
HAL Id: hal-01141829
https://hal.science/hal-01141829

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying Global Icebergs in Distributed Streams
Emmanuelle Anceaume, Yann Busnel, Nicolò Rivetti, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Nicolò Rivetti, Bruno Sericola. Identifying Global Icebergs
in Distributed Streams. [Research Report] Cnrs; Inria Rennes; Université de Nantes. 2015. �hal-
01141829�

https://hal.science/hal-01141829
https://hal.archives-ouvertes.fr

Identifying Global Icebergs in Distributed Streams
Research report

Emmanuelle Anceaume
CNRS / IRISA, France

emmanuelle.anceaume@irisa.fr

Yann Busnel
Crest (Ensai) / Inria, France

yann.busnel@ensai.fr

Nicolò Rivetti
LINA / Université de Nantes, France

nicolo.rivetti@univ-nantes.fr

Bruno Sericola
Inria, France

bruno.sericola@inria.fr

Abstract—We consider the problem of identifying global iceberg
attacks in massive and physically distributed streams. A global
iceberg is a distributed denial of service attack, where some elements
globally recur many times across the distributed streams, but locally,
they do not appear as a deny of service. A natural solution to defend
against global iceberg attacks is to rely on multiple routers that
locally scan their network traffic, and regularly provide monitoring
information to a server in charge of collecting and aggregating all
the monitored information. Any relevant solution to this problem
must minimise the communication between the routers and the
coordinator, and the space required by each node to analyse its
stream. We propose a distributed algorithm that tracks global
icebergs on the fly with guaranteed error bounds, limited memory
and processing requirements. We present a thorough analysis of our
algorithm performance. In particular we derive an optimal upper
bound on the number of bits communicated between the multiple
routers and the coordinator in presence of an oblivious adversary.
Finally, we present the main results of the experiments we have run
on a cluster of single-board computers. Those experiments confirm
the efficiency and accuracy of our algorithm to track global icebergs
hidden in very large input data streams exhibiting different shapes.

Index Terms—data stream model; randomised approximation al-
gorithm; generalised coupon collector problem; oblivious adversary;
performance analysis.

I. INTRODUCTION

A Denial of Service (DoS) attack tries to take down an Internet
resource by flooding this resource with more requests than it is
capable of handling. A Distributed Denial of Service (DDoS)
attack is a DoS attack triggered by many machines that have been
infected by a malicious software, causing immediately the total
shutdown of targeted web resources (e.g., e-commerce websites).
A common approach to detect and to mitigate DDoS attacks is
to monitor network traffic through routers and to look for highly
frequent signatures that might suggest ongoing attacks. However,
a recent strategy followed by the attackers is to hide their massive
flows of requests by finely distributed them in a multitude of
routes, so that locally, the malicious sub-flows do not appear as
frequent, while globally they represent a significant percentage Θ
of the network traffic [13]. The term “global iceberg” has been
introduced to describe such an attack as only a very small part
of the latter can be observed from each single router [17]. A
natural solution to track and detect global icebergs is to rely
on multiple routers that locally scan their network traffic, and

This work was partially funded by the French ANR project SocioPlug (ANR-
13-INFR-0003), and by the DeSceNt project granted by the Labex CominLabs
excellence laboratory (ANR-10-LABX-07-01).

regularly provide monitoring information to a server in charge
of collecting and aggregating all the monitored information. To
be applicable, two issues must be solved. Firstly, routers must be
capable of monitoring a very large number of flows to discover the
presence of potential global icebergs and this must be done on the
fly to have some chance to detect icebergs soon enough. Secondly,
the frequency of the communications between routers and the
server must be low enough to prevent the server from being
overloaded by iterative exchanges with all the routers; however
reducing the frequency of these exchanges must not jeopardise
the detection latency of global icebergs and must not introduce
false negatives (that is, the non-detection of global icebergs).

To address both points, one needs to design appropriate
schemes for summarising the input streams [15], namely algo-
rithms capable of efficiently and accurately maintaining some
function f over the prefix of a huge – potentially unbounded –
sequence of data items. By efficient, we mean that such algorithms
must compute function f by scanning only once each data item
of the input stream and by storing only a very small amount of
information with respect to the number of data items received
so far. By accurate, we expect that, despite their remarkable
space-efficiency, such algorithms approximate function f with a
guaranteed approximation error. Finally, to cope with adversarial
strategies, such algorithms must be insensitive to the order in
which data items are received.

The solution we propose to efficiently and accurately detect and
identify global icebergs while preserving the server from being
overloaded by all the monitored information, consists in relying
on sketches and in locally organising items according to their
estimated frequency. Only the most recent and high enough flows,
i.e., those that locally represent at least a fraction Θ of the local
stream, are tracked and sent to the server (called coordinator in
the following), while the others are thrown away. This is achieved
by locally splitting the interval [Θ, 1] into ` sub-intervals in a
geometric way, and by maintaining a small number ` of buffers,
Γ1, . . . ,Γ`, such that each Γk will contain data items whose
probability of occurrence matches the k-th interval. Each time
one of these buffers is full, its content is sent to the coordinator.
The coordinator polls all the other nodes to determine if global
icebergs are indeed present. We show that our solution (ε, δ)-
approximates the detection of global icebergs, for any ε ∈ [0, 1]
and δ ≤ 1/2 in a space efficient way. Moreover, we provide an
optimal upper bound on the number of bits exchanged by our
distributed algorithm. Finally, we have implemented our solution

emmanuelle.anceaume@irisa.fr
yann.busnel@ensai.fr
nicolo.rivetti@univ-nantes.fr
bruno.sericola@inria.fr

on a testbed of single-board computers fed with different shapes
of streams (both synthetic and real traces). Numerical results
clearly confirm that for any value of Θ, all the global icebergs
are detected (i.e., no false negatives). They also show that the
communication overhead due to our protocol (i.e., the number
of bits communicated between the nodes and the coordinator to
detect global icebergs) is very small (less than 1.2% of the global
number of bits received by the routers). Finally, these experiments
show that less than 3% of the global stream need to be read to
detect all the global icebergs.

The outline of this paper is the following. Section II presents
related works. Section III formally states the problem and de-
scribes the model we rely on to derive bounds of our algorithms.
Section IV presents and analyses an omniscient and full-space
algorithm that solves the global iceberg problem, while Section V
presents a knowledge-free and space-efficient algorithm and anal-
yses its quality. Finally, numerical results obtained from extended
experiments conducted on single-board computers are studied in
Section VI. Section VII concludes.

II. RELATED WORK

The detection of heavy hitters or global icebergs originating
from multiple streams has first been studied by Manjhi et al. [13].
In their paper, the authors propose a solution for detecting recent
global icebergs by relying on a multi-level structure where each
node must guarantee a degree of precision that depends on its
level in the hierarchical structure. This structure helps to minimise
the communication between nodes and the central coordinator.
On the other hand, and in contrast to our work, they make the
assumption that global icebergs are locally detectable at each
node. In [17], the authors do not assume any more that nodes
can locally detect global iceberg, however they suppose that there
exists a gap between non iceberg frequencies and iceberg ones.
That is, items that appear at least T times from the inception of
the stream are global icebergs, while there are no items whose
frequency belongs to an interval (λT, T), with 0 < λ < 1.
Based on this assumption, the authors can accurately detect the
presence of global icebergs. Note that, in contrast to our work,
they do not identify the global icebergs items, they only inform
the coordinator that some global icebergs exist. In addition, in
our work, we also (ε, δ)-approximate the size of each global
iceberg. In [18], the authors propose a solution that identifies
items whose aggregated frequency over the distributed streams
exceeds some given threshold, irrespective of the size of the input
streams. Thus, their motivation is to detect global icebergs only
during a fixed time interval (note that the same definition has
been adopted by [17]). Their approach combines sampling and
sketching through Bloom filters [3, 5, 9, 12, 14] to respectively
sample and count items. Similarly to our solution, their strategy
is robust to any adversarial items splitting, however we address a
much more challenging model. The authors in [18] suppose that
each node locally knows prior to executing its algorithm the exact
frequency of all the items it will receive. This model is commonly
called the “distributed bag model”. Finally, Yi and Zhang in [16]
propose a solution in the spirit of the ones proposed in functional
monitoring to minimise the communication cost between the

nodes and the coordinator. However this is achieved by requiring
that each node maintains at any time the exact frequency of each
received item in its stream, which is definitively a very strong
assumption.

