
HAL Id: hal-01141884
https://hal.science/hal-01141884

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incorporating the FAVAD Leakage Equation into Water
Distribution System Analysis

Olivier Piller, Jakobus Ernst van Zyl

To cite this version:
Olivier Piller, Jakobus Ernst van Zyl. Incorporating the FAVAD Leakage Equation into Water Distri-
bution System Analysis. Procedia Engineering, 2014, 89, pp.613-617. �10.1016/j.proeng.2014.11.485�.
�hal-01141884�

https://hal.science/hal-01141884
https://hal.archives-ouvertes.fr


 Procedia Engineering   89  ( 2014 )  613 – 617 

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Organizing Committee of WDSA 2014
doi: 10.1016/j.proeng.2014.11.485 

ScienceDirect

16th Conference on Water Distribution System Analysis, WDSA 2014 

Incorporating the FAVAD Leakage Equation into Water 
Distribution System Analysis 

O. Pillera*, J. E. van Zylb 
aIrstea, Water Department, Bordeaux regional centre, Cestas F-33612, France 

bUniversity of Cape Town, Department of Civil Engineering, Cape Town, South Africa  

Abstract 

The standard formulation of the hydraulic network equations incorporates a power function for modeling pressure-dependent 
consumption such as leakage. However, recent research has shown that the FAVAD leakage model more accurately accounts for 
the behavior of leaks in practice. The objective of this paper is to propose a method for solving the hydraulic network equations 
incorporating the FAVAD model. An energy minimization problem is used to prove the existence and the uniqueness of the solution 
to this problem, and to provide the basis for a robust solver. A damped Newton algorithm is proposed for solving the system 
equations. 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Organizing Committee of WDSA 2014.  
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1. Introduction 

Most hydraulic software packages simulate leakage in water distribution systems using an emitter function, which 
models leakage flow rate as a power function of the nodal pressure. Water losses often make up a significant 
component of the distributed water and thus it is important to model its behavior as accurately as possible. Recent 
studies have showed that the Fixed and Varied Area Discharges (FAVAD) equation provides a more realistic 
description of the behavior of leaks in elastic materials than the conventional power equation. The purpose of this 
paper is to investigate the incorporation of the FAVAD equation into the standard hydraulic network model.   
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1.1. Leakage rate and pressure 

It is well known that the flow rate from pipe leaks is a function of the available pressure. This behavior allows water 
utilities to find leaks based on pressure measurements and to use active pressure management to reduce leakage rates 
and increase pipe service life. 

 The Torricelli orifice equation forms the basis for the pressure-leakage relationship, and can be used to describe 
the flow rate from an orifice as: 

2L dQ C A gh   (1) 

Where QI is the leakage flow rate through the orifice; Cd a discharge coefficient; A the leak area; g the acceleration 
due to gravity; and h the pressure head at the orifice. 

In water loss practice, the flow rate is written in a more general power equation (i.e. the same form as used for 
emitters in hydraulic network software) in the form:  

1N
LQ ch   (2) 

Where c is the leakage coefficient and N1 the leakage exponent. In field studies the leakage coefficient and exponent 
are calculated from the system leakage before and after pressure reduction. While the orifice equation Eq. (1) predicts 
the leakage exponent to be 0.5, values as high as 2.9 have been reported in field studies. The higher exponents are 
mainly due to leak areas changing with changes in system pressure. 

1.2. The FAVAD leakage model 

Recently, Cassa and van Zyl [1] showed that the power equation does not provide a good characterization of the 
pressure response of a leak, and different leakage exponents result for the same leak when measured at different 
pressures. Van Zyl and Cassa [2] found that the FAVAD model is particularly suited to model individual leaks in 
elastic materials. Replacing a linear equation for the leak area as a function of pressure into the orifice equation (Eq. 
1), results in: 

0.5
02L dQ C g A mh h   (3) 

where A0 is the leak area intercept; and m is the head-area slope.  
The head-area slope is a function of the properties of the leak, as well as the pipe material and section properties. 

For round holes, m is very small (i.e. expands very little with increasing pressure); and for longitudinal, spiral and 
circumferential cracks, formulae for m have been proposed based on CFD studies [3]. The assumption of elastic 
deformation inherent in the FAVAD model (Eq. 3) is considered a reasonable assumption, although leaks in plastic 
pipe are also affected by hysteresis and plastic deformation [4]. 

For the combined response of many leaks, Schwaller and van Zyl [5] showed that the FAVAD model can also be 
used to describe the behavior of pressure management zones with many leaks, and that the parameters of the FAVAD 
model are strongly related to the sum of all the individual leak areas and head-area slopes in the system. 

1.3. Diffuse leakage and pipe momentum equation 

In current hydraulic models, leakage and water use along a link are lumped at the start and end nodes of these links. 
Several authors have proposed energy conservation corrections for leaky links in a WDS model (a model link typically 
consists of a number of consecutive elements in the real system, including pipes, joints, off-takes and minor losses). 
Jaumouille et al. [6] assumed a uniform leakage rate along the link (i.e.: a gradually varied flow) for deriving a rigid 
column equation that considers time and convective inertia terms and integration of the head loss function along the 
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pipes. Under a different framework, Ferrante et al. [7] proposed an additional term with an experimentally determined 
Cβ coefficient to account for the loss in axial momentum.  

