence of sextuples (Gt,flagt, et, activet, Rt, Et)t∈N , where the
first three components Gt, flagt and et are as in the original semantics, activet is a Boolean function
on Bt; Rt and Et are subsets of Bt representing the request and/or the event at the origin of the new
generation t. They satisfy the two conditions:

• ¬activet(b)⇒ (b 6∈ Et) : when a box is inactive, it cannot appear in an event (that is, if it appears
in an event, it is active);

• b ∈ Et ⇒ (flagt(b) = �e) : when a box appears in an event Et, it behaves like an edited box.

5

Inactive boxes stop the propagation of the updates. The set of boxes that must be evaluated as a
consequence of an event A are the descendants of A (↓A) defined as the boxes that can be reached from
the boxes of A going from outputs to inputs, without passing through an inactive, a locked or an edited
box, except those of A.

Let <a denotes the restriction of < specified by:
b <a b

′ ⇐⇒ (b < b′) ∧ active(b) ∧
(
flag(b) = �

)
∧ active(b′) ∧

(
flag(b′) = �

)
Then, the descendants of A are defined by: ↓A = { b ∈ Bt | ∃ b′ ∈ Bt, b′′ ∈ A, b <+

a b′ < b′′ } , where
<+
a is the transitive closure of <a. (This definition departs slightly from the definition of the dual notion
↑A, because the elements of A are not themselves in ↓A – they are edited).

The complete reactive semantics is now defined by a generation-indexed sequence of functions:

L · Mt(·) : B × N→ V

L b Mt(k) =

? if b 6∈ Bt

et(b, k) if flagt(b) = �e

L b Mt−1(k) if flagt(b) = �

u if flagt(b) = �λ

JbKk(v1, . . . , vin(b)) if b ∈
(
↑Rt ∪ ↓Et

)
L b Mt−1(k) otherwise

with

vi =

{
L b′ Mt(j) if b i<j b

′

? otherwise

and

u = λxj1 . . . xjp .JbKk(w1, . . . , win(b)),

where jk is the index of the kth not connected input of b in Gt and

wj =

{
L b′ Mt(k) if b j<k b

′

xj otherwise

3 Implementation

The semantics presented in the previous section is independent from the conditions of a transition from
a generation to the next one. The implementation in OM defines a number of such conditions, as well
as adapted solutions to efficiently determine and calculate (↑Rt ∪ ↓Et) for each new generation Gt.

We mentioned earlier that a user request on a box b triggers a new generation. As a consequence,
there can be only one box at a time in Rt. We choose to handle events asynchronously, that is, one at a
time, so that requests and evaluations are handled sequentially in a single thread. As a consequence, at
each generation, we have to compute either ↑b or ↓b for a given box b in the patch.

The standard evaluation process in OM associates with each box b a compiled Lisp function that
implements the evaluation spanned by a request on b. The implementation of the reactive model on
top of this process can be relatively straightforward, provided we add a number of features to the visual
programs.

Active Boxes. We add a new attribute of the OM boxes determining their reactive status. Reactivity
can be switched on and off by the user with a keyboard short-cut (x). Reactive boxes are highlighted by
red frames in the visual programs.

Registration of descendants. While editing the patch (adding/removing boxes and connections), every
box registers its downstream connected boxes, i.e. the direct descendants which use the value of this
box as an argument, and are likely to propagate updates. (In the current/default OM demand-driven
implementation, boxes are only linked to their direct ancestors through input connections.)

6

Events. The events defined in the system are actions or changes in a visual program likely to disable
the functional consistency of a graph (i.e., to require an update on some of the boxes in Gt). Box or input
value modifications can occur for instance with keyboard actions (e.g. for numerical or text inputs) or
with actions in the graphical editors (for data structure boxes). They can also occur with the evaluation
of a box following a request by the user, or with an external event caught by the system.

Therefore, events have no concrete implementation: they simply correspond to the beginning of an
update starting at a specific place in the visual program.

Notifications and Updates

Events are propagated to the box descendants through a notification mechanism. Below is the signal-
event function responsible for the appearance of an event:3

(defmethod signal-event ((self OMReactiveBox))

(when (active self)

(setf (state-lock self) t)

(OMR-Notify self)

(setf (state-lock self) nil)

))

Note that the box is “virtually” locked during the process (using the attribute state-lock). This will
avoid the box at the origin of the event (and eventually its ancestors) to be evaluated as part of the
update process. The evaluation method omng-box-value is slightly modified accordingly:

(defmethod omNG-box-value ((self OMReactiveBox) &optional (numout 0))

(if (state-lock self)

(current-box-value self numout)

(call-next-method) ;;; standard OM evaluation

))

Anything considered as an event (user edit, value change, etc.) should then simply invoke signal-event.
Currently, this function is called for instance:

• When the user evaluates a box (request);

• When a “value box” has been edited;

• When a box input has been edited (and after an update of the box value);

• When a modification is made by the user in an object editor and is validated/retuned to the box.

