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Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the
framework of Loop Quantum Gravity (LQG). The black hole emission rates are governed by the
entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at
leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-
Immirzi parameter γ. Starting with black holes of initial horizon area A ∼ 102 in Planck units, we
present the spectra for different values of γ. Each spectrum clearly decomposes in two distinct parts:
a continuous background which corresponds to the semi-classical stages of the evaporation and a
series of discrete peaks which constitutes a signature of the deep quantum structure of the black
hole. We show that γ has an effect on both parts that we analyze in details. Finally, we estimate
the number of black holes and the instrumental resolution required to experimentally distinguish
between the considered models.

PACS numbers:

I. INTRODUCTION

Loop quantum gravity (LQG) [1–3] proposes a descrip-
tion of the fundamental degrees of freedom responsible
for the black hole (BH) entropy (see [4] and references
therein). According to the most recent results [5–7], these
fundamental excitations live on the horizon and are ele-
ments of the Hilbert space of a Chern-Simons theory: the
gauge group is SU(2), the canonical surface is a punc-
tured two-sphere, and the level (coupling constant) k is
proportional to the horizon area A in Planck units. Punc-
tures are quanta of area associated with horizon-piercing
edges of the spin-network-states that define the quantum
states of the bulk exterior geometry.

As the quantization of a Chern-Simons theory with
a compact gauge group is now well-understood (see [8–
10] and references therein), the kinematical characteris-
tics of a quantum black hole within the framework of
LQG are very well-defined. This enables the identifica-
tion of the microstates for a black hole in equilibrium.
The characterization of their number for a given macro-
scopic horizon area A allows for the computation of BH
entropy and leads to compatibility with the celebrated
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Bekenstein-Hawking area law

SBH =
A

4`2p
. (1)

Due to the dependence of the area spectrum on
the Immirzi parameter γ compatibility with Bekenstein-
Hawking BH entropy required fixing the Immirzi param-
eter to a special numerical value in early BH entropy
calculations[11, 12]. More precisely in these models the
BH entropy was shown to be given by

S =
γ0
γ

A

4`2p
, (2)

where γ0 takes an order one numerical value depending
on the models [13, 14]. Compatibility with (1) was inter-
preted as a constraint on the value of γ imposed by the
existence of the correct semiclassical regime. However,
the Immirzi parameter is the coupling constant with a
topological term in the action of gravity [15, 16] with no
impact in the classical equations of motion. Hence, the
strong dependence of the black holes entropy computa-
tion on γ remained a controversial aspect. For further
discussion of this and an exploration of the influence of
γ in the phase space structure of gravity see [17–19].

A promising perspective on the issue of the γ depen-
dence of BH entropy in LQG was recently put forward
thanks to the availability of the canonical ensemble for-
mulation of the entropy calculation making use of the
quasi-local description of black holes [20]. It was shown
in [21] that the semi-classical thermodynamical behavior
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of BHs can be recovered for all values of γ if one admits
the existence of a non trivial (γ-dependent) chemical po-
tential conjugate to the number of horizon punctures.
The problem of the observability of the puncture num-
ber is resolved by taking into account contributions to
the area degeneracy coming from the matter sector. As
suggested by the semiclassical description of vacuum fluc-
tuations of non geometric degrees of freedom close to the
horizon one expects such contributions to degeneracy to
grow exponentially with the BH area[22]. In [23] one pos-
tulates such a phenomenological contribution and shows
that compatibility with the existence of large semiclassi-
cal black holes implies that the matter sector saturates
the holographic bound for a vanishing chemical poten-
tial (the number of punctures drops out, in this way, of
the list of macroscopic observable quantities). In such
a scenario, the entropy of large semiclassical black holes
coincides with (1) to leading order, while the dependence
on the Immirzi parameter is shifted to sub-leading quan-
tum corrections.

A possible fundamental explanation the exponential
degeneracy of the assumption made above was proposed
in [24] (and developed further in [25]). In these works,
the area degeneracy (viewed as an analytic function of
γ) is analytically continued from real γ to complex γ
and then evaluated at the special complex values γ = ±i
to find that it grows asymptotically as exp(A/(4`2p)) for
large areas. The result is striking in that these values of
the Immirzi parameter are special in the connection for-
mulations of gravity: they lead to the simplest covariant
parametrization of the phase space of general relativity
in terms of the so-called Ashtekar variables [26]. These
results suggest that the quantum theory, when defined in
terms of self dual variables, might automatically account
for a holographic degeneracy of the area spectrum of the
BH horizon.

