
HAL Id: hal-01141801
https://hal.science/hal-01141801v2

Submitted on 6 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reflected BSDEs when the obstacle is not
right-continuous and optimal stopping

Miryana Grigorova, Peter Imkeller, Elias Offen, Youssef Ouknine,
Marie-Claire Quenez

To cite this version:
Miryana Grigorova, Peter Imkeller, Elias Offen, Youssef Ouknine, Marie-Claire Quenez. Reflected
BSDEs when the obstacle is not right-continuous and optimal stopping. The Annals of Applied
Probability, 2017. �hal-01141801v2�

https://hal.science/hal-01141801v2
https://hal.archives-ouvertes.fr


First version: 13 April 2015; This version: 27 August 2016

REFLECTED BSDES WHEN THE OBSTACLE IS NOT

RIGHT-CONTINUOUS AND OPTIMAL STOPPING

By Miryana Grigorova∗ , Peter Imkeller∗, Elias Offen†, Youssef Ouknine‡,

and Marie-Claire Quenez�
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Abstract In the �rst part of the paper, we study re�ected back-
ward stochastic di�erential equations (RBSDEs) with lower obstacle
which is assumed to be right upper-semicontinuous but not necessar-
ily right-continuous. We prove existence and uniqueness of the solu-
tions to such RBSDEs in appropriate Banach spaces. The result is
established by using some results from optimal stopping theory, some
tools from the general theory of processes such as Mertens decompo-
sition of optional strong supermartingales, as well as an appropriate
generalization of Itô's formula due to Gal'chouk and Lenglart. In the
second part of the paper, we provide some links between the RBSDE
studied in the �rst part and an optimal stopping problem in which
the risk of a �nancial position ξ is assessed by an f -conditional ex-
pectation Ef (·) (where f is a Lipschitz driver). We characterize the
"value function" of the problem in terms of the solution to our RB-
SDE. Under an additional assumption of left upper-semicontinuity
along stopping times on ξ, we show the existence of an optimal stop-
ping time. We also provide a generalization of Mertens decomposition
to the case of strong Ef -supermartingales.

1. Introduction. Backward stochastic di�erential equations (BSDEs) have been in-

troduced by Bismut ([4]) in the case of a linear driver. The general theory of existence and

uniqueness of solutions to BSDEs has been developed by Pardoux and Peng [29]. Through

a result of Feynman-Kac-type, these authors have linked the theory of BSDEs to that of

quasilinear parabolic partial di�erential equations (cf.[30]). BSDEs have found number of

applications in �nance, among which pricing and hedging of European options and recursive

utilities (cf., for instance, [13], [14]). Also, a useful family of operators, the family of so-called

f -conditional expectations, has been de�ned through the notion of BSDEs and used in the

literature on dynamic risk measures (cf., for instance, [2], [32], [33], [35], [3] among others).

MSC 2010 subject classi�cations: Primary 60G40, 93E20, 60H30; secondary 60G07, 47N10
Keywords and phrases: backward stochastic di�erential equation, re�ected backward stochastic di�eren-

tial equation, optimal stopping, f -expectation, strong optional supermartingale, Mertens decomposition,
dynamic risk measure, strong Ef -supermartingale
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2 M. GRIGOROVA ET AL.

We recall that the f -conditional expectation at time t ∈ [0, T ] (where T > 0 is a �xed �nal

horizon) is the operator which maps a given square-integrable terminal condition ξT to the

position at time t of (the �rst component of) the solution to the BSDE with parameters

(f, ξT ). The operator is denoted Eft,T (·).
Re�ected backward stochastic di�erential equations (RBSDEs) can be seen as a variant of

BSDEs in which the (�rst component of the) solution is constrained to remain greater than

or equal to a given process called the obstacle. Compared to the case of (non-re�ected)

BSDEs, there is an additional nondecreasing predictable process which keeps the (�rst

component of the) solution above the obstacle.

RBSDEs have been introduced by El Karoui et al. [12] in the case of a Brownian �ltration

and a continuous obstacle. In [14], El Karoui and Quenez also study their links with the (non

linear) pricing of American options. There have been several extensions of these works to

the case of a discontinuous obstacle and/or a larger stochastic basis than the Brownian one

(cf. [18], [6], [19], [15], [20], [34]). In all these extensions an assumption of right-continuity

on the obstacle is made.

In the �rst part of the present paper we consider a further extension of the theory of

RBSDEs to the case where the obstacle is not necessarily right-continuous. Compared to

the right-continuous case, the additional nondecreasing process, which "pushes" the (�rst

component of the) solution to stay above the obstacle, is no longer right-continuous. To

prove our results we use some tools from the optimal stopping theory (cf. [27], [11], [21], [22]),

some tools from the general theory of processes (cf. [9]) such as Mertens decomposition of

strong optional (but not necessarily right-continuous) supermartingales (generalizing Doob-

Meyer decomposition), a result from the potential theory (cf. [9]), and a generalization of

Itô's formula to the case of strong optional semimartingales in the vocabulary of [16] (but

not necessarily right-continuous) due to Gal'chouk and Lenglart (cf. [26]).