III. MODEL OF THE SYSTEM AND ADDRESSED PROBLEM

A. The distributed functional monitoring model

We present the computational model used to analyse our algo-
rithms. This model follows the distributed functional monitoring
model proposed by Cormode et al. [6], which combines features
of the data streaming model and communication complexity.
Specifically, we consider a set S of nodes such that each node
receives a continuous stream (or sequence) of items drawn from
a large universe N . Items arrive quickly, in any order and may
recur an arbitrary and unknown number of times in each stream.
This allows us to model, for instance, the reception of high
speed TCP/IP streams with different throughputs at each router.
If TCP DDoS attacks are tracked, then the relevant items are the
packet’s destination IP addresses. Instead, if worms detection is
investigated, then the relevant items are the packet’s source IP
addresses [10]. In the following we denote the different items by
integers 1, . . . , n, with n = |N |. We denote by σs the stream
received by node s, s ∈ S, and by ms the size of the sequence
of items prefix received from σs so far. For any two nodes s
and s′ in S, ms can be different from ms′ . Any input stream σs
implicitly defines an empirical probability distribution on the set
of items it contains; the probability pj,s of occurrence of item
j in σs is approximated by fj,s/ms, where fj,s represents the
number of times item j has occurred in σs since the inception
of σs. Due to memory constraints, nodes can locally store only a
small amount of information with respect to the size of their input
stream and perform simple operations on them to keep pace with
the data stream. Thus streams need to be processed sequentially
and online, that is, any item of the stream that has not been locally
stored for any further processing cannot be read again.

Nodes communicate solely with a dedicated node, called co-
ordinator. Communications are initiated by nodes upon receipt
of an item or a sequence of them in their input stream. This in
turn triggers additional communications from the coordinator to
some of the S nodes, where S = |S|. The goal of the coordinator
is to continuously determine whether a given function applied
on the union of received streams approximately exceeds some
given threshold Θ ∈ (0, 1]. This is formalised in the next section.
The key property of the model is to maintain this knowledge by
minimising both the space used by the S nodes and the number
of bits exchanged between these nodes and the coordinator.

B. The global iceberg detection problem

The global iceberg detection problem has first been formalised
by Estan and Varghese [10], and then adapted to different con-
texts [13, 17, 18]. In this paper, we extend this problem to the
general distributed functional monitoring model [6]. Informally,
the global iceberg detection problem lies, for the coordinator, in
quickly identifying any item j whose aggregated number of oc-
currences over the union of the distributed streams approximately
exceeds some given fraction of the total size of all the streams

2

since their inception. Such an item j is called a global iceberg.
Specifically, we denote by σ the union of the S data streams σs
since the inception of σs. We have σ = σ1 ∪ . . . ∪ σS . Let m be
the number of items in σ. We have m =

∑
s∈S ms. Finally, let

fj be the total number of occurrences of item j in σ.

Definition 1 (The global iceberg detection problem). For any
given threshold Θ ∈ (0, 1], approximation parameter ε ∈ [0, 1],
and probability of failure δ ≤ 1/2, the global iceberg detection
problem consists for the coordinator C
• in outputting item j if fj ≥ Θm, and
• in never outputting item j if fj < (1− ε)Θm.
This must be achieved by minimising both the space used by

the S nodes and the number of bits exchanged between these
nodes and the coordinator.

C. Adversary

We assume the presence of an oblivious adversary that tries to
prevent the detection of global icebergs by judiciously distributing
them in the S data streams so that none of the S monitoring
nodes can locally detect an ongoing attack. By oblivious we mean
that the adversary can adaptively insert any number of items to
increase or decrease the number of global icebergs according to
the current states of both the coordinator C, the S nodes and
threshold Θ. Notice that the adversary may also strategise to
make the coordinator a potential DDoS target by maximising the
number of interactions between the S nodes and the coordinator.
This is achieved by adversarially ordering items in the streams,
and/or by injecting well chosen items. On the other hand, both
the S nodes and the coordinator follow the prescribed protocols,
that is, they are correct. We finally suppose that any algorithm
run by any correct node is public knowledge to avoid some kind
of security by obscurity. However we classically assume that the
adversary has not access to the local random coins used in the
proposed probabilistic algorithms.

IV. AN OMNISCIENT ALGORITHM TO TRACK GLOBAL
ICEBERGS

Prior to presenting our space-efficient and knowledge-free
solution to the global iceberg problem, we first describe our
algorithm by ideally assuming that each time a data item j is
received in the input stream σs, item j is tagged with the exact
probability pj,s with which it will appear in σs. Note however
that the algorithm does not know ahead of time the items that will
appear in σs. Furthermore we suppose that each node s locally
keeps track of items frequency count, i.e., the number of times
each item j has been received so far at node s.

A. Principles of the solution

The pseudo-code of the algorithms run by each of the S nodes
and by the coordinator are respectively provided in Algorithms 1
and 2. These algorithms work as follows. Each node s ∈ S
reads on the fly and sequentially its input stream σs. For each
received item j, node s increments its frequency count F [j],
and maintains the current size ms of its input stream, which
is the number of items received so far in σs. If pj,s ≥ Θ

n2 = 3, c2 = 2

n3 = 6, c3 = 3

n4 = 10, c4 = 5

n5 = 25, c5 = 13

�1

�2

�3

�4

�5

n1 = 1, c1 = 1

Fig. 1. Data structure on node s ∈ S, with Θ = 0.04, r = 0.5 and S = 20.

then j is a potential candidate for being a global iceberg and
thus s keeps track of item j if not already done (see lines 9–
27 of Algorithm 1). This is achieved by maintaining ` buffers
Γ1, . . . ,Γ`, where ` = blog2 Sc + 1.1 The interval [Θ, 1] is
split into ` sub-intervals in a geometric way. Each buffer Γk,
whose size is denoted by ck, only contains items j whose
probability pj,s matches the k-th interval. That is, buffer Γk, with
1 ≤ k ≤ ` − 1, contains items j whose probability pj,s verifies
Θ+(1−Θ)/2k < pj,s ≤ Θ+(1−Θ)/2k−1, and Γ` contains items
j whose probability pj,s satisfies Θ ≤ pj,s ≤ Θ + (1−Θ)/2`−1.
The size ck of each of buffer Γk, with 1 ≤ k ≤ `, is set
to dnk × re, where nk is the maximum number of items that
could fit the k-th buffer, and 0 < r ≤ 1. Since Γk, for
1 ≤ k ≤ ` − 1, contains items whose probability pj,s verifies
Θ + (1 − Θ)/2k < pj,s ≤ Θ + (1 − Θ)/2k−1, we set nk to⌊
1/(Θ + (1−Θ)/2k)

⌋
and n` = b1/Θc. Note that for r = 1,

that is for all k, ck = nk, if some buffer say Γh is filled with ch
items then it means that all the items j in the stream are uniformly
distributed with pj,s = Θ+(1−Θ)/2h (and pj,s = Θ for h = `),
and thus none of the other buffers can receive any single item.
Thus in practice r is set to a value less than or equal to 1/2.
When some buffer Γk is full (i.e, Γk contains ck items), node s
sends all the items of Γk, together with their frequency counts
and the stream size ms to the coordinator (see lines 20–25 of
Algorithm 1), and empties Γk. Upon receipt of such a buffer, the
coordinator queries the other S − 1 nodes to get the frequency
of each of the items sent by node s, if any (see lines 7–10 of
Algorithm 2).

Finally, by combining all these pieces of information, the
coordinator checks whether any of these items is a global iceberg
or not (see lines 11–14 of Algorithm 2). Note that in contrast
to [17], the coordinator is capable of identifying which are
the global icebergs that is an important feature when tracking
DDoS attacks. Finally, since the distribution of the items in σs
is unknown, one cannot guarantee that ck distinct items with a
probability that matches Γk exist in the stream σs. Actually, even
no item can appear in the stream with those probabilities. Thus to
guarantee that all the potential icebergs in Γk are at some point
sent to the coordinator, a timer τk is set upon receipt of the first
item in Γk, and is incremented each time node s reads an item
from the input stream σs. Timeout of τk is set to Hb1/Θc/Θ,
where Hn is the n-th harmonic number defined by H0 = 0 and
Hn = 1+1/2+ · · ·+1/n. Lemma 1 shows the derivation of that

1For the sake of clarity, we will use the notation log to denote the logarithm
in base 2 for the rest of this paper, unless otherwise specified.