Given the present landscape of different models, and
leaving aside theoretical reasons for preferring one over
the others, it would be interesting to test their differences
from an (idealized) observational viewpoint. The value of
black hole entropy provides little information allowing for
such a distinction as the models (either by fixing γ = γ0
or by arguing for an additional exponential degeneracy
coming from either semiclassical arguments or from an-
alytic continuation to self dual variables) all coincide in
reproducing (1) to leading order.

The present work shows that a possible way of dis-
tinguishing the models is to analyze out-of-equilibrium
processes. More precisely, we describe the black hole
radiation process using statistical mechanical techniques
together with some assumptions about the dynamical be-
havior of BHs close to equilibrium. In doing this we will
basically follow the ideas of [27] leading to the compu-
tation of the integrated emission spectrum for a black
hole (under some assumptions which will be made precise
later). The simulated spectrography will allow for the
study of deviations predicted by the old and new (holo-
graphic) models of LQG from the semiclassical Hawk-

ing process expectation. This is of special interest for
the holographic models of [23, 24] for which the effect of
γ-dependent sub-leading quantum corrections could be
detectable.

The article is organized as follows. In section II we
recall basic facts about black hole evaporation. In section
III we give a brief description of the different models for
black holes that we study in this paper. In section IV we
present the numerical methods used for the simulations.
Results are presented and discussed in section V. We
finish with a discussion in section VI. From now on we
consider units such that G = c = ~ = 1. In particular,
areas, lengths and energies are given in Planck units.

II. EVAPORATION AND TRANSITION RATES

According to the celebrated no-hair-theorem, station-
ary (axisymmetric) electro-vacuum black holes (those of
astrophysical relevance) are described by members of the
Kerr-Newman family and are labelled by their ADM
mass M , angular momentum J and electric charge Q.
The dynamics of the system under small disturbances is
described by the first law of BH mechanics

δM =
κ

8π
δA+ ΩδJ + ΦδQ, (3)

where A is the horizon area, κ its surface gravity, Φ is the
horizon electric potential and Q is the black hole electric
charge.

Hawking’s semiclassical considerations [28] imply that
Kerr-Newman black holes radiate particles according to
the Planck’s radiation law at temperature T = κ/(2π).
More precisely, the mean number of particles N (ω,m, q)
with momentum ka radiated at infinity and carrying en-
ergy ω, angular momentum quantum number m and
charge q is given by

〈N (ω,m, q)〉 =
Γ(ω,m, q)

exp
(
2π
κ (ω − Ωm− qΦ)

)
± 1

, (4)

where ω = −kaξa and m = kaψa are the frequency and
angular momentum of the mode at infinity, and ξa and
ψa are the Kerr-Newman stationarity and axi-symmetric
Killing vectors respectively normalized at infinity. The
function Γ in (4) is the so-called greybody factor, and
the ± sign in the denominator depends on whether one
is considering radiation of bosons (+) or fermions (−).

Assuming that when a wave packet carrying energy ω,
angular momentum m and charge q is emitted the black
hole parameters are readjusted according to δM = ω,
δJ = m and δQ = q, we can write, from the first law (3),
the mean number of emitted particles as follows

〈N 〉 =
Γ(ω,m, q)

e
δA
4 ± 1

, (5)

which would make the spectrum Planckian in terms of
the “area quanta δA” if it was not for the distortion in-
troduced by Γ(ω,m, q). This distortion has nothing to
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do with the thermal properties of the horizon and ap-
pears only when describing the radiation from the point
of view of observers at infinity: Γ(ω,m, q) encodes the
backscattering effects on modes propagating from the
vicinity of the horizon out to infinity in the background
Kerr-Newman space-time.

A. The quasi-local point of view

From the point of view of stationary observers, denoted
O in what follows, at a proper distance `�M from the
horizon, one obtains

〈N 〉 =
Γ0

e
δA
4 ± 1

, (6)

where Γ0 is a constant, and thus the spectrum becomes
strictly Planckian in area quanta. As shown in [20] the
(global) first law (3) transforms into the following sim-
plest local first law for O:

δE =
κ

8π
δA, (7)

where δE is the local energy changes as measured by O.
The variable κ denotes the local surface gravity corre-
sponding to the local acceleration of the stationary ob-
servers defined above, i.e. κ = ‖aO‖. The (Rindler like)
near horizon geometry implies that κ = 1/`.

