
HAL Id: hal-01141934
https://hal.science/hal-01141934

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mashup Architecture for Connecting Graphical Linux
Applications Using a Software Bus

Mohamed-Ikbel Boulabiar, Gilles Coppin, Franck Poirier

To cite this version:
Mohamed-Ikbel Boulabiar, Gilles Coppin, Franck Poirier. Mashup Architecture for Connecting Graph-
ical Linux Applications Using a Software Bus. Interacción’14, Sep 2014, Puerto de la Cruz. Tenerife,
Spain. �10.1145/2662253.2662298�. �hal-01141934�

https://hal.science/hal-01141934
https://hal.archives-ouvertes.fr


Mashup Architecture for Connecting Graphical Linux
Applications Using a Software Bus

Mohamed-Ikbel
Boulabiar
Lab-STICC

Telecom Bretagne, France
mohamed.boulabiar

@telecom-bretagne.eu

Gilles Coppin
Lab-STICC

Telecom Bretagne, France
gilles.coppin

@telecom-bretagne.eu

Franck Poirier
Lab-STICC

University of Bretagne-Sud,
France

franck.poirier
@univ-ubs.fr

ABSTRACT
Although UNIX commands are simple, they can be com-
bined to accomplish complex tasks by piping the output of
one command, into another’s input. With the invasion of
GUI applications, we have lost this ability to chain many
small tools in order to accomplish a composite task or the
possibility to script applications. As such we have become
imprisoned into the interface as designed by the developer.
Most applications are also designed to be used through a
keyboard and a mouse even if the user has newer input
devices. In this paper, we demonstrate how we can re-
move most of these limits and provide the possibility to
script, adapt and automate GUI applications using a soft-
ware bus in a Linux operating system. We provide imple-
mented proof-of-concept cases in addition to conceptual sce-
narios showing the possibilities arising from the approach.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces; I.3.6 [Computer Graphics]: Methodology and
Techniques

Keywords
Operating system, interaction, architecture, post-wimp, fac-
torization, automation

1. INTRODUCTION
The UNIX operating system has introduced the success-

ful concept of building all the system experience by using
small command-line tools which can be connected together
through pipes. Unfortunately, this concept of “do one thing
and do it well” is only available through the console and can
not be applied to the GUI applications which have become
more complex in each iteration. These applications are ac-
tually used as separated islands. They have some similar

.

functionalities and with different and redundant implemen-
tations that forced special users as designers to use a huge
list of tools in order to accomplish a bigger task. In this
paper we are trying to solve the problem of GUI application
complexity, inability of the reuse of specific functionalities,
and inflexibility by introducing a new concept of commu-
nicating between the GUI applications, and describing sce-
narios that show the importance of such a mechanism. The
scenarios we are exposing show numerous cases where the
possibilities exceed the communication with a single appli-
cation.

Our contribution mainly lies in the use of a software bus to
ensure the applications connection and the ideation of new
scenarios offered by this technique. Scenarios are a ground
point to rethink how application could be architected in a
common open source platform like Linux and evaluate the
approach by enumerating and testing the feasibility of sce-
narios. We target creative tools and graphical design soft-
ware used mainly by designers, novice or advanced. First,
we start by presenting the concept of reducing the use of
creative applications to their canvas and presenting the rea-
sons which led to such a decision. Then we start presenting
scenarios sorted in terms of complexity.

2. APPLICATIONS AS CANVAS

2.1 Definition of a Software Bus
A Software Bus is an inter-process communication system

which allows different applications to connect to a shared
channel and then communicate information or invoke dis-
tant method calls. In the case of Linux systems, D-Bus is
used to facilitate the communication of three message types:
method calls, signals and properties. It is possible to call a
method in a remote application, subscribe to signals events
emitted or read variable properties shared on the bus. As de-
fined by the standard, each application has an address and a
list of methods which can be introspected by any application
reading from the bus. The choice of D-Bus is suggested by
the number of tools, libraries and applications that already
support it.