3

Algorithm 1: Omniscient and full-space algorithm run at any
node s ∈ S

Input: An arbitrary input stream σs; Θ: threshold qualifying an item as a
global iceberg; r: proportion size parameter of the ` buffers;

1 foreach k ∈ {1, `− 1} do
2 Γk ← ∅; nk ←

⌊
1/(Θ + (1−Θ)/2k)

⌋
; ck ← drnke;

τk ← (not-active, 0);
3 end
4 Γ` ← ∅; n` ← b1/Θc; c` ← drn`e; τ` ← (not-active, 0) ;
5 ms ← 0; Freq ← ∅; Λs ← ∅;
6 for j ∈ σs do
7 ms ← ms + 1;
8 F [j]← F [j] + 1;
9 if pj,s ≥ Θ then

10 if pj,s ≤ Θ + (1−Θ)/2`−1 then
11 k ← `;
12 else
13 k ← min{h ∈ {1, `− 1} | Θ + (1−Θ)/2h < pj,s};
14 end
15 if j 6∈ Γk then
16 if Γk = ∅ then
17 τk ← (active, 0);
18 end
19 Γk ← Γk ∪ {j};
20 if |Γk| = ck then
21 for each {j} ∈ Γk do
22 Freq ← Freq ∪{(j, F [j])};
23 send message (“identify”, ms, Freq) to C;
24 Γk ← ∅; Freq ← ∅; τk ← (not-active, 0);
25 end
26 end
27 end
28 foreach active timer τk , k ∈ {1, `} do
29 τk ← (active, τk + 1);
30 if τk > Hb1/Θc/Θ and Γk 6= ∅ then
31 for each {j} ∈ Γk do
32 Freq ← Freq ∪{(j, F [j])};
33 send message (“identify”, ms, Freq) to C;
34 Γk ← ∅; Freq ← ∅; τk ← (not-active, 0);
35 end
36 end
37 end
38 upon receipt message (“freq ?”, Freq) from the coordinator do
39 for each j ∈ Freq do
40 Freq ← (j, F [j]);
41 if ∃k ∈ {1, `}, j ∈ Γk then
42 Γk ← Γk \ {j};
43 end
44 send message (“freq”, ms, Freq) to C;
45 upon receipt message (“Global Iceberg”, F) from the coordinator do
46 enqueue F in Λs;

timeout. Each time the coordinator detects a global iceberg j, it
informs all the S nodes that j is a global iceberg (this amounts to
returning Freq in Line 16 of Algorithm 2 to both the application
and the S nodes). Nodes locally enqueue j (in FIFO order) in a
specific buffer, denoted by Λs, whose size is equal to dr/Θe.
Hence, when a node s locally detects that some item j is a
potential global iceberg, then s does not inform the coordinator if
j belongs to Λs. Note that as the oldest detected global icebergs
are progressively dequeued, Λs contains at any time the last
dr/Θe global icebergs. The rationale of this feedback is to prevent
nodes from repeatedly informing the coordinator of the presence
of a global iceberg already detected by the coordinator.

Algorithm 2: Algorithm run at the coordinator
Input: Θ: threshold qualifying an item as a global iceberg;
Output: The set F of global icebergs;

1 upon receipt message (“identify”, m′, Freq) from s do
2 m← m′;F ← Freq;
3 for each (k, fk) ∈ Freq do
4 (k, fk)← (k,null) ;
5 for each s′ 6= s ∈ S do
6 send message (“freq ?”, Freq) to s′;
7 for each received message (“freq”, m′, Freq) from s′, s′ 6= s do
8 m← m+m′;
9 for each (k, fk) ∈ F do

10 Update F: fk ← fk + f ′k with (k, f ′k) ∈ Freq;
11 for each (k, fk) ∈ F do
12 if fk < Θm then
13 F ← F \ {(k, fk)};
14 end
15 if F 6= ∅ then
16 returns F ;
17 send message (“Global Iceberg”, F) to each s ∈ S;
18 end

B. Analysis of the omniscient algorithm

In this section we provide an upper bound of the number of
bits communicated between the S nodes and the coordinator (see
Theorem 2), and show that the omniscient algorithm solves the
global iceberg problem (see Theorem 3).

1) Adversarial Strategies: We investigate whether malicious
nodes can prevent the global iceberg problem from being solved.
This amounts to showing that for any given threshold Θ ∈ (0, 1],
and approximation parameter ε ∈ (0, 1], the adversary cannot
compel the coordinator to return any items j such that fj < (1−
ε)Θm and cannot prevent the coordinator from returning all items
j such that fj ≥ Θm by finely distributing the occurrences of
item j among the S streams. Theorem 3 shows that Algorithms 1
and 2 exactly guarantee such properties.

Maximising the communication between the S nodes and the
coordinator requires for the adversary to manipulate the S input
streams so that the time needed to locally fill the buffers is
minimised, and thus the frequency at which nodes communicate
with the coordinator is maximised. Theorem 2 shows that this is
achieved if, for all s ∈ S, all the global icebergs appear with the
same probability in σs.

2) Communication complexity of the omniscient algorithm:
Communication between the S nodes and coordinator C is
triggered each time a buffer becomes full or upon timeout. To
analyse the communication cost, we study a generalisation of
the coupon collector problem. Indeed, we have to determine the
number of items, in expectation, that must be received at any
node s ∈ S to locally fill buffer Γk, 1 ≤ k ≤ `.

a) Preliminary results: In the general formulation of this
problem, we have a set of n coupons with pi being the probability
that coupon i is drawn and p1 + · · · + pn = 1. The problem
amounts to determine the distribution of the number Tn of
coupons that need to be drawn from set {1, 2, . . . , n} with
replacement, till obtaining the full collection of the n different
coupons. In our case, we consider a generalisation of this formu-
lation, where we need to determine the distribution of the number
Tc,n of coupons that must be drawn, with replacement, to collect

4

c ≤ n different coupons from the set {1, . . . , n}. The expected
value of Tc,n has been considered in [11]. In addition we suppose
that p = (p1, . . . , pn) is not necessarily a probability distribution,
that is p1 + · · ·+ pn ≤ 1 and we define p0 = 1− (p1 + · · ·+ pn).
This models the presence of a null coupon 0 that is drawn with
probability p0 but that is not allowed to belong to the collection
of c items, 1 ≤ c ≤ n, among {1, . . . , n}. In the following, we
denote by Si,n all the sets of items of {1, . . . , n} whose size
is exactly equal to i, that is Si,n = {J ⊆ {1, . . . , n} | |J | = i}.
Note that we have S0,n = {∅}. For every J ∈ Si,n, we define
PJ =

∑
j∈J pj , with P∅ = 0. Finally, since the distribution of

Tc,n depends on the vector p = (p1, . . . , pn), we will use the
notation Tc,n(p) instead of Tc,n, meaning by the way that the
dimension of vector p is n. We have from [1] that for every
n ≥ 1, c = 1, . . . , n and h ≥ 1

P{Tc,n(p) > h} =
c−1∑
i=0

(−1)c−1−i
(
n− i− 1

n− c

) ∑
J∈Si,n

(p0 + PJ)h, (1)

and that the expectation of Tc,n(p) is given for every n ≥ 1 and
c = 1, . . . , n by

E[Tc,n(p)] =
c−1∑
i=0

(−1)c−1−i
(
n− i− 1

n− c

) ∑
J∈Si,n

1

1− (p0 + PJ)
, (2)

and that for every p = (p1, ..., pn) with p0 = 1 −
∑n
i=1 pi and

0 < Θ ≤ pi for i = 1, . . . , n,

E[Tc,n(v)] ≤ E[Tc,n(p)] ≤ E[Tc,n(q)],

where vector v = ((1− p0)/n, . . . , (1− p0)/n), and vector q =
(Θ, . . . ,Θ, 1−p0− (n−1)Θ). Note that the second inequality is
true only for distribution p such that pi ≥ Θ. Vector v represents a
scenario where all the coupons {1, . . . , n} are drawn uniformly,
while vector q represents a scenario where they all occur with
probability Θ except a single one that occurs with high probability
1− p0− (n− 1)Θ. Intuitively, vector v is the one that minimises
the time to get a collection of c ≤ n coupons, while vector q is
the one that maximises it when pi ≥ Θ > 0, for i = 1, . . . , n.
We now prove that E[Tc,n(q)] ≤ Hb1/Θc/Θ.