Notice that κ is universal in the sense that it is inde-
pendent of the macroscopic parameters defining the black
hole [21]. An important consequence of this is that one
can integrate the local first law to obtain a quasi-local
energy notion E associated with the (black hole) system
from the perspective of the observers O, namely

E =
A

8π`
. (8)

Applying the first law (7) to the energy variation corre-
sponds to the emission of a particle with four momentum
ka and local frequency ω ≡ kaua as measured by O (with
four velocity ua) implies that

δA

4
=

2πω

κ
, (9)

which turns (5) into a Planckian spectrum at the Unruh
temperature

T =
κ

2π
=

1

2π`
, (10)

as measured by O. The frequency independence of Γ0

in (6) in the quasi-local treatment follows from the scale
invariance of the near horizon approximation1.

1 In the spherically symmetric case, the Klein-Gordon equation
simplifies to a two dimensional wave equation in the transversal
coordinates t and r∗ (where r∗ is the tortoise coordinate) with
an effective potential that vanishes at the horizon [29]. This can
also be shown in the rotating black hole case.

B. Entropy and transition rates

The integration of the first law, together with the area
theorem, leads to the thermodynamical entropy

S =
A

4
+ S0, (11)

where S0 is an integration constant that cannot be fixed
by a thermodynamical reasoning. In fact, as in any ther-
modynamical system, entropy cannot be determined only
by the use of the first law. It can either be measured
in an experimental setup (this was the initial way in
which the concept was introduced) or calculated by us-
ing statistical mechanical methods once a model for the
fundamental building blocks of the system is available.
For instance, by computing the microcanonical entropy
S(A) = log(N (A)) where N (A) is the number of black
hole microstates compatible with the macroscopic hori-
zon area A.

When one takes into account the evaporation phe-
nomenon, the black hole can no longer be considered as
a system at thermodynamical equilibrium. However, for
dynamical systems which remain close to equilibrium at
any time during their evolution, the statistical entropy
is still a well-defined quantity: we say that the system
is at a local thermodynamical equilibrium. This would
be the case of large black holes for which Hawking tem-
perature is cold and the horizon area A evolves slowly.
In such close to equilibrium scenarios, the micro states
of the horizon compatible with the instantaneous area A
can be assumed to be equally likely. Thus the probability
P(A → A − δA) for the black hole of horizon area A to
evaporate a piece of area δA is well approximated by the
rate of final to initial number of microstate states

P(A→ A− δA) ∝ N (A− δA)

N (A)
= exp [−δS(A)]. (12)

The proportionality factor is fixed by the requirement
that the probability density is normalized. Taking into
account backscattering and normalization issues, one
shows that the probability for a black hole to emit a par-
ticle whose energy corresponds to the decrease of area δA
is given by

P(A→ A− δA) = Γ(A, δA) exp [−δS(A)]. (13)

We will assume the BH to be of Schwarzschild type.
Consequently, in the optical limit Mω � 1 the greybody
factors Γ ≈M2ω2 independently of the particle’s spin. In
the other limit Mω � 1 one has Γ ≈ A = 16πM2ω2 for
scalar particles, Γ ≈ 2πM2ω2 for spin 1/2 particles, and
Γ ≈ 12

9 AM
2ω4 for photons [30]. Numerical limitations

constrain us to study BHs of a maximum area of about
102 Planck areas. Such BHs have a radius of about 2
in Planck units which means that the local curvature at
their horizon is really Planckian. If we boldly stretch the
assumption of the validity of the semiclassical description
of space-time outside the black hole, simple dimensional
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analysis implies that most of the radiated particles fall
into the Mω < 1 regime.

In order to isolate the quantum effects associated with
variations of the Barbero-Immirzi parameter it will be
convenient (in some cases) to assume Γ(A, δA) = Γ0 with
a constant fixed from normalization issues only. Such a
choice of Γ corresponds to neglecting backscattering in
the description of the emission process and could be re-
garded as describing the physics of the local observers
O placed close to the horizon. We will often use this
terminology in what follows. However, one has to keep
in mind that while the quasi local perspective is very
useful in thermodynamical investigations, the notion of
spectrography does not really make sense for O. The
reason for this is that quasi local observers perceive their
environment at thermal equilibrium at the Unruh tem-
perature and are, in this sense, incapable of discerning
particles coming from the BH from others in the thermal
bath.

III. THREE MODELS OF BLACK HOLES

According to (13), the evaporation process is com-
pletely governed by the area spectrum of the black hole
and its entropy. Here we briefly review the main models
in the literature whose spectrography will be studied in
section V.

A. Models where γ must be fixed to γ0

The micro canonical computations taking into account
only the quantum geometry excitations with no extra de-
generacy associated to non-geometric degrees of freedom
(e.g. matter fields vacuum fluctuations) lead to the fol-
lowing general expression for the entropy [31]

S =
γ0
γ

A

4
+ o(A), (14)

where γ0 is a numerical factor of order one depending on
the details of the state counting [4]. The quantum correc-
tions o(A) are usually logarithmic at the leading order.
As explained in the introduction, compatibility with the
first law imposes the constraint γ = γ0. The model only
make sense for that special value of the Immirzi param-
eter. There is therefore no interesting physics associated
with varying γ.