1.4. The energy minimization problem formulation  

Hydraulic software solutions rely on solving steady state equations for conservation of mass and energy of an 
incompressible fluid. An extended period simulation consists of a sequence of consecutive steady state simulations. 
The steady state equations are solved to obtain the unknown flow rates in links, and energy heads at nodes. The steady 
state equations are: 

 

( )

( )

nu
T T

f f np

AQ c H 0

h A H A H 0

h h Q

  (4) 

Where Q is the vector of link flow rates with size np (number of links); c(H) the vector of head-dependent 
consumptions, i.e.: leakage and water demand lumped at nodes, with size nu (number of unknown-head nodes), A an 
nu x np incidence matrix representing of unknown-head node connectivity, Af an nf (number of fixed-head nodes) x 
np incidence matrix of fixed-head nodes, H the vector of piezometric heads for the unknown-head nodes, Hf the vector 
of hydraulic heads for the fixed-head nodes, Δh a vector of link head losses. The first two equations describe the 
conservation of mass and energy respectively, and are linear. The last equation is a nonlinear equation that describes 
the relationship between the link flow rates and head losses, typically based on the Darcy-Weisbach formula. 

In order to ensure global convergence for any initial solution, it is useful to adopt an optimization approach.  Similar 
primal-dual formulations for demand-driven steady state problems (with c(H) = d, a vector of known  demands) were 
proposed by several authors [8, 9 , 10].  An optimization approach allows step-size correction to be made to the 
solution, thus allowing numerical instabilities to be avoided. In addition, the existence and uniqueness of a solution to 
the equations can be proven, and thus convergence on a unique solution is guaranteed. 

The FAVAD leakage model has not been incorporated in a hydraulic modeling package yet. For that purpose, first 
an energy minimization problem is introduced that is equivalent to solve. Next, the latter is used to prove the existence 
and the uniqueness of the solution of head-dependent consumption problem Eq. (4). Finally, a robust Newton-based 
solver algorithm is proposed.  

2. Energy problem formulation for steady state solution with FAVAD leakage model 

Piller et al. [11] introduced a primal-dual framework suitable for solving Eq. (4) for pressure-driven model (PDM). 
One important difference is that the water consumption PDM function is bounded above by a fixed demand; also, the 
primal formulation is not directly applicable for FAVAD leakage model that is not bounded above (one constraint 
should be released). On the other hand, their PDM dual formulation may be applicable for the solution of Eq. (4) with 
c(H)  including the FAVAD Eq. (3) as a component. Thus, we consider the following minimization problem:  

(0) 0
1 1

min ( ) : ( ) ( )
T T

f f ji

i

np nu H

i jh
i j

CC g u du c v dv
A H A H

H
H  (5) 

Were CC is the co-content function; and gi is the head loss inverse function for the ith link. CC has the dimension 
of power and is expressed with unknown nodal head as basic unknowns. For making the connection with system Eq. 
(4) one has to differentiate the CC criterion. The gradient vector is given by: 

( ) ( ) ( ), with ( ) ( )T T
f fCC H AQ H c H Q H g A H A H

 

 (6) 
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For all H, the solution (Q(H), H) verifies the energy balance equation by definition of Q function of H. Let us 
observe that minimization problem Eq. (5) is not constrained. We can deduce from it that the gradient taken at a 
minimum solution H* equals zero. It follows Q(H*) satisfied the mass conservation as well, and (Q(H*), H*) is 
solution of system Eq. (4).  By convexity of CC, one H* solution of Eq. (4) is also a minimum of minimization 
problem (Eq. 5). Solving Eq. (4) is then equivalent to solving the co-content minimization problem. 

Now the Darcy-Weisbach head loss function is differentiable with Q and its inverse g is also differentiable. There 
are both strongly monotone which leads to conclude that CC is elliptic (strongly convex). Its Hessian matrix is a 
symmetric positive-definite matrix and may be calculated as: 

1( )( ) ( ( )) ( ), with ( ) ( ) and ( ) ( )TCC H QHess H AD Q H A H H c H D Q h q

 

 (7) 

An elliptic criterion possesses level sets that are closed and bounded. This is enough for demonstrating the 
uniqueness and existence of the solution of Eq. (5) and then, by equivalence, of Eq. (4). 

3. The damped Newton method 

Newton method converges given a sufficiently close initial guess, but may converge slowly or fail to converge 
even for elliptic functions due to numerical instabilities (caused by the inexact representation of numbers in computer 
memory), particularly for high accuracies. However, we can ensure that the method converges by incorporating a 
damping factor. This leads to the proposal of a global damped Newton method that, for the minimization of Eq. (5), 
consists of the iteration:  

11 1( ( )) ( ) ( ) ( )k k k T k k k
kH H AD Q H A H AQ H c H

 

 (8) 

Were 0 < αk ≤ 1 is a damping factor that is such that the following Goldstein condition holds: 
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With 0 < λ < 0.5 < μ < 1 two fixed numbers. The left-hand side of the inequality ensures a sufficient reduction in 
CC whereas the right-hand side guarantees sufficient distance between iterations. There exists a number N such that 
if k > N, then there is no need for damping and αk may be chosen to be 1. 

4. Conclusion 

In this paper we propose an energy formulation for water distribution network hydraulics incorporating the FAVAD 
leakage equation. It is formulated as a minimization problem with nodal heads as basic unknowns. This formulation 
is useful both to demonstrate the uniqueness and existence of the solution and to derive a global descent algorithm. A 
damped Newton method is proposed for solving the equations. 
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