Lemma 1. For every n ≥ 1, c = 1, . . . , n, and 0 < Θ ≤ pi for
i = 1, . . . , n, we have

E[Tc,n(q)] ≤ Hb1/Θc/Θ.

Proof: The set Si,n can be partitioned into subsets S′i,n and
S′′i,n as follows: S′i,n = {J ⊆ {1, . . . , n} | |J | = i and n ∈ J}
and S′′i,n = {J ⊆ {1, . . . , n} | |J | = i and n /∈ J}. Note that we
have S′′i,n = Si,n−1, |S′i,n| =

(
n−1
i−1

)
and |S′′i,n| =

(
n−1
i

)
. We thus

get, for p = q,∑
J∈Si,n

1

1 − p0 − PJ
=
∑

J∈S′
i,n

1

1 − p0 − PJ
+
∑

J∈S′′
i,n

1

1 − p0 − PJ

=
∑

J∈S′
i,n

1

(n− i)Θ
+
∑

J∈S′′
i,n

1

1 − p0 − iΘ

=

(
n− 1

i− 1

)
1

(n− i)Θ
+

(
n− 1

i

)
1

1 − p0 − iΘ

where the first term is 0 when i = 0. This leads from Relation (2)
to E[Tc,n(q)] = A+B, where

A =
1

nΘ

c−1∑
i=0

(−1)c−1−i
(
n− i− 1

n− c

)(
n− 1

i− 1

)
n

n− i
and

B =

c−1∑
i=0

(−1)c−1−i
(
n− i− 1

n− c

)(
n− 1

i

)
1

1− p0 − iΘ
.

It is easily checked that

A =
1

nΘ
(E[Tc,n(u)]− 1) ,

where vector u = (u1, . . . , un) is the uniform distribution defined
by ui = 1/n. Note that it is equal to vector v when p0 = 0.
From [11], we have

E[Tc,n(u)] = n(Hn −Hn−c). (3)

For the second term we use the equality(
n− i− 1

n− c

)(
n− 1

i

)
=

(
n− 1

c− 1

)(
c− 1

i

)
.

We then get

B =

(
n− 1

c− 1

) c−1∑
i=0

(−1)c−1−i
(
c− 1

i

)
1

1− p0 − iΘ
.

The change of variable i := c− 1− i gives

B =
1

1− p0 − (c− 1)Θ

(
n− 1

c− 1

) c−1∑
i=0

(−1)i
(
c− 1

i

)
1

1 + βi
,

where β = Θ/(1−p0−(c−1)Θ). Note that since Θ ≤ (1−p0)/n
we have 1−p0−(c−1)Θ ≥ Θ. The last sum in B is well-known
and we have

B =
1

1− p0 − (c− 1)Θ

(
n− 1

c− 1

)
(
c− 1 + 1/β

c− 1

) ,
where the second fraction is equal to

=
(n− 1)!

(n− c)!
1

(c− 1 + 1/β)(c− 2 + 1/β) · · · (1 + 1/β)

=

(
n− 1

c− 1 + 1/β

)(
n− 2

c− 2 + 1/β

)
· · ·
(
n− c+ 1

1 + 1/β

)
.

Now since Θ ≤ (1 − p0)/n, we have (1 − p0)/Θ ≥ n which
leads to

c+
1

β
=

1− p0

Θ
+ 1 ≥ n+ 1.

5

We thus get(
n− 1

c− 1

)
(
c− 1 + 1/β

c− 1

) ≤ (n− 1

n

)
· · ·
(
n− c+ 1

n− c+ 2

)
=
n− c+ 1

n
.

Moreover, we have

1

1− p0 − (c− 1)Θ
=

1

Θ

1

(1− p0)/Θ− (c− 1)
≤ 1

Θ

1

n− c+ 1
.

We then obtain B ≤ 1/(Θn) which gives

E[Tc,n(q)] ≤ 1

Θ
(Hn −Hn−c) ≤

Hc

Θ
. (4)

Given that c ≤ b1/Θc, Relation (4) concludes the proof.
By the way, we get from Relation (3),

E[Tc,n(u)] ≤ E[Tc,n(q)] ≤ 1

nΘ
E[Tc,n(u)].

b) Calculation of the communication cost to track global
icebergs: We first derive the number of items that need to be
received in each stream σs, s ∈ S, to fill buffer Γk, 1 ≤ k ≤ `.
This is done by applying the general formulation of the coupon
collector to each buffer Γk, k = 1, . . . , `.

For each k = 1, . . . , ` − 1, we denote by Jk the set of all
the items j in σs whose probability of occurrence pj,s verifies
Θ + (1 − Θ)/2k < pj,s ≤ Θ + (1 − Θ)/2k−1. We set jk =
|Jk|, and we have jk ≤ nk (recall from Section IV-A, that nk
represents the maximal number of items whose probability of
occurrence is equal to the lower bound of the range, that is nk =⌊
1/(Θ + (1−Θ)/2k)

⌋
). For k = `, we denote by J` the set of

all the items j in σs whose probability of occurrence pj,s verifies
Θ < pj,s ≤ Θ + (1 − Θ)/2`−1. We set j` = |J`|, and we have
j` ≤ n` with n` = b1/Θc. Hence, Si,jk = {J ⊆ Jk | |J | = i},
and for every J ∈ Si,jk , PJ =

∑
j∈J pj,s.

Based on this, for each node s ∈ S, the expected number of
items that need to be received from σs to fill buffer Γk is given
by E[Tck,jk(p)], with vector p = (pj,s)j∈Jk . From Relation (2),
we have E[Tck,jk(p)] =

ck−1∑
i=0

(−1)ck−1−i
(
jk − i− 1

jk − ck

) ∑
J∈Si,jk

1

1− (p0 + PJ)
,

where p0 = 1− PJk .
We now determine the timer settings. The instant at which

each timer τk, 1 ≤ k ≤ `, should fire must be short enough to
bound the global iceberg detection latency, but sufficiently large
to prevent the content of a buffer from being sent too often, that
is well before it contains potential global icebergs. Our idea is
to set the timer for a value that allows a buffer to be full, in
expectation, whatever the frequency at which items recur the input
stream. To simplify notation, we define τ(Θ) = Hb1/Θc/Θ, and
thus in accordance with Lemma 1, we set for every k = 1, . . . , `,
τk = τ.2

2For the sake of clarity, unless otherwise specified, we will use the notation τ
to denote τ(Θ) if there is no ambiguity.

Theorem 2. (Upper bound on the communication cost) The
omniscient algorithm (see Algorithms 1 and 2) exchanges in
average no more than

2mS(logm+ log n)
∑̀
k=1

ck∑τ−1
i=0 P{Tck,nk

(v) > i}
bits. (5)

Proof: From Algorithms 1 and 2, node s ∈ S triggers a
transmission with the coordinator each time one of its buffers is
full or upon timeout. Thus, assuming that s maintains a single
buffer Γk, then for ms large, the expected number of times node
s sends the content of Γk to the coordinator, denoted Ck,s, verifies

Ck,s ≤ ms

E[min(Tck,jk(p), τ]

=
ms∑τ−1

i=0 P{Tck,jk(p) > i}
,

where P{Tck,jk(p) > h} =

ck−1∑
i=0

(−1)ck−1−i
(
jk − i− 1

jk − ck

) ∑
J∈Si,jk

(p0 + PJ)h.

It has been observed (Theorem 3 in [1]) that for vectors p =
(pj,s)j∈Jk and with p0 = 1− PJk and 0 < Θ ≤ pj,s,

P{Tck,jk(v) > h} ≤ P{Tck,jk(p) > h}.

Thus, we have

Ck,s ≤ ms∑τ−1
i=0 P{Tck,jk(p) > i}

≤ ms∑τ−1
i=0 P{Tck,nk

(v) > i}
.