B. The holographic models

The previous results correspond to the simplified situ-
ation where purely gravitational degrees of freedom are
taken into account in the counting. This has been tra-
ditionally the (rather artificial) play-ground for testing
the theory without worrying about the difficult issue of

matter coupling. If one uses the qualitative behaviour
of matter degeneracy suggested by standard QFT with
a cut-off at the vicinity of the horizon (i.e. exponential
growth of vacuum entanglement in terms of the BH area),
then the entropy becomes

S =
A

4
+

√
πA

6γ
+ o(
√
A). (15)

The Immirzi parameter γ affects only quantum correc-
tions. This result is in agreement with semiclassical ex-
pectations [23]. Notice that the entropy has been com-
puted using the quasi-local point of view, the second or-
der corrections to the entropy are explored in [32].

The presence of the
√
A correction can be understood

directly in the microcanonical framework as follows. In
the holographic model, the number of black hole mi-
crostates is given by

N (A) = exp(
A

4
) p(A), (16)

where p(A) denotes the number of ways to write A as the
finite sum

A = 8πγ
∑
j

nj
√
j(j + 1), (17)

where j are distinct half-integers and nj are integers.
At the semi-classical limit (large A), the large spins j
dominate and then p(A) is nothing but the number of
partitions of the integer NA = A/(4πγ). Its asymptotic
has been known for almost a century, namely

log p(A) = π

√
2NA

3
+O(logNA) =

√
πA

6γ
+O(logA),

which leads immediately to the quantum corrections of
the entropy (15). In the present context one does not
need to fix the value of the Immirzi parameter and there
is interesting physics associated to its variations. We will
study the effects of varying γ on the BH spectrography
in section V.

As explained in the introduction, a fundamental un-
derstanding of the holographic hypothesis in the mod-
els leading to (15) might come from the recent results
[24, 25, 33] that indicate a relationship between hologra-
phy and LQG for complex Ashtekar variables (γ = ±i).
Nonetheless, if in the holographic treatment the degener-
acy originates from the matter fields degrees of freedom,
it clearly has a (quantum) geometrical origin in the con-
text of complex variables treatment of black holes. One
can however argue that matter and geometry, which are
already intimately linked at the classical level, could give
exactly the same contribution to the black hole degener-
acy (only does the point of view change).

IV. NUMERICAL METHOD

To study the evaporation process and to analyze the
effects of the different parameters, we have developed a
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Monte Carlo simulation procedure. The simulation has
been adapted from the one used in [27]. The simula-
tion starts at a given mass, whose value is high enough
to be well above the deep quantum regime but small
enough so that all states below this mass can be explic-
itly calculated. In this paper, we start with black holes
of area Ainit = 4πγmin × 70 with γmin = 0.2 which gives
Ain = 1.76 × 102 in Planck units, whatever the value of
γ. This corresponds to an initial BH mass of the order
of 2 Planck masses, i.e.

MBH ≈ 2. (18)

Starting with the same area enables us to make easy
comparisons. 107 black hole evaporations are simulated
to produce each of the spectra shown in Figure 1.

In each case, a standard-model particle is randomly
selected at each step, with a probability weighted by
its number of internal degrees of freedom and the corre-
sponding (spin-dependent) greybody factor. Only pho-
tons, neutrinos, and charged leptons are finally kept for
the analysis. Quarks and gluons undergo fragmenta-
tion and generate hadrons with wide energy distribu-
tions. Were new particles beyond the standard mod-
els to be emitted, this would not change drastically the
results presented here. Only the percentage of mass
emitted in the photon-neutrinos-charged-leptons chanel
would change and therefore the number of black holes
required to reach a given confidence level. But the shape
of the spectra and the differences between the models
would qualitatively remain the same.

Once the particle type is selected, its energy is given by
the energy loss of the black hole, i.e. E = δM . From the
(usual) point of view of an observer at infinity, the mass
M and the horizon area of the black hole are related by
A = 16πM2, and then the energy of the emitted particle
measured by such an observer is given by

E = δM =
1

4
√
π
δ
(√

A
)
≈ 1

8
√
π

δA√
A
, (19)

where δA represents the variation of area due to the emis-
sion of the particle. The last identity is true only for small
variations δA compared to the original area A. The re-
lation between the energy and δA is simpler from the
quasi-local point of view. In that scheme, we saw that
the energy of the black hole is directly proportional to
the horizon area according to (8). If we denote by E`
the quasi-local energy of the emitted particle, with ` the
distance of the quasi-local observer to the horizon, we
obtain immediately

E` =
δA

8π`
. (20)

From a physical point of view, it is more satisfying to
plot the spectrum as a function of E∞; but it is much
easier to analyze the results when the spectrum is given
as a function of E`. For these reasons, we will give the

two representations of the black hole spectrum.