A notification starts at the event (b ∈ E) and is propagated to its descendants in ↓{b} by a depth-first
traversal of the graph following the registered and active output connections. Every reactive descendant
in turn propagates the notification:

(defmethod OMR-Notify ((self OMReactiveBox))

(unless (notified-tag self)

(setf (notified-tag self) t)

(let ((listeners (remove-if-not ’active (listeners self))))

(if (and (active self) listeners)

(mapcar ’omr-notify listeners) ;; propagate

(omNG-box-value self) ;; evaluate

))))

When a terminal box b′ is reached (that is, a box with no descendent), the standard evaluation of
b′ is triggered following the OM demand-driven model (omNG-box-value), hence respecting the existing
scheduling strategy and semantics for program executions.

Notified boxes in ↓{b} are marked during the propagation (using the notified-tag flag), in order to
avoid multiple visits to the same sections of the graph. When the evaluation is done, a global flag
clean-up is done (this process hooks on an existing clean-up occurring for other box flags).

3The code listings presented in this report are often simplified for easier reading. The complete code is available in
reactif-lib distribution.

7

Note that the notified-tag flag can also be used as an additional “lock test” avoiding the evaluation
of boxes that are not edited and/or not in the reactive chain (that is, ↑↓{b} − ↓{b}, e.g. boxes B and
A in Figure 1b). Such implementation choice can make a difference, for instance when random or other
impure components yield a different results at each evaluation (no matter if inputs have changed or not).
In our current implementation, this decision is left to the user who can decide to lock relevant boxes and
limit the scope of the graph updates and computations.

Discussion

This relatively simple implementation provides all the required features for first-order reactive visual
programs. It does not overload programming tasks and is completely transparent and conservative with
respect to the OM language design.

The choice of ordering events and handle them asynchronously in a single thread simplifies a great deal
the process and is acceptable in our context and applications. Every incoming event triggers an update
and the next one is processed when the previous update terminates. This strict ordering prevents any
possible conflict, as user edits are also taken into account after any previous event processing is done.

4 Applications

Consistency of the Graph

Changes in a reactive visual program trigger re-computation of descendants and thereby maintain the
consistency of the functional graphs. For instance, a change in Figure 2 which would require the explicit
evaluation of RESULT to make the graph consistent (e.g. modification of th box value ′8′, or some
editing in the the score editor PITCHES SEQ) now automatically updates the patch. This reactive
mechanism impacts the OM visual programming practices and can facilitate user experimentations with
input values.

Interactive Widgets

This mechanism can make particular sense with a number of special components of the OM visual
programs such as the “interface boxes”: buttons, list/menu selection, sliders, etc. The insertion of a
notification after the standard activation procedure of an interactive components makes it very handy to
deal with the experimentation of multiple choices or value ranges in the visual programs. Figure 4 shows
an example of a melody calculated from a curve, which values are scaled in a pitch range determined by
two sliders. The activation of a reactive chain between the sliders and the score box makes this range
controllable interactively with immediate feedback.

Figure 4: Interactive experiments with input values in a reactive OM visual program using slider boxes. The
two slider boxes (MIN, MAX), om-scale and SEQUENCE are reactive.

8

It is important to note that this behaviour is not desirable in every cases and all the time, hence the
local and optional aspects of the reactive mechanism. In an experimental environment like OM, visual
program construction is an incremental process carried out by trials and errors. Sometimes boxes can be
temporarily connected in a certain way by mistake, or for different purposes than immediate evaluation
(which could moreover generate chains of errors). Evaluations also sometimes last large amounts of time
(e.g. in complex optimisation problems, large data structure processing, or high-precision signal analysis
or synthesis), and the computation of the visual program is then usually run once for all at the end of
its construction only (the previous example could become problematic in case of heavy computational
processes depending on the reactive slider values).