Finally, we need to determine the number of bits sent each time
buffer Γk is full or upon timeout. From Algorithm 1, the sending
of message “identify” requires logms + ck(log n + logms) bits
to be transmitted to the coordinator (where logms represents
the number of bits needed to code item frequencies, and log n
the one needed to code item identifiers). By Algorithm 2, this
triggers a round trip communication between the coordinator
and the remaining S − 1 nodes to collect the frequencies of all
potential icebergs of Γk (Line 44 of Algorithm 1 and Line 6
of Algorithm 2). This generates respectively S − 1 messages of
ck log n bits from the coordinator and a message of logms′ +
ck(logms′ + log n) bits from each node s′ 6= s in S, where ms′

is the size of σs′ . As the sum of all the local streams is equal
to m, the number of bits sent because Γk is full is less than
2Sck(logm+ log n). Thus, the fact that Ck,s must be computed
for all the buffers at every node s ∈ S, allows us to complete the
proof of the lemma.

Note that when Θ→ 0, which is the case in the global iceberg
problem, we have τ → ∞, and the denominator in Relation (5)
tends to nk(Hnk

−Hnk−ck)[2].

6

3) Correctness of the omniscient algorithm: We now prove
that the omniscient algorithm solves the global iceberg problem.

Theorem 3. (Correctness) The omniscient algorithm (see Algo-
rithms 1 and 2) deterministically and exactly solves the global
iceberg problem (i.e, δ = 0 and ε = 0).

Proof: The proof consists in showing that the algorithm does
not output any items j such that fj < Θm (i.e., no false positive)
and returns all items j such that fj ≥ Θm (i.e., no false negative).

Let us first focus on false positives. Suppose by contradiction
that the coordinator returns at time t some item j such that
fj < Θm. Then, by Algorithm 2, this means that the coordinator
has received from some node s ∈ S a message “identify” for
which j ∈ Freq. By Algorithm 1, this can only happens if node
s has identified j as a potential global iceberg, that is, pj,s ≥ Θ
(see Line 9 of Algorithm 1). Now, upon receipt of Freq, the
coordinator collects from the other S − 1 nodes the frequency of
each item i ∈ Freq, and in particular j frequency, as well as the
current size of their input stream (see Lines 7–10 of Algorithm 2).
By Lines 12 and 13, the coordinator removes from Freq all the
items whose frequency is less than Θm, and in particular item j.
Thus the coordinator cannot return j at time t.

A false negative means that the coordinator does not return a
true global iceberg. Suppose that there exists j such that fj ≥ Θm
and j is not returned. Thus there exists at least one stream σs such
that pj,s ≥ Θ. By Lines 10–19 of Algorithm 1, j is inserted in
the buffer Γk that matches its occurrence probability pj,s (if not
already present). By Lines 23 and 33, j is sent to the coordinator
after at most Hb1/Θc/Θ reading. By applying an argument similar
to the above case, we get a contradiction with the assumption of
the case.

To summarize, Theorem 3 has shown that the omniscient
algorithm accurately tracks global icebergs, even if they are
hidden in distributed streams. In addition, we have provided with
Theorem 2 an upper bound on the communication cost between
the S nodes and the coordinator. This bound is reached when each
buffer is fed with items that all occur with the same probability.

V. KNOWLEDGE-FREE ALGORITHM TO TRACK GLOBAL
ICEBERGS

The algorithm we have proposed in Section IV relies on the
assumption that upon receipt of item j at node s ∈ S, its proba-
bility of occurrence pj,s in the full stream σs is known and that
node s has no memory space restriction. Clearly both assumptions
are unrealistic, in particular in presence of an adversary that may
modify on the fly the occurrence probability of any items in the
streams to affect the global iceberg detection algorithm.

A. Principles of the knowledge-free algorithm

We now propose an algorithm, called hereafter knowledge-
free algorithm, that solves the global iceberg problem without
making any assumption on the probability of occurrence of items
in σs, with s ∈ S . Instead, this algorithm builds an estimation
of this knowledge from a compact synopsis of σs computed on
the fly and with a little space (with respect to the size of the
input stream and the size of the domain from which items are

drawn). This compact synopsis, called in the following Count-Min
Sketch F̂ , is built from the algorithm proposed by Cormode and
Muthukrishnan [5]. In the following this algorithm is called the
CM algorithm. For self-containment reasons, prior to presenting
our algorithm, we recall some definitions and describe the main
features of the CM algorithm.

1) Preliminaries:
a) (ε, δ)-approximation: A randomised algorithm A is said

to be an (ε, δ)-approximation of a function φ on a stream σ if for
any sequence of items in σ, A outputs φ̂ such that P{| φ̂− φ |≥
εφ} ≤ δ, where 0 < ε, δ < 1 are given as parameters of the
algorithm.

b) 2-universal Hash Functions: A collection H of hash
functions h : {1, . . . , n} → {0, . . . , n′} is said to be 2-
universal if for every two different items i, j ∈ {1, . . . , n},
Ph∈H{h(i) = h(j)} ≤ 1/n′. Note that this is the probability
of collision obtained if the hash function assigned truly random
values to any i ∈ {1, . . . , n}. Carter and Wegman [4] provide
an efficient method to build large families of hash functions
approximating the 2-universal property.

c) The Count-Min (CM) sketch algorithm [5]: The Count-
Min Sketch algorithm approximates the frequencies of each item
present in a stream. This approximation is done on the fly (items
are read only once) and requires sub-linear memory space in the
size of the input stream and in the size of the domain of the items.
Briefly, the CM algorithm maintains a two-dimensional array F̂
of s1×s2 counters with s1 = dlog(1/δ)e and s2 = de/εe, and by
using 2-universal hash functions h1, . . . , hs1 (where e = exp(1)).
Parameters ε and δ, with 0 < ε, δ < 1, represent respectively the
accuracy of the approximation, and the probability with which the
accuracy holds. Both ε and δ are imposed by the user. Each time
an item j is read from the input stream, this causes one counter
per line to be incremented, i.e., F̂ [u][hu(j)] is incremented for
all u ∈ {1, . . . , s1}. Thus at any time, the sum of the counters of
any given line is equal to the number of items m read from the
input stream. When a query is issued to get an estimate f̂j of the
number of times item j has occurred since the inception of the
stream, the returned value corresponds to the minimum among
the s1 values of F̂ [u][hu(j)], 1 ≤ u ≤ s1. Algorithm 3 presents
the pseudo-code of the Count-Min Sketch algorithm. The error
of the estimator in answering a query for f̂j is within a factor of
ε(m − fj). The space required by this algorithm is proportional
to log(1/δ)/ε, and the update time per element is sub-linear in
the size of the sketch [5]. Specifically, after reading m items from
the stream, we have

∀j ∈ N , P
{
f̂j − fj ≥ ε (m− fj)

}
≤ δ. (6)

2) The Knowledge-free Algorithm: The knowledge-free algo-
rithm we propose combines the algorithm run by the coordinator
(see Algorithm 2) and the algorithm presented in Algorithm 4.
This algorithm, local to each node s ∈ S consists in the execution
of two parallel tasks: Task1 and Task2. Task1 maintains an
estimation of the frequency of occurrence of each received item in
σs and Task2 is a simple adaptation of the omniscient algorithm
presented in Algorithm 1. The adaptation consists in substituting

7

Algorithm 3: Estimating the Frequency of Items in a Stream
(Count-Min Sketch algorithm) [5]

Input: An input stream σ; real values δ and ε;
Output: The estimate f̂j for the frequency of any item j read from the

input stream
1 s1 ← dlog(1/δ)e;
2 s2 ← de/εe;
3 F̂ [s1][s2]← 0;
4 Choose s1 2-universal hash functions h1, . . . , hs1 : N → {1, . . . , s2};
5 for j ∈ σ do
6 for v = 1 to s1 do
7 F̂ [v][hv(j)]← F̂ [v][hv(j)] + 1;
8 end
9 end

10 Upon query of Estimate(fj): return f̂j = min1≤v≤s1 F̂ [v][hv(j)];

Algorithm 4: Knowledge-free algorithm run at any node s ∈
S

Input: An arbitrary input stream σs; real values δ and ε; Θ: threshold
qualifying an item as a global iceberg; r: proportion size parameter
of the ` buffers ;

Initialisation of the data structure F̂ of Algorithm 3 with s1 ← dlog(1/δ)e
and s2 ← d2(1−Θ)/εΘe;
for j ∈ σs do