2.2 Previous and Related work
When Linux developers have finished the work on support-

ing multi-touch events inside Linux kernel, they faced the
problem of modifying a big list of software libraries and lay-
ers to support the event routing between the kernel and the
application. A faster solution developed was Ginn, which



is a Linux daemon that transforms multi-touch events into
keyboard taps and mouse clicks. The transformation rules
named “wishes”, are loaded depending on the application
currently in focus. The concept of transforming input events
is similar to the one of the iCon project by Dragicevic [5].
A small piece of code enabled legacy applications to have
a feeling that they react to the new events, without mod-
ifying the code of the legacy applications or soliciting the
developers to do so. Ginn proposed a solution to adapt old
applications to new ways of interaction, but it still needs
to have the application in focus, and the old interface in
which events are injected. From this case, we felt the im-
portance of including pieces allowing applications to evolve
in the future to support new means of interaction as referred
by Chatty [4] than keyboard and mouse events. Ginn could
do a better job if it were able to trigger, by a certain rule or
wish, an internal function of the application. In this case, it
would bypass the proposed GUI interface and only need the
application canvas where the command response is shown as
the case in Figure 1.

Figure 1: Connecting hand palm angle rotation
events to control the movement of boxes inside
inkscape, no modification to the target application
code is needed

2.3 Reducing applications into their canvas
GUI applications have eliminated the need to memorize

commands in order to accomplish tasks. Meanwhile, they
have removed the possibility of scripting and intercommu-
nication. Some attempts have tried to use software buses
like TUIO [6] and IvyBus [3]. In the first case to transport
input events which are more complex than the one stan-
dardized in the operating system, and in the second case
to communicate between application to transport a generic
type of information. Olivo et al. [8] have pointed out this
problem while trying to handle multi-touch events, but used
network protocols. That does not completely solve the prob-
lem, especially when many applications do not use the same
platform standard. We also present how we can reduce the
dictatorship of the applications interface on what the user
is able to do. This is different of what has been done by
Stuerzlinger et al. [9] by trying to innovate at the interface
level in order to reach the same goal. Minimizing the role of
most of the applications into a visualization canvas of what
is being done by accessing its internal functionalities from a
software bus. It can also simplify the application migration

into a new post-wimp paradigm because we will only need
to connect new input events into these internal methods and
need the canvas only for feedback. Contrary to model-view-
controller pattern where frontiers of a single application are
known, we are addressing a platform with multiple appli-
cations that can be used on multiple devices which is not
limited to original developers intended use. In most of the
upcoming scenarios, we target the vector drawing applica-
tion Inkscape and show what are the new possibilities arising
from it.

3. SCENARIOS

3.1 Scripting GUI Applications
Graphical applications can only be used through their in-

terface, and using the input devices supported. When we
want to handle a complex manipulation we are stuck in re-
peating input actions, especially when developers have not
provided neither a macro recorder nor an app-internal script-
ing API like VBA or Gimp PDB (Procedural DataBase).
Some of the solutions to this problem is to use an external
daemon for input record and replay, or more complex ones
like MIT Sikuli [10] use computer vision to detect the posi-
tion of graphical interface elements then generates clicks on
them. Using computer vision for such operation means that
we still need the graphical interface on the screen. This is
more like a hack than a permanent solution, as the interface
can change anytime between versions. In our case, by ac-
cessing the application methods exposed on a standardized
software bus, we are able to script all needed actions using a
simple python script executed from the outside of the appli-
cation itself which is then transformed into a visualization
canvas.

3.2 Interactive Programming
When we script application as we discussed, we also have

the possibility to combine useful scripts, make them config-
urable and create a GUI for them. By taking the example
of a drawing application like Inkscape, the application is di-
vided into a canvas, where elements are drawn, and a default
user interface. We can use floating windows in the same way
of Magic Lenses by Bier et al. [2] to add a new functional-
ity to the application. The floating windows will internally
contain a script to handle an object inside Inkscape as in Fig-
ure 3. The window can use sliders to configure the values to
draw a complex shape, and generate the DBus commands
in order to stream them to the application. From simple
application methods like “draw line” or “draw circle ”, we
can write external plug-ins able to draw any shape. They
will communicate with Inkscape using the software bus, de-
veloped in any selected language and are solely limited by
the imagination of this plug-in developer.

Figure 2: Implementation of an interactive geomet-
ric shapes drawing. The user can select a value
and visualize the change instantly on Inkscape while
moving the slider.