The probability of transition between two black hole
states of different masses (or areas) is taken to be given
by the exponential of their entropy difference weighted
by the greybody factor. Most probably, those greybody
factors should receive quantum gravity corrections, es-
pecially for the late stages of the evaporation. These
corrections may become very large and considering only
a semi-classical greybody factor may then lead to over-
simplified physical predictions. The black hole can un-
dergo a transition to any state having a lower mass. In
the quantum gravity model we are considering, only dis-
crete values of the area are possible, and the probabil-
ity is driven by the entropy associated with the number
of states. To make comparisons with the semi-classical
black hole evaporation, we have also computed numer-
ically the Hawking spectrum which is governed by the
classical Bekenstein-Hawking area law.

It should be noticed that, in quantum gravity models,
the transition to the last state, that is M = 0, naturally
happens. In the semi-classical Hawking case, however,
the standard formula has to be slightly modified. The
Hawking law naively applied would lead the black hole
to emit, at the last stage, more energy than it has. We
have therefore used a truncation and considered that
the energy of the emitted particle is M each time the
Hawking spectrum would have led to E > M . This only
affects the very last emission.

The Monte Carlo is by construction a random process.
It means that simulating the same process in the same
conditions would lead to another spectrum, as in real life,
due to the fundamentally quantum nature of the underly-
ing physics. The spectra presented here are “mean” spec-
tra corresponding to many evaporating black holes (107).
As the number of emitted particles in the deep quantum
gravity regime is quite small (generically less than 10) for
a single black hole, obviously only a statistical analysis
can lead to a significant conclusion. To remain realis-
tic, we have added an ‘experimental’ uncertainty on the
reconstructed energy of the detected particles. If the res-
olution was infinite, a single detection would immediately
allow to distinguish between the Hawking case (that is
a continuum of states) and the quantum gravity mod-
els (the distinction between quantum gravity proposals
having the same area eigenvalues but different number of
micro-states is anyway more subtle). This is however not
realistic and we have taken into account a kind of reason-
able detector uncertainty. The results presented depend
on the number of black holes and on the experimental
resolution (see figure 6).

V. RESULTS: BLACK HOLES SPECTRA

We concentrate our analysis on the holographic model
where the number of microstates is exactly given by (16).
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FIG. 1: Spectrum of a holographic black hole for different values of γ. The spectrum is represented in linear coordinates as a
function of E∞ in the graph at the top left; it is represented in logarithmic coordinates as a function of E∞ in the graph at
the top right; it is represented in linear coordinates as a function of ∆A in the graph at the bottom left; it is represented in
linear coordinates as a function of ∆A in the graph at the bottom right.

At the semi-classical limit, the resulting entropy is (15).
As the greybody factor is fixed to a constant, the proba-
bility for the black hole to emit a particle associated with
the decrease δA of the horizon area is totally governed by
the entropy according to (12). In the quasi-local point of
view (20), such a probability amplitude can be expressed
in terms of δA and is directly related to the black hole
spectrum because the energy of the particle E` is propor-
tional to δA. From the point of view of an observer at
infinity, the spectrum stems from the probability P(A,E)
which, as we will argue below, takes the form

P(A,E) ∝ E2 exp[−δS(A)], (21)

with the constant fixed by normalization issues.
Using the Monte-Carlo simulation we have just de-

scribed in the previous sections, we obtained:

1. exact spectra with different values of γ of order
10−1 (Fig. 1). We considered the following set
{0.2; 0.3; 0.4} of values for γ. We have ploted the
spectra in terms of δA (or equivalently in terms
of the local energy E`) and also in terms of E∞.
We have presented the results both in linear and
logarithmic representations.

2. an accurate comparison of the spectra with the clas-

sical Hawking spectrum.

3. the smeared spectra which take into account an in-
strumental resolution (Fig.5).

Note that the choice of the values of γ are motivated by
the value for γ obtained from old models (γ ≈ 0.2). Such
a choice allows for an easier comparisons with previous
results.