Task T1 :
F̂ ← Algorithm presented in Figure 3 fed with j;

end
Task T2 :

execute Algorithm 1 such that
lines 9–13 are modified as below:
if f̂j,s/ms ≥ Θ then

if f̂j,s/ms ≤ Θ + (1−Θ)/2`−1 then
k ← `;

else
k ← min{h ∈ {1, `− 1} | Θ + (1−Θ)/2h <
f̂j,s/ms};

end
end
[...]
lines 21–22 and lines 31–32 are modified as below:
foreach {j} ∈ Γk do

Freq ← Freq ∪ (j, f̂j,s);
end
[...]
lines 39–40 are modified as below:
foreach j ∈ Freq do

Freq ← (j, f̂j,s);
[...]

end
end

end

the estimation f̂j,s of item j frequency in σs for the exact
frequency F [j] and in replacing the probability of occurrence
pj,s in the full stream with f̂j,s/ms, where ms is the number
of items received in the stream σs so far. The CM algorithm
strongly relies on 2-universal hash functions, to guarantee an
(ε, δ)-approximation of item frequencies. If all the S nodes use
the same set of hash functions in H, one may argue that the
adversary could launch a dictionary attack to easily tamper with
these estimations. In our solution, each of the S nodes locally and
independently chooses at random its hash functions from H. We
show in Section V-B that this does not prevent the coordinator
from (ε, δ)-approximating the detection of global icebergs.

B. Analysis of the knowledge-free algorithm

The following lemma shows that the knowledge-free algo-
rithm is an (ε, δ)-approximation of the omniscient one, for any
ε ∈ (0, 1) and probability of failure δ ≤ 1/2. This is achieved
by sharpening the bounds obtained in [5] and by relying on
Theorem 3. Specifically, Lemma 4 shows that for all items
whose probability of occurrence is greater than or equal to Θ,
then the randomised Count-Min Sketch algorithm is an (ε, δ)-
approximation of the item frequency computation.

Lemma 4. For a stream σ, for any ε ∈ (0, 1) and probability
of failure δ ≤ 1/2, Algorithm 3 run with s1 = dlog(1/δ)e and
s2 = d2(1−Θ)/εΘe guarantees that

∀j ∈ σ,

 P

{
f̂j − fj ≥ εfj

}
≤ δ if pj ≥ Θ

P

{
f̂j − fj ≥ ε (m− fj)

}
≤ δ otherwise.

Proof: From [5] we have, for any ε ∈ (0, 1) and δ ≤ 1/2,

∀j ∈ σ, P
{
f̂j − fj ≥ ε (m− fj)

}
≤ δ. (7)

By Theorem 3, we can only focus on items j for which the
probability of occurrence satisfies pj ≥ Θ. Let Xj be the random
variable representing the error made by the Count Min sketch
algorithm [5] between the estimate f̂j and the real frequency fj .
As pj ≥ Θ, then fj ≥ Θm. Note that as this lemma applies to any
context where pj ≥ Θ, Θ ∈ (0, 1), we consider a single stream
and denote by m its size. We then get m − fj ≤ fj/Θ − fj =
fj(1−Θ)/Θ, leading to

P

{
f̂j − fj ≥ εfj

}
≤ P

{
f̂j − fj ≥ εΘ

m− fj
1−Θ

}
.

Moreover, every counter F̂ [u][hu(j)] is equal to the sum of the
exact frequencies of all data items that collide with j, that is,
that share the same hashed value as the one of item j (i.e., all
i ∈ N such that hu(i) = hu(j)). We first analyze the excess of a
given counter F̂ [u][hu(j)] with u ∈ {1, . . . , s1}. Let X(u)

j denote
the random variable that measures this specific excess. We have
Xj = minu∈{1,...,s1}X

(u)
j , with

X
(u)
j =

∑
i∈N\{j}

fi1{hu(i)=hu(j)}. (8)

By the 2-universality property of each hash function from the
chosen family, we have P{hu(i) = hu(j)} ≤ 1/s2. Thus, by
linearity of the expectation, we get

E[X
(u)
j] =

∑
i∈N\{j}

E
[
fi1{hu(i)=hu(j)}

]
≤ m− fj

s2
.

Since for every item j in the stream, fj ≥ Θm and X
(u)
j ≥

0 for any u ∈ {1, . . . , s2}, we can apply Markov’s inequality.

8

Moreover, as s2 ≥ 2(1−Θ)/εΘ, we get

P

{
X

(u)
j ≥ εfj

}
≤ P

{
X

(u)
j ≥ εΘm− fj

1−Θ

}
≤
E[X

(u)
j](1−Θ)

εΘ(m− fj)

≤ 1−Θ

s2εΘ
≤ 1

2
. (9)

Relation (9) holds for any u ∈ {1, . . . , s1}. Algorithm 3 uses
s1 such estimators, mutually independent. By Relation (8), we
are able to estimate the excess of f̂j as the minimum of X(u)

j

over all u ∈ {1, . . . , s1}. Then, we obtain

P

{
f̂j − fj ≥ εfj

}
= P

{
min

u∈{1,...,s1}
X

(u)
j ≥ εfj

}
= P

{
X

(1)
j ≥ εfj , . . . , X(s1)

j ≥ εfj
}

=

s1∏
u=1

P

{
X

(u)
j ≥ εfj

}
≤ 1

2s1
≤ δ.

This concludes the proof.

Theorem 5. The knowledge-free algorithm presented in Al-
gorithms 2 and 4 uses O((log n + logm) log(1/δ)(1/Θ −
1)/ε + (logS log n)/Θ) bits of space on each node to (ε, δ)-
approximate tracking of global icebergs in arbitrarily distributed
input streams.

Proof: By Lemma 4 applied to any stream σs of length ms,
with s ∈ S , Algorithm 3 returns an (ε, δ)-approximation of fj,s
for all j ∈ σs. Thus, using ((1/εΘ) log(1/δ)(log n + logms))
bits of space, Algorithm 4 (ε, δ)-approximates the tracking of
potential global icebergs at each node s. We now demonstrate
that the coordinator correctly (ε, δ)-approximates the frequency
of each item that has been locally detected as potential global
icebergs at any node s. We have,

P

{∑
s∈S

f̂j,s − fj ≥ ε(m− fj)

}

= P

{∑
s∈S

(
f̂j,s − fj,s

)
≥ ε(m− fj)

}

= P

{∑
s∈S

min
u∈{1,...,s1}

X
(u)
j,s ≥ ε(m− fj)

}
,

where X
(u)
j,s denote the random variable that measures, given

u ∈ {1, . . . , s1}, the excess of a counter F̂ [u][hsu(j)] on a
specific node s. We clearly have minu∈{1,...,s1}

∑
s∈S X

(u)
j,s ≥∑

s∈S minu∈{1,...,s1}X
(u)
j,s . Then, by the mutual independence

of the s1 estimators, and since E[X
(u)
j,s] ≤ ms−fj,s

s2
[5], we

have Then, given that locally the s1 estimators are mutually

independent, we have

P

{∑
s∈S

f̂j,s − fj ≥ ε(m− fj)

}

≤ P

{
min

u∈{1,...,s1}

∑
s∈S

X
(u)
j,s < ε(m− fj)

}

≤
s1∏
u=1

P

{∑
s∈S

X
(u)
j,s < ε(m− fj)

}

As E[X
(u)
j,s] ≤ ms−fj,s

s2
(see proof of Lemma 4), we obtain

P

{∑
s∈S

f̂j,s − fj ≥ ε(m− fj)

}

≤
s1∏
u=1

E

[∑
s∈S X

(u)
j,s

]
ε(m− fj)

=

s1∏
u=1

∑
s∈S E

[
X

(u)
j,s

]
ε(m− fj)

=

s1∏
u=1

∑
s∈S (ms − fj,s)
s2ε(m− fj)

=

s1∏
u=1

m− fj
s2ε(m− fj)

≤ 1

2s1
≤ δ.