In the second part of the paper, we make some links between the RBSDEs studied in

the �rst part and optimal stopping with f -conditional expectations. More precisely, we

are interested in the following optimization problem: we are given a process ξ modelling a

dynamic �nancial position. The risk of ξ is assessed by a dynamic risk measure which (up to

a minus sign) is given by an f -conditional expectation. The process ξ is assumed to be right

upper-semicontinuous, but not necessarily right-continuous. We aim at stopping the process

ξ in such a way that the risk be minimal. We characterize the value of the problem in terms

of the unique solution to the RBSDE associated with obstacle ξ and driver f studied in

the �rst part. We show the existence of an optimal stopping time for the problem under

an additional assumption of left upper-semicontinuity along stopping times on ξ, and the

existence of an ε-optimal stopping time in the more general case where this assumption is

not made. We provide an optimality criterion characterizing the optimal stopping times for
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the problem in terms of properties of the "value process". We thus extend some results of

[34] to the case where the optimized process ξ is not cadlag. We also establish a comparison

principle for the RBSDEs studied in the �rst part of our paper, as well as a generalization

of Mertens decomposition to the case of Ef -strong supermartingales.

The remainder of the paper is organized as follows:

In Section 2 we give some preliminary de�nitions and properties. In Section 3 we de�ne

our RBSDE and we prove existence and uniqueness of the solution. Section 4 is dedicated

to our optimal stopping problem with f -conditional expectations. In Subsection 4.1 we

formulate and motivate the problem. In Subsection 4.2 we characterize the value function

of the problem in terms of the solution of the RBSDE studied in Section 3; we also give

an optimality criterion and address the question of existence of ε-optimal and optimal

stopping times. In Section 5 we derive some useful additional results: comparison principle

for our RBSDEs (Subsection 5.2) and "generalized" Mertens decomposition for Ef -strong
supermartingales (Subsection 5.1). In Section 6 we brie�y present some further extensions of

our work. In the Appendix we recall some useful results ("classical" Mertens decomposition,

a result from potential theory, Gal'chouk-Lenglart's change of variables formula), we give

the proofs of three results (Prop. 2.1, Prop. A.6, and Prop. A.5) used in the main part of

the paper, and we also give some examples.

2. Preliminaries. Let T > 0 be a �xed positive real number. Let (E,E ) be a measur-

able space equipped with a σ-�nite positive measure ν. Let (Ω,F , P ) be a probability space

equipped with a one-dimensional Brownian motion W and with an independent Poisson

random measure N(dt, de) with compensator dt⊗ ν(de). We denote by Ñ(dt, de) the com-

pensated process, i.e. Ñ(dt, de) := N(dt, de)− dt⊗ ν(de). Let IF = {Ft : t ∈ [0, T ]} be the
(complete) natural �ltration associated withW and N . For t ∈ [0, T ], we denote by Tt,T the

set of stopping times τ such that P (t ≤ τ ≤ T ) = 1. More generally, for a given stopping

time ν ∈ T0,T , we denote by Tν,T the set of stopping times τ such that P (ν ≤ τ ≤ T ) = 1.

We use the following notation:

• P is the predictable σ-algebra on Ω× [0, T ].

• Prog is the progressive σ-algebra on Ω× [0, T ].

• B(R) (resp. B(R2)) is the Borel σ-algebra on R (resp. R2).

• L2(FT ) is the set of random variables which are FT -measurable and square-integrable.

• L2
ν is the set of (E ,B(R))-measurable functions ` : E → R such that ‖`‖2ν :=∫
E |`(e)|

2ν(de) <∞. For ` ∈ L2ν , k ∈ L2ν , we de�ne 〈`, k 〉ν :=
∫
E `(e)k (e)ν(de).

• B(L2
ν) is the Borel σ-algebra on L2

ν .

• IH2 is the set of R-valued predictable processes φ with ‖φ‖2IH2 := E
[∫ T

0 |φt|
2dt
]
<∞.
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• IH2
ν is the set of R-valued processes l : (ω, t, e) ∈ (Ω × [0, T ] × E) 7→ lt(ω, e)

which are predictable, that is (P ⊗ E ,B(R))-measurable, and such that ‖l‖2IH2
ν

:=

E
[∫ T

0 ‖lt‖
2
ν dt
]
<∞.

We introduce the vector space S2 de�ned as the space of R-valued optional (not necessarily

cadlag) processes φ such that |||φ|||2S2 := E[ess supτ∈T0,T |φτ |
2] <∞. 1

Proposition 2.1 The map |||·|||S2 is a norm on S2. In particular, if φ ∈ S2 is such that

|||φ|||2S2 = 0, then φ is indistinguishable from the null process, that is φt = 0, 0 ≤ t ≤ T a.s.