Let us start with some general observations. Figure
1 shows a strong dependence of the spectrum on the
Barbero-Immirzi parameter even though the leading
order term of the black hole entropy (which mainly
governs the evaporation process) is independent of
γ. This dependency, which is completely quantum
gravitational in nature, originates from two aspects: γ
enters in the discretization of the area spectrum and γ
shows off in the sub-leading corrections to the entropy.
Before going deeper into the explanation of the role of
γ, let us comment further on the general aspects of the
spectrum.

The spectrum of emission, as seen from infinity, sepa-
rates into two rather distinct parts: a continuous back-
ground whose amplitude is most important in the in-
frared and a series of discrete peaks which go from the
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infrared to the deep ultraviolet regime. This separation
is apparent in the top two panels in figure 1 while it is
hidden in the bottom panels because the range of the
local emission plots in terms of ∆A has been chosen to
illustrate the continuum region of the spectrum only. No-
tice that the greybody contribution, the factor E2 in the
probability amplitude, is responsible for the peak in the
emission spectrum as seen from infinity in the continuous
lower energy region. As the greybody factors are trivial
in the local framework we see a monotonic linear behav-
ior in the logarithmic plot on the bottom right panel.
Coming back to the bottom panels, we observe that the
quantum peaks are mainly present in the deep ultravio-
let regime. While the continuous part of the spectrum
corresponds to particles emitted at the early stage of the
evaporation process, the peaks reveal the deep quantum
structure of the black hole corresponding to the latest
stages of the evaporation when the discrete structure of
the area is no longer negligible. These two regions of the
spectrum exhibit structures that are dependent on the
Barbero-Immirzi parameter. We will now describe these
features in more detail.

A. The continuous background: link to the
semi-classical evaporation

In both the quasi-local and the infinity points of view,
spectra have a continuum background which is exponen-
tially decaying.

1. The quasi-local point of view: analysis of Sp(∆A)

This aspect is best observed in the logarithmic scale
when the spectrum is viewed as a function of ∆A. In
the infrared, the spectrum can be modeled, in a first
approximation, as follows:

Sp(∆A) ' C exp(−τ∆A), (22)

where τ is the exponential decay rate and C is indepen-
dent of ∆A. It is interesting to observe that τ depends
on the Barbero-Immirzi parameter (and probably also
on the normalization constant C but this aspect is less
interesting). We clearly see that τ decreases with γ.

All these observations are in fact easy to interpret. In-
deed, in the infrared, the spectrum can be reasonably
approximated by its semi-classical expression which is
given by the probability rate P(A→ A−∆A). This ap-
proximation immediately implies the following estimate
for τ :

τ ' δS

δA
=

1

4

(
1 +

√
2π

3γA

)
, (23)

where we used the semi-classical expression for the en-
tropy (15) up to the first quantum correction. Here A
can be identified with the initial black hole area, i.e.

A = 1.76 × 102, as the continuous spectrum concerns
the early stage of the evaporation process when the black
hole area remains close to its initial value. The previous
expression for τ is consistent with the numerical simula-
tions.

We can go further in the analysis of Sp(∆A). We notice
that the exponential decay approximation is clearly bet-
ter in the infrared than in the ultraviolet where, even if
the statistical fluctuations are more important, the slope
τ seems to increase with ∆A: the spectrum is steeper for
large ∆A (larger than 30 in Planck units) compared to
small ∆A (between 0 and 10 Planck units). The previ-
ous expression for τ (23) allows us to easily interpret this
fact. In the ultraviolet, the area A in (23) can indeed no
longer be identified with the initial area because we are
far from the earliest stages of the evaporation process. In
that case, A has to be identified with the instantaneous
area of the black hole which is obviously smaller than the
initial one. The consequence is that the slope τ increases
because it scales as 1/

√
A. The more we go to the ultra-

violet, the larger the slope is, exactly as observed in the
numerical simulations.

Let us finish the analysis of Sp(∆A) with some remarks
concerning the comparison with the Hawking spectrum.
We observe that the quantum and the Hawking spectra
are closer one to the other in the infrared than in the ul-
traviolet. The reason is simple and comes from the fact
that quantum corrections to the entropy are no longer
negligible in the late stages of the evaporation. From the
expression of the entropy, we see that the larger γ is, the
smaller quantum corrections are and then the better the
approximation to the Hawking spectrum in the ultravio-
let is. This theoretical prediction is consistent with the
numerical calculations (see Figure 1).

In the infrared, the situation is somehow the reverse.
In that case, the quantum corrections to the BH entropy
are negliguible, and thus cannot explain the differences
between the spectra with different γ. We observe that the
smaller γ the better the approximation to the Hawking
spectrum. This simply comes from the value of the area
gap in the area spectrum of the black hole which is linear
in γ. When γ is small, the area spectrum of the black
hole resembles a continuous spectrum and then we expect
the emission spectrum to be very close to the Hawking
one, as shown by the numerical simulation.