Similarly, by applying the same argument as above and the
one of Lemma 4, we get that P

{∑
s∈S f̂j,s − fj ≥ εfj

}
≤ δ

if fj ≥ Θm in the global stream σ. Hence, Algorithms 2
and 4 (ε, δ)-approximate the omniscient approach presented in
Section IV-A. By Theorem 3, the omniscient strategy implements
a global iceberg detection, robust to any biased distributed input
streams, which completes the second part of the proof. Finally, by
Lemma 4, on each node,O((log n+logms) log(1/δ)(1/Θ−1)/ε)
bits of space are required to (ε, δ)-approximate item frequencies.
Moreover, the space required to locally track potential icebergs is
the sum of the size used by each buffer Γk, that is

∑`
k=1 ck log n

bits. By construction ck ≤ 1/Θ. Thus, an upper bound of the
total space used is equal to O((logS log n)/Θ).

VI. EXPERIMENTAL EVALUATION

This section describes the main results obtained from the
experiments run with the knowledge-free algorithm. All these ex-
periments have been achieved on a testbed of S = 20 single-board
computers (Raspberry Pi Model B) and two servers connected
through a Gigabit Ethernet network. Single-board computers are
small computers with limited memory and storage capacities
(100 Mbps, 250MB RAM and 700MHz CPU). Each Raspberry
Pi hosts a node, one of the two servers hosts the coordinator,
while the other one generates all the S streams. Objective of
these experimentations is a proof of concept. Actually, real
routers (as for example, Cisco or Juniper type M or T, 10
Gbps throughput, from 768MB to 4GB of memory, Pentium
CPU 1GHz) would definitively handle the code run by the small
Raspberries. Experiments have been conducted on different types
of streams and for different parameters settings. The single-board
computers have been fed with both real-world datasets and with
synthetic traces. This allows to capture phenomenons that may be
difficult to obtain from real-world traces, and thus allows to check

9

Θ Count-Min
∑5

k=1 |Γk| |Λs| Space Memory Gain
0.1 3.48 kB 0.77 kB 0.32 kB 98.57%

0.005 69.59 kB 7.20 kB 6.40 kB 74.00%

TABLE I
MEMORY USAGE WITH BUFFERS, AND COUNTERS OF 32 BYTES

the robustness of our algorithm. Each run has been executed a
hundred times, and we provide the mean over the repeated runs,
after removing the 1-st and 10-th deciles to avoid outliers.

The following metrics are evaluated: (i) recall and precision
of our solution, (ii) frequency estimation of global icebergs,
(iii) communication cost induced by our solution to detect global
icebergs and, (iv) detection latency of global icebergs.

a) Simulation results with synthetic traces: Synthetic
streams have been generated using Zipfian distributions with
α ∈ {0.5; 1.0; 2.0; 3.0}, denoted respectively by Zipf-0.5, Zipf-1,
Zipf-2, and Zipf-3. Each stream is made of ms = 100, 000 items
(i.e., the global stream is made of m = 2, 000, 000 items) picking
them from an universe N whose size is equal to 10, 000. Each
node receives around 4, 000 items per second. Several values of Θ
have been considered, namely, Θ ∈ [0.005; 0.1], with logarithmic
steps, as well as different values of r, i.e., r ∈ [0.005; 1.0]. For
clarity reasons we show only the results of the experiments with
the two extremum values of r, i.e, r = 0.005 (each buffer Γk
contains a single item, which amounts for the nodes to directly
send each potential global iceberg to the coordinator), and r = 1
(all the buffer Γk have their maximal size nk, see Section 4). In
the following both cases will respectively be referred to as no
buffer and with buffers.

The probability of failure δ and the error ε of the knowledge-
free algorithm have been respectively set to δ = 0.1 and ε = 0.1.
Using our proven bounds (see Lemma 4), this leads for each node
to a memory usage of up to 7.5% of the one that would require a
naive algorithm that would maintain a counter for each received
item to determine which of them are potential icebergs or not.
Actually, we show that using as little as 1.43% of the space of
the naive algorithm is sufficient (see Table I). This is achieved by
reducing the number of columns s2 in the Count-Min sketch from
s2 = d2(1−Θ)/(0.1Θ)e (see Lemma 4) to s2 = de/Θe.3 Notice
that in all the subsequent plots, the points are linked together by
lines although they should appear as points. This has been only
done to improve the readability of the plots.

b) Precision and recall: Figure 2 shows the precision and
recall of our solution. By precision, we mean the number of global
icebergs detected by our solution divided by the total number of
detected items. By recall, we mean the number of global icebergs
detected by our solution divided by the total number of generated
global icebergs. The main result is that recall is always equal to
1 whatever the input streams features. This is a very important
property of our solution as it shows that all the global icebergs
are perfectly detected (there are no false negatives), even if global
icebergs are well hidden in all the distributed streams (i.e., Θ =

3For simplicity reason, we present memory usage with classical 32-bit coding.
This is an overestimation of the requirement as only logn and/or logm are
sufficient.

 0

 0.2

 0.4

 0.6

 0.8

 1

Zipf-0.5 Zipf-1 Zipf-2 Zipf-3
 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n

re
ca

ll

Distributions

Precision Recall

Fig. 2. Precision and recall as a function of the input distributions for Θ = 0.005
- with buffers.

 0

 5

 10

 15

 20

 25

0.005 0.05 0.01 0.1

N
um

be
r

of
 g

lo
ba

l i
ce

be
rg

 it
em

s

Θ

Generated Zipf-0.5
Generated Zipf-1
Generated Zipf-2
Generated Zipf-3

Detected Zipf-0.5
Detected Zipf-1
Detected Zipf-2
Detected Zipf-3

Fig. 3. Number of detected and generated global icebergs as a function of Θ,
with buffers.

0.005). Now, this figure shows that precision is also very high
when input streams follow Zipfian distributions with α ≥ 1 while
for α = 0.5 it decreases. This is easily explained by the fact
that with slightly skewed distributions (case with α ≤ 0.5), there
are very few frequent items (one or two), and the gap between
those frequent items and the most frequent sparse items (the ones
with a relative frequency close but less than Θ) is very small
(see Table II). Thus even a small over-approximation of Count-
Min can wrongly tag them as frequent items. Tagging two items
as frequent items when there is a single one makes a precision
equal to 0.5. Notice that both the precision and the recall are
independent from the size of the local buffers Γk.

Figure 3 shows more details on the precision of our solution by
showing the number of global icebergs that should be detected
(referred to as generated) and the number of items that have
been effectively detected as global icebergs by our knowledge-
free algorithm (referred to as detected) as a function of Θ. By
construction of the Count-Min sketch algorithm, item frequencies
are over-estimated, thus the difference between the number of
detected and effectively generated global icebergs corresponds to
the number of false positives of our solution with the ε error. Note
that the number of false positives may slightly increase with the
size of the system due to the over-approximation of the sketch
algorithm at each node. However, the absence of false negatives is
guaranteed. For Θ = 0.005, Figure 3 shows the results presented
in Figure 2. When Θ increases, the precision of our solution
drastically augments whatever the form of the input distributions.

c) Frequency estimation of global icebergs: Figure 4 com-
pares the total number of occurrences of all the global icebergs
as estimated by the knowledge-free algorithm with the total
number of occurrences effectively generated. The overestimation
of frequent items (i.e., those whose relative frequency exceeds Θ)
is negligible as expected by Lemma 4.

10

0.5e6

1.0e6

1.5e6

2.0e6

2.5e6

0.005 0.05 0.01 0.1

G
lo

ba
l i

ce
be

rg
 o

cc
ur

en
ce

s

Θ

Generated Zipf-0.5
Generated Zipf-1
Generated Zipf-2
Generated Zipf-3

Estimated Zipf-0.5
Estimated Zipf-1
Estimated Zipf-2
Estimated Zipf-3

Fig. 4. Total number of occurrences of global icebergs (estimated and generated)
as a function of Θ, with buffers.