Communication with External Systems

The reactive framework also renews the possibilities for the communication of the computer-aided com-
position environment with other applications, and more generally with its external context. Networked
inter-application communication is supported in the system OSC encoding (Wright, 2005) over UDP
and available at the level of the visual programs through the OSC-receive and OSC-send boxes. When
activated, OSC-receive runs a server thread receiving incoming UDP messages on a specified port. A
reactive behaviour (notification) is also added to this box, updating its value and triggering a notification
when a packet is received. Visual programs containing an active OSC-receive hence become reactive to
incoming messages or events from any application, input device or instrument.4

Data Collection

The messages received through receive/reactive boxes are in principle “instantaneous”: in order to
integrate compositional processes, they generally need to be gathered in more complex data sets and
mapped to time structures. A specific box called coll has been created for this purpose, which instantiates
a local storage for dynamic data collection.

Coll boxes have three inputs and constitute a special case in the notification mechanism. Upon
reception of a notification on it’s first input (labelled data-in), the connected box at the source of the
notification is evaluated as a terminal box and the resulting value is added into a list that constitutes the
coll “memory”. On its second input (labelled push), coll behaves as a standard reactive box, propagates
the notification through its descendants, and returns the current contents of its memory (a list of all
previous data collected through data-in) upon evaluation. Finally, a notification to the third input
(labelled init) reinitializes the memory and stops the propagation.

Coll behaves as an intermediate step in the notification/evaluation mechanism where notification
temporarily stops and inputs are evaluated. The box is then locked and (if requested so depending on
the incoming notification) propagates on its own.

Coll can be associated to OSC or MIDI receive boxes to develop reactive programs in OM that
structure and process live inputs from real-time systems. Figure 5 shows an example where a Max
program (Puckette, 1991) sends a “note” message via UDP every time the user clicks on one of the piano
keyboard widget. The OM program containing a running OSC-receive (at the right) collects the pitch
information in this message into the coll box. At every received message the push input also receives
a notification (the two coll inputs are connected), and therefore triggers an update of the downstream
part of the OM program. The growing contents of the memory is converted into a data structure that
can be further processed in the visual programming environment.

Handling Time and Groups in Data Collection

It is frequent in communication frameworks that several messages must be gathered in a same group
and/or be considered simultaneous (if the messages are notes as in the previous example, this idea would
correspond to the concept of chord). However it is very unlikely that two events belonging to the same
group (or notes in the same chord) be sent and received at the exact same time. And even so, they
would not be handled simultaneously by the system. Time-tagging events is a solution to deal with this

4The same principle applies for MIDI messages and musical instruments or devices communicating with this protocol.

9

Figure 5: A basic process of reception and collection of incoming data from a Max real-time program (window
on the left) in OM.

situations – the OSC protocol also groups simultaneous messages in time-tagged bundles, see (Schmeder
and Freed, 2008) – but all events are not necessarily time tagged.

When no bundle or time-tagging is present in the communication protocol (e.g at receiving simple
UDP or MIDI messages), internal timing can be used to gather collected data according to specified
intervals. The group box implements this behaviour: it has one input collecting data (similar to the coll
input) and a second input setting the time interval.

The timed-coll object extends coll with the group behaviour and gathers the items collected during a
given time interval into separate data chunks.

Depending on the timing of incoming events, the result in Figure 5 using timed-coll would be a list of
lists of pitches, corresponding to a sequence of chords in the score.

Even-Driven Conception of the Visual Programs

Reactive applications such as the one in Figure 5 tend to orient the design and general conception of
the visual programs towards a data-driven paradigm, where the propagation of notifications needs to be
controlled as evaluation is (the coll mechanism, for instance, can be seen as the event-driven counterpart
to the collect primitive in standard Lisp or OM loops). Typically, one quickly needs to select for instance
between the data collection, push or init commands in the coll by sending different messages, instead of
instantiating separate OSC sever connections for every command.

Several tools inspired by reactive data-driven systems like Max are being added for this purpose to
the OM reactive framework, such as route, a utility that filters notifications depending on a set of tests
performed on its input. Route is also a particular case in the update mechanism in the sense that it
requires input evaluation before to chose where to propagate the notification:

10

(defmethod OMR-Notify ((self ReactiveRouteBox))

(unless (push-tag self)

(setf (push-tag self) t)

(omNG-box-value self) ;;; => CALLS "ROUTE" AS A NORMAL FUNCTION (EVALUATES INPUTS BEFORE)

(setf (state-lock self) t)

(when (active self)