2. The point of view at infinity: analysis of Sp(E)

When the spectrum Sp(E) is viewed as a function
of E (which is relevant for the point of view of an ob-
server at infinity), we observe that its continuous back-
ground admits a maximum and the smallest energies are
suppressed. From a theoretical point of view, this is
explained because, near the maximum, the continuous
background can be approximated by its semi-classical ex-
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pression which leads to the following estimate2

Sp(E) ' C̃E2 exp (−τ̃E) , (25)

where the slope τ̃ is now given by

τ̃ ' δS

E
' 2
√
πA+

√
8π2

3γ
. (26)

As in the previous analysis, C̃ can be approximated by a
constant and A can be reasonably identified with the ini-
tial area. From this result, we can immediately estimate
the energy Emax = 2/τ̃ for which the spectrum is maxi-
mum together with the value of this maximum which is
given by

Sp(Emax) ' C̃
(

2

eτ̃

)2

. (27)

Therefore, we can predict that the maximum of the spec-
trum increases with γ. This is exactly what we observe in
the numerical experiments. Such an analysis shows that
the quantum corrections to the entropy manifest them-
selves also in the infrared part of the spectrum, and not
only in the deep ultraviolet regime, what one would have
expected. This aspect seems to us very interesting to
underline.

2 As the initial mass of the BH Min ≈ 2 the continuous part of the
spectrum falls in the regime Mω � 1 (putting all the units in
the previous criterion gives (M(~ω/c2))/M2

p = (ME)/M2
p < 1).

In the Figure V A 2 below we show the exact distribution of Mω
for γ = 0.4. This means that we can use the low energy form of
the form factors [30] from which we would get

(NfafE
2 +NphaphE

4) exp (−τ̃E) ≈

NfafE
2 exp (−τ̃E) , (24)

where Nf and Nph are the number of fermions and photon de-
grees of freedom and af and aph are parameters of the same
order. The photon term is subdominant as Nf > Nph in the
standard model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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FIG. 2: Distribution of Mω for γ = 0.4 illustrating the fact
that the continuous part of the spectrum is radiated in the
IR regime Mω < 1.

B. The quantum peaks: quantum nature of
space-time

In Figure 1, the linear plot (Sp(∆A) or Sp(E)) is the
more convenient to analyze and interpret the properties
of the quantum peaks in the black hole spectrum. These
peaks (above all the ones with a higher energy) are ex-
pected to appear at the late stages of the black hole evap-
oration process and therefore should correspond to the
transitions between low area states. In that respect, they
provide us with a concrete signature of the deep quantum
structure of the black hole.

More explicitly, each peak is produced by a transition
from a state i (of quantum area Ai) to a state j < i (of
quantum area Aj). Whether we consider the local point
of view or the point of view at infinity, the energy of the
corresponding emitted particle is given by

E`ij =
δAij
8π`

∝ γ, (28)

E∞ij =
1

4
√
π

(
√
Ai −

√
Aj) ∝

√
γ, (29)

and therefore it scales respectively as γ or
√
γ. This scal-

ing can be immediately observed in the linear plot Sp(δA)
and Sp(E). For instance, the three highest peaks in Sp(δ)
correspond to the following approximate energies:

γ 0.2 0.3 0.4

δA(γ) 1.60 2.40 3.20

δA/γ 0.80 0.80 0.80

(30)

Indeed, A(γ) = 4πγ
(
2
√

1× 3−
√

2× 4
)
, which is the

area difference between any configuration containing
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(at least) two j = 1
2 punctures and the configuration

obtained by replacing them by one j = 1 puncture.
All other area–difference peaks can be identified to a
puncture change or removal in the same manner.

The same exercise for highest energy peaks can be done
and the observation of the scaling of the energy as

√
γ

in the point of view at infinity can be checked. Nev-
ertheless, since δE depends on δA and A, peaks are
to be associated with transition between two configu-
rations. For instance, the highest peaks correspond to
the transition (nj) = (2, 0, 0 . . . ) → (nj) = (0, 0, . . . )

with E∞ =
√
γ31/42−1/2, which gives 0.42, 0.51, 0.59 for

γ = 0.2, 0.3, 0.4 respectively.
A more delicate effect of γ concerns the amplitude of

the peaks. This effect is easier and more precise to study
in the quasi-local point of view where the amplitudes
are given by Sp(E`ij). In fact, to take into account the
normalization issues, it is more judicious to study relative
amplitudes of the form Sp(E`ij)/Sp(E`0) where E0 is the
reference energy corresponding to a given transition i0 to
j0. One can for instance choose the highest energy peak
as the reference. Such relative amplitudes depends on γ
according to