Θ Zipf-0.5 Zipf-1 Zipf-2 Zipf-3

0.1 N/A 5.1× 10−2 8.4× 10−2 7.3× 10−2

0.005 1.5× 10−3 2.4× 10−4 8.0× 10−4 2.8× 10−3

TABLE II
FREQUENCY GAPS.

d) Communication cost induced to detect global icebergs:
Figures 5 and 6 respectively show the ratio between the number
of bits and messages exchanged by the knowledge-free algorithm
and the number of bits and messages received in the input
streams as a function of Θ. The primary remark is the negligible
communication overhead induced by the algorithm to accurately
detect global icebergs: strictly less than 8.5% of the size of
all the distributed streams is exchanged by the nodes and the
coordinator (Figure 5) even for slightly skewed distributions,
which by Theorem 2, provide the upper communication bound.
Notice the impact of buffers Γk on the communication overhead
for these slightly skewed distributions, for small values of Θ. Note
that in terms of messages, the ratio is even better (less than 1, 12%
of the content of all the streams in Figure 6), which is due to the
fact that messages exchanged between the different parties carry
a set of items, while an item is equal to a message in the input
streams. All these results are very impressive compared to [17],
which for highly skewed input distributions, get a ratio to raw
data equal to 75% (see Sect. 7.B [17]).

e) Detection latency: Figure 7 shows the latency of our
solution to detect global icebergs. This latency is computed
as the time needed to detect all the global icebergs divided
by the time needed to receive all the streams. The important
and very remarkable feature of our solution is that less than
3% of the global stream need to be received to detect all the
global icebergs (when the streams are randomly ordered). The
second remark is the impact of buffers Γk on the detection
latency: locally keeping items in Γk prior to sending them to the
coordinator increases the detection latency by a factor 4 while it
decreases the communication overhead by a factor 2 (see Zipf-
1 with Θ = 0.005 in Figures 7 and 6). There must exist some
optimal value of r that should minimise the detection latency and
communication overhead. The study of this optimum represents
a challenging open question.
Main lessons learned from these experiments. We have shown
the remarkable capability of the knowledge-free algorithm to
accurately detect global icebergs in a space-efficient way whatever

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0.005 0.05 0.01 0.1

C
om

m
un

ic
at

io
n

R
at

io
 (

bi
ts

)

Θ

no buffer Zipf-0.5
no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-0.5
with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Fig. 5. Ratio between the number of bits exchanged by the knowledge-free
algorithm and the number of bits (of the items) received in the 20 input streams
as a function of Θ.

 0

 0.005

 0.01

 0.015

 0.02

0.005 0.05 0.01 0.1

C
om

m
un

ic
at

io
n

R
at

io
 (

m
es

sa
ge

s)

Θ

no buffer Zipf-0.5
no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-0.5
with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Fig. 6. Ratio between the number of messages exchanged by the knowledge-free
algorithm and the number of items received in the 20 input streams as a function
of Θ.

their frequency in the distributed streams. We have also shown
that simply maintaining the last detected global icebergs at the
nodes drastically reduces the communication between the nodes
and the coordinator. We will see that our algorithm enjoys the
same features in presence of real datasets.

f) Real trace results: We have fed our distributed algorithm
with a real world dataset tracked during a DDoS attack; it has
been retrieved from the CAIDA repository [7, 8]. The total raw
data size over the 20 nodes is m = 2×108 (with 32 bytes for flow
size. There are in total n = 825, 695 unique destination address in
this dataset (items in these experiments are destination addresses).
This represents a 15-minute trace of traffic, monitored on OC192
Internet backbone links. Note that this dataset is definitely larger
than the synthetic ones, drastically increasing the number of
collisions in the Count Min sketch. This dataset has been split
into 20 streams, each one sent to a different node of our testbed.
The main results drawn from the analysis of these streams are
summarised in Table III.

The DDoS target is the unique global iceberg, with a prob-
ability of occurrence equals to 0.15 (Θ = 0.1), as any other
items occur with a probability lower than 5×10−3. As illustrated
in Table III, the DDoS target is correctly detected (no false
positives or negatives). The communication ratio is at most equal
to 3.6× 10−4 (note that the ratio is computed as the size of the
information exchanged between the parties divided by the size of
the destination addresses contained in the full messages). These
good results are mainly due to the large gap between probabilities
of occurrence of the unique global iceberg and the other items,
which occurs in classical DDoS attack.

11

 0

 0.01

 0.02

 0.03

 0.04

 0.05

0.005 0.05 0.01 0.1

T
im

e
to

 D
et

ec
t R

at
io

Θ

no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Fig. 7. Ratio between the time needed by the knowledge-free algorithm to detect
all the iceberg items and the time needed to receive all the 20 input streams as a
function of Θ.

Stream Size (m) 2× 108

Distinct Items (n) 825, 695

Global Icebergs 1
Detected Global Icebergs 1
False Positives 0
False Negatives 0

Global Iceberg Frequency 3.2× 106

Estimated Global Iceberg Frequency 3.4× 106

Communication Ratio (bits) without buffer 3.6× 10−4

Communication Ratio (bits) with buffers 3.2× 10−4

TABLE III
REAL-WORLD TRACE RESULTS - Θ = 0.1

VII. CONCLUSION

We have presented a distributed algorithm that deterministically
detects all global icebergs either finely hidden or massively
present in massive and physically distributed data streams. More-
over, we also (ε, δ)-approximate the size of each global iceberg.
We have derived a thorough performance analysis by deriving
bounds on the algorithm and performing real experiments on
a cluster of single-board computers. These experiments have
illustrated the enjoyable properties of our solution in terms of
precision, recall, communication overhead and detection latency.

As future work, we plan to extend our solution to fit the
requirements of long-lasting applications, including sensor-based
monitoring ones. In this context, global icebergs do not neces-
sarily reflect attacks but rather significative short-lived events.
Extending our solution to the windowing data stream model
should fit the specificities of such applications.

REFERENCES

[1] E. Anceaume, Y. Busnel, E. Schulte-Geers, and B. Sericola.
Optimization results for a generalized coupon collector problem.
Technical Report hal-01141577, HAL, April 2015.

[2] E. Anceaume, Y. Busnel, and B. Sericola. New results on a
generalized coupon collector problem using markov chains. Journal
of Applied Probability, 52(2), June 2015.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[4] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18:143–154, 1979.

[5] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of
Algorithms, 55(1):58–75, 2005.

[6] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for
distributed functional monitoring. In Proc. of the 19th annual ACM-
SIAM Symposium On Discrete Algorithms (SODA), 2008.

[7] The CAIDA UCSD “Anonymized Internet Traces 2008” Dataset.
http://www.caida.org/data/passive/passive 2008 dataset.xml. Co-
operative Association for Internet Data Analysis, April 2008.

[8] The CAIDA UCSD “DDoS Attack 2007” Dataset. http://www.
caida.org/data/passive/ddos-20070804 dataset.xml. Cooperative
Association for Internet Data Analysis, February 2010.

[9] E.D. Demaine, A. Lopez-Ortiz, and J.I. Munro. Frequent estimation
of Internet packet streams with limited space. In Proceedings of
the 11th European Symposium on Algorithms (ESA), 2003.

[10] C. Estand and G. Varghese. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. ACM
Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

[11] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Discrete
Applied Mathematics, 39:207–229, 1992.

[12] R.M. Karp, S. Shenker, and C.H. Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM
Transactions on Database Systems (TODS), 28(1):51–55, 2003.

[13] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding
(recently) frequent items in distributed data streams. In Proceedings
of the 21st IEEE International Conference on Data Engineering
(ICDE), 2005.

[14] G.S. Manku and R. Motwani. Approximate frequency conuts over
data streams. In Proceedings of the 28th International Conference
on Very Large Data Bases (VLDB), 2002.

[15] S. Muthukrishnan. Data Streams: Algorithms and Applications.
Now Publishers Inc., 2005.

[16] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters
and quantiles. Algorithmica, 65:206–223, 2013.

[17] Q. Zhao, A. Lall, M. Ogihara, and J. Xu. Global iceberg detec-
tion over distributed streams. In Proceedings of the 26th IEEE
International Conference on Data Engineering (ICDE), 2010.

[18] Q. Zhao, M. Ogihara, H. Wang, and J. Xu. Finding global icebergs
over distributed data sets. In Proceedings of the 25th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), 2006.

12

http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml

	Introduction
	Related Work
	Model of the system and addressed problem
	The distributed functional monitoring model
	The global iceberg detection problem
	Adversary

	An omniscient algorithm to track global icebergs
	Principles of the solution
	Analysis of the omniscient algorithm
	Adversarial Strategies
	Communication complexity of the omniscient algorithm
	Correctness of the omniscient algorithm

	Knowledge-free algorithm to track global icebergs
	Principles of the knowledge-free algorithm
	Preliminaries
	The Knowledge-free Algorithm

	Analysis of the knowledge-free algorithm

	Experimental Evaluation
	Conclusion