This new way of adding features to applications is very
generic in terms of the programming language used or what
is possible to, and can force the application to behave in
newer ways. Figure 2 shows the use of C++ or python lan-
guages to add interactivity. For example we can make a
drawing application to behave as a plotting tool by read-
ing values from a file and transforming them into drawing
commands to the app. We have even created an animated
visualization by using the “move” method on a graphical
element inside the plug-in internal loop which can export a
frame each time then combined to create an video. Inkscape
gained the animation ability just by plugging an external ap-
plication that is based on its methods and compose them to
create a new environment.

Figure 3: Implementation of a“magic lens”example.
The completely separated application has a semi-
transparent window and can modify the elements
color in Inkscape

3.3 Factorization of applications development
In the previous example, we reached the level where we

can make a normal application behave in new ways just by
using external plug-ins that do not depend on the provided
interface. This means that the important part of the ap-
plication is changed. What are the limits if we push this
concept into a new level by completely removing the default
interface and providing new ones?

Any designer use many tools to create a mock-up or an
animation. Tools he uses do not always come from a sin-
gle company. Thus he needs to learn to use the interface of
each of them. A beginner will find that these tools do not
share the same icons, the same interaction design, even the
same positioning of toolbar elements which is a problem of
inconsistency in the actor platform. This problem can be
solved when the developer of a platform can access inter-
nal functions through the installed software and provide by
himself an interface which contain the same set of icons and
based on a the same interaction design. And such an ac-
cess can be done using a software bus between applications.
We are proposing a resolution of a single platform incon-
sistency. But nowadays, applications now can be run on
mobile phones, tablets, desktop computers and TVs. Even
if the applications type can differ from one device to another,
we still have a common space of functionalities used. In or-
der to target all of these devices, a typical developer would
create an application for each of them, with the proper in-

terface and interaction, compile it and release a new version
for each device. The problem here is that a lot of work
and multiple skills from development to design are needed.
When the person porting an application to another device
is different, it becomes sometimes difficult to convince the
main developer to create a new interface. This scenario ap-
plies the two levels of separation: Core functionalities in-
cluding a visualization canvas, and a superposed interface.
The core exports the internal functionalities into a software
bus, and the interface connects to that bus, loads a selected
interface and a “functionalities matching process” depend-
ing on the device. This concept is represented by Figure 4.
The interfaces are created by main platform developers and
the intellection will move from application level to platform
level. The amount of work needed to adapt the application
to a new device or modality is reduced to the creation of the
interface and the matching. The core application role will
be to show a canvas, and to export its internal methods into
the bus. Here in addition to the proposed inconsistency res-
olution for single and multiple platform, we have factorized
the application development into core functionalities which
accelerate the development, and factorized also the interac-
tion design which will be made by the designer for all the
platforms. The link between the two layers is a component
that matches the interaction to the functionality. Think-
ing about the platform and not the application itself, can
push the thoughts into the solution of showing the canvas of
the same application through many connected devices and
being able to modify elements at the same time using the
computer, the tablet and the phone, do part of the work
on a device and finish it using another one. Events will be
handled in each device and transformed into DBus method
calls.

Figure 4: Concept of multi-device application de-
velopment where the application will provide only
a drawing canvas and export its functions through
the bus

3.4 Applications Composer
In a platform where many applications get their inter-

nal methods exported and handled with the same way of
thinking, we need a tool that is able to connect to any inter-
nal method of a chosen target application. Then run more
complex tasks than what is provided by a single applica-
tion. This tool capable for example to open a file inside
an application as the “open file” is an exported method, ap-
ply operations on it and save it in a external file. Then,
after completing with the first application, open these in



a new one and so on. This tool will make GUI applica-
tion as powerful as UNIX command line tools with a lot
more possibilities. Since it looks like Apple Quartz Com-
poser, but using applications as building blocks, let’s call
it “Applications Composer”. This concept enables applica-
tions scripting, and simplifies complex tasks for the user. It
reduces the meaning of having many alternative tools to do
the same task inside a platform. If we have many drawing
applications that do almost the same thing, the composer
interface eclipses these applications the way of independent
units they used to be. A simple user who wants to accom-
plish a task will load a script, provide the input files and
get the output, with no need to look at how this is done
in details and what applications will be used in the chain.
Some developers can even develop small applications with
no interface and no significance when used alone, but that
are here to fill the gap when used inside the composer. We
are speaking about interaction with application using tools,
without being limited to a specific interface this is a way
to rethink the interaction in a platform as multi-device and
multi-application, but single interaction design [1].