Sp(E`ij)

Sp(E`0)
∝ exp[−2π`(E`ij − E`0)]. (31)

As the energy scales as γ in the quasi-local point of
view, the relative amplitude is more suppressed for larger
γ. This explains the observation that when γ increases,
lower energy peaks have larger amplitudes. In the infi-
nite viewpoint, although it is not a priori evident, we
observe that the presence of greybody factors do not al-
ter the qualitative picture in the range of γ ∈ [0.2, 0.4]
considered here. We leave the issue of how these features
extrapolate to a larger range of γ for further studies,
the main message here being that the effect of γ on the
spectrum (in both its semi-classical and deep quantum
regimes) is more than a simple dilation.

C. Comparison with older models

For completeness we here show in figures 3 and 4 the
γ dependence of the integrated spectrum of the non-
holographic models considered in previous literature [27].
Notice that a comparison of different values of γ is only a
mathematical exercise as in the framework of such mod-
els the Immirzi parameter must be fixed to the value that
is compatible with SBH = A/4 which in this case corre-
sponds to γ ≈ 0.274 [4].

A question of physical relevance is how many evapo-
rating black holes would be necessary to distinguish be-
tween the different models studied here and the Hawking
semiclassical model. In order to do this in a quite re-
alistic way, we introduced an uncertainty in the energy
measurement of emitted particles through a random er-
ror. With this modification, the spectra in figure 1 gets

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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FIG. 3: γ dependence of the integrated spectrum in the stan-
dard LQG model (linear scale).
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FIG. 4: γ dependence of the integrated spectrum in the stan-
dard LQG model (logarithmic scale).

smeared as shown in figure 5. With such smeared spectra
is now possible to compute how many detections would
be necessary to distinguish the different models. Results
are shown in figure 6.

In each case, if the number of black holes is high
enough and/or the uncertainty small enough, it is possi-
ble, through a Kolmogorov-Smirnov test, to statistically
distinguish between models. Due to the structure and
amplitude of the peaks, it is slightly easier to distinguish
between the pure Hawking spectrum and the old LGQ
model than between the pure Hawking spectrum and the
holographic one.

VI. CONCLUSIONS

The study presented in this article investigates the
precise emission from light quantum black holes. Start-
ing with an initial horizon area A ∼ 102 in Planck units,
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FIG. 5: γ dependence of the integrated spectrum in the holo-
graphic model with a simulated error of energy detection: a
particle of energy E has detected energy E + e, where e is a
normal distribution with variance σ = 0.05E.
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FIG. 6: Number of observed events necessary to distinguish
the semiclassical Hawking model from LQG models, as a func-
tion of the relative uncertainty of the apparatus.

the spectra for different values of γ were computed,
averaging over many realizations. The continuous

background corresponding to the semi-classical stages
is complemented by discrete peaks associated with the
deep quantum regime. We have shown that the Barbero-
Immirzi parameter has an important, and sometimes
subtle, effect on both parts of the spectrum. Finally we
have calculated the number of black holes, for a given
experimental uncertainty, required to experimentally
distinguish between the holographic model and the
semi-classical Hawking spectrum.

The analysis presented in this article is more relevant
at the conceptual level than at the strictly experimental
level. It is more a “thought experiment”, useful to
understand subtleties that the analytical investigations
do not reveal easily, than a proposal for a real experi-
ment. Is it however conceivable that evaporating black
holes can really be used to probe the models ? In the
framework of a cosmological production of primordial
black holes, this is extremely unlikely (see [34] for a
review). A very wide mass spectrum of primordial black
holes is now disfavoured as it would require either a
high normalization of the primordial fluctuation power
spectrum (to produce a density contrast of order unity)
or a blue tilted spectrum, both being excluded by CMB
observations. There are many other means for creating
primordial black holes with a narrower mass spectrum.
In any case, however, the emission spectrum roughly de-
creases with the energy as E−α with α ranging between
around 1 below 100 MeV to around 3 above this scale
[35, 36]. Unless a very strong boost phenomenon occurs
at late times, it is therefore basically impossible to see
the last stages without having first detected, at a much
higher level, the semi-classical stage. A more promising
avenue would be associated with the production at col-
liders. This however requires a low Planck scale so that
the collision is trans-planckian and creates a black hole.
This is not, in principle, incompatible with LQG but
relies on strong assumptions –such as extra-dimensions–
that the theory precisely allows to avoid. At this stage,
the observational detection is therefore unlikely and
simulations are mostly used as gedankenexperiments to
understand better the detailed features of the model.
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