(let* ((routed-outputs (loop for i = 0 then (+ i 1)

for v in (value self)

when v collect i)) ;;; ONLY OUTPUTS WITH A VALUE WILL PROPAGATE

(listeners (boxes-connected-to-outputs (listeners self) routed-outputs)))

(mapcar ’omr-notify listeners)))

(setf (state-lock self) nil)

))

;;; METHOD SETTING THE VALUE OF THE BOX

;;; COLLECTS THE DATA IF TESTS SUCCEEDS OR NIL IF IT FAILS

(defmethod! route (data &rest tests)

(cons data

(mapcar

#’(lambda (test) (when (test-match data test) data))

tests)))

))

(defun test-match (data test)

(if (functionp test)

(funcall test data)

(equal test data)))

Figure 6 shows an extended version of the example in Figure 5 using route-osc, a version of route
specialized for processing OSC messages. Route-OSC tests the message “address” and propagates the
rest of the data. The different messages now coming from the Max interface control different behaviours
of the OM program, differentiating the phases of initialization, data collection, and activation of the
downstream processing for the collected data.

Figure 6: Routing notifications using incoming OSC message addresses.

Other “event-driven” utilities include for instance an internal send/receive mechanism, also inspired
from the Max/PureData send and receive tools, allowing to propagate notifications and updates in the
visual programs without passing through the whole path of intermediate functional connections.

11

5 Conclusion

The reactive extension of OM introduces a new conception of the computer-aided composition framework
and of its relations to the external context. Compositional processes are built and run interactively, but
now also “live” on their own and can be driven by external processes and interactions. The fundamental
“off-line” characteristic of computer-aided composition systems is preserved and interleaved in larger-
scale/reactive temporal contexts.

The main questions raised by this hybrid paradigm are related to time structures and computation.∗

In Figure 5 for instance, instantaneous data received from a real-time environment had to be converted
into timed musical data structures. In this case the mapping to timed structures can be an arbitrary
process programmed in OM (as done in a primitive way by the timed-coll object), or embedded in the
communication protocol (as with an embedded time-tagging protocol).∗

The generated musical structures can in turn be re-injected in the “real time” flow, by user request or
as a response to a notification in the reactive system, and either via networking (e.g. with OSC-send)
or by direct synthesis or rendering in OM (e.g. via embedded audio/MIDI players).∗ Such reactive loop
involving computer-aided composition processes (where real-time processing leaves space for advanced
formal/compositional computations) opens interesting perspectives for enhanced musical expressiveness
in interactive situations.

[*] ⇒ These different points will be addressed in further stages of the EFFICACe project:

• WP 1.3: Audio/MIDI systems

• WP 2.1: Time structures and scheduling

• WP 2.2: Communication protocols

The reactive extension of OM is packaged as a dynamic library (reactif-lib) loadable on top of the
standard OM version (≥ 6.7). It is included as a native feature in OM 6.9.

References

Assayag, G., Bloch, G., Chemillier, M., Cont, A., and Dubnov, S. (2006). Omax Brothers: A Dynamic
Topology of Agents for Improvization Learning. In Workshop on Audio and Music Computing for
Multimedia, ACM MultiMedia, Santa Barbara, CA, USA.

Bresson, J., Agon, C., and Assayag, G. (2009). Visual Lisp/CLOS Programming in OpenMusic. Higher-
Order and Symbolic Computation, 22(1).

Bresson, J. and Giavitto, J.-L. (2014). A Reactive Extension of the OpenMusic Visual Programming
Language. Journal of Visual Languages and Computing. In Press.

Harel, D. and Pnueli, A. (1985). On the Development of Reactive Systems. In Logics and Models of
Concurrent Systems. Springer Verlag.

Nika, J. and Chemillier, M. (2012). ImproteK, integrating harmonic controls into improvisation in the
filiation of OMax. In Proceedings of the International Computer Music Conference, Ljubljana, Slovenia.

Puckette, M. (1991). Combining Event and Signal Processing in the MAX Graphical Programming
Environment. Computer Music Journal, 15(3).

Schmeder, A. and Freed, A. (2008). Implementation and Applications of Open Sound Control Times-
tamps. In Proceedings of the International Computer Music Conference, Belfast, Ireland.

Wang, G. and Cook, P. R. (2004). On-the-fly Programming: Using Code as an Expressive Musical
Instrument. In New Interfaces for Musical Expression (NIME’04), Hamamatsu, Japan.

Wright, M. (2005). Open Sound Control: an enabling technology for musical networking. Organised
Sound, 10(3).

12