3.5 Interactive Documentation
The current way to create a documentation for a GUI

application is either to write textual tutorials accompanied
with pictures of the buttons where to click, screen-shots of
the application windows, or to record a video of the author
using the application directly. In both ways, the learning
user should switch between the textual or video tutorial and
the real application many times and to follow step by step
what is shown. The switching is intensive and the user can
easily lose focus and get lost as described by Laput et al. [7]
Using the core model of a software bus, documentation can
be built independently of the type of the current interface
visible to the user, but on the core functions of the applica-
tion instead. We have newer way to create documentation
with DBus. For example, we can invoke an action, and we
can also detect when a user does a specific step in a tu-
torial using signals. These can be used to show a part of
the tutorial and go to the next step only when the user has
done the previous required work. Using transparent win-
dows, the user will no more switch between the application
he is learning and the tutorial. The latter will be shown on
top of the application step at-a-once that can even be writ-
ten inside the learning document for a drawing application.
Using this scenario, we have removed the switch between
an application and its tutorial. The old forms of documen-
tation can still be generated using a screen-shot taking or
video recording script and will take into account the current
interface according to the platform.

4. CONCLUSION AND LIMITS
In this paper we have presented many scenarios showing

how the export of an application’s internal methods can be
beneficial for new platform design possibilities. Using the
same concept we have also proposed solutions for problems
like inconsistency in the interface and interactions of a plat-
form. It also addresses the reduction of development time,
multi-device deployment, unification of the documentation
system. A side effect of our approach is the reducibility of
creative creation GUI applications into their bare canvas.
We have explained how this brings better interactions with
computers for the developer who will write less code, as well

as for the user who will get his task accomplished by writing
small scripts. Developers do not want their tools eclipsed
and hidden below a platform made, application composer.
This also leads to the use of their applications in new, un-
intended way, which needs some standardization efforts like
the MPRIS for video players.

5. REFERENCES
[1] M. Beaudouin-Lafon. Designing interaction, not

interfaces. In Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’04, pages 15–22,
New York, NY, USA, 2004. ACM.

[2] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and
T. D. DeRose. Toolglass and magic lenses: The
see-through interface. In Proceedings of the 20th
Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’93, pages 73–80,
New York, NY, USA, 1993. ACM.

[3] M. Buisson, A. Bustico, S. Chatty, F.-R. Colin,
Y. Jestin, S. Maury, C. Mertz, and P. Truillet. Ivy: Un
bus logiciel au service du développement de prototypes
de systèmes interactifs. In Proceedings of the 14th
French-speaking Conference on Human-computer
Interaction (Conférence Francophone Sur
L’Interaction Homme-Machine), IHM ’02, pages
223–226, New York, NY, USA, 2002. ACM.

[4] S. Chatty, A. Lemort, and S. Vales. Multiple input
support in a model-based interaction framework. In
Horizontal Interactive Human-Computer Systems,
2007. TABLETOP ’07. Second Annual IEEE
International Workshop on, pages 179–186, Oct 2007.

[5] P. Dragicevic and J.-D. Fekete. Support for input
adaptability in the icon toolkit. In Proceedings of the
6th International Conference on Multimodal
Interfaces, ICMI ’04, pages 212–219, New York, NY,
USA, 2004. ACM.

[6] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. Tuio: A protocol for table-top tangible
user interfaces. In Proc. of the The 6th IntâĂŹl
Workshop on Gesture in Human-Computer Interaction
and Simulation, 2005.

[7] G. Laput, E. Adar, M. Dontcheva, and W. Li.
Tutorial-based interfaces for cloud-enabled
applications. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’12, pages 113–122, New York, NY,
USA, 2012. ACM.

[8] P. Olivo, D. Marchal, and N. Roussel. Software
requirements for a (more) manageable multi-touch
ecosystem. In EICS 2011 Workshop on Engineering
Patterns for Multi-Touch Interfaces, 2011.

[9] W. Stuerzlinger, O. Chapuis, D. Phillips, and
N. Roussel. User interface façades: Towards fully
adaptable user interfaces. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’06, pages 309–318, New York,
NY, USA, 2006. ACM.

[10] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using
gui screenshots for search and automation. In
Proceedings of the 22Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’09,
pages 183–192, New York, NY, USA, 2009. ACM.