Moreover, the space S2 endowed with the norm |||·|||S2 is a Banach space.

The proof is given in the Appendix.

We will also use the following notation:

Let β > 0. For φ ∈ IH2, ‖φ‖2β := E[
∫ T
0 eβs φ2sds]. We note that on the space IH2 the

norms ‖ · ‖β and ‖ · ‖IH2 are equivalent. For l ∈ IH2
ν , ‖l‖2ν,β := E[

∫ T
0 eβs ‖ls‖2νds]. On the

space IH2
ν the norms ‖ · ‖ν,β and ‖ · ‖IH2

ν
are equivalent. For φ ∈ S2, we de�ne |||φ|||2β :=

E[ess supτ∈T0,T eβτ φ2τ ]. We note that |||·|||β is a norm on S2 equivalent to the norm |||·|||S2 .

Remark 2.1 By a slight abuse of notation, we shall also write ‖φ‖2IH2 (resp. ‖φ‖2β) for

E
[∫ T

0 |φt|
2dt
]
(resp. E

[∫ T
0 eβt |φt|2dt

]
) in the case of a progressively measurable real-valued

process φ (cf., e.g., Remark 2.1 in [6] for the same notation).

De�nition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R2 × L2
ν → R

(ω, t, y, z, k ) 7→ f(ω, t, y, z, k ) is Prog ⊗ B(R2)⊗ B(L2
ν)− measurable,

• E[
∫ T
0 f(t, 0, 0, 0)2dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that

dP ⊗ dt-a.e. , for each (y1, z1, k1) ∈ R2 × L2
ν , (y2, z2, k2) ∈ R2 × L2

ν ,

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

A Lipschitz driver f is called predictable if moreover f is P⊗B(R2)⊗B(L2
ν)− measurable.

For real-valued random variables X and Xn, n ∈ IN , the notation "Xn ↑ X" will stand

for "the sequence (Xn) is nondecreasing and converges to X a.s.".

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at

t. We denote by ∆+φt := φt+−φt the size of the right jump of φ at t, and by ∆φt := φt−φt−
the size of the left jump of φ at t.

1Note that when φ is right-continuous, |||φ|||2S2 = E[supt∈[0,T ] |φt|2] (cf. Remark A.14).
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De�nition 2.2 Let τ ∈ T0,T . An optional process (φt) is said to be right upper-semicontinuous

(r.u.s.c.) (resp. left upper-semicontinuous (l.u.s.c.)) along stopping times at the stopping

time τ if for all nonincreasing (resp. nondecreasing) sequence of stopping times (τn) such

that τn ↓ τ (resp. τn ↑ τ) a.s. , φτ ≥ lim supn→∞ φτn a.s.. The process (φt) is said to be

r.u.s.c. (resp. l.u.s.c.) along stopping times if it is r.u.s.c. (resp. l.u.s.c.) along stopping

times at each τ ∈ T0,T . The right- (resp. left-) continuity property of an optional process

(φt) along stopping times at a stopping time τ is de�ned similarly.

Remark 2.2 Note that if (φt) is an optional process and τ is a totally inaccessible stopping

time, then (φt) is left-continuous along stopping times at τ .

If the process (φt) has left limits, (φt) is l.u.s.c. (resp. left-continuous) along stopping times

if and only if for each predictable stopping time τ ∈ T0,T , φτ− ≤ φτ (resp. φτ− = φτ ) a.s.

Note, moreover, that if an optional process (φt) is right upper-semicontinuous (r.u.s.c.),

then it is r.u.s.c. along stopping times. The converse also holds true; it is a di�cult result

of the general theory of processes proved in [7, Prop. 2, page 300].

3. Re�ected BSDE whose obstacle is not cadlag. Let T > 0 be a �xed terminal

time. Let f be a driver. Let ξ = (ξt)t∈[0,T ] be a left-limited process in S2. We suppose

moreover that the process ξ is r.u.s.c. A process ξ satisfying the previous properties will be

called a barrier, or an obstacle.

Remark 3.3 Let us note that in the following de�nitions and results we can relax the

assumption of existence of left limits for the obstacle ξ. All the results still hold true provided

we replace the process (ξt−)t∈]0,T ] by the process (ξ
t
)t∈]0,T ] de�ned by ξ

t
:= lim sups↑t,s<t ξs,

for all t ∈]0, T ]. We recall that ξ is a predictable process (cf. [8, Thm. 90, page 225]). We

call the process ξ the left upper-semicontinuous envelope of ξ.

De�nition 3.1 A process (Y,Z, k,A,C) is said to be a solution to the re�ected BSDE with
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parameters (f, ξ), where f is a driver and ξ is an obstacle, if

(Y,Z, k,A,C) ∈ S2 × IH2 × IH2
ν × S2 × S2and a.s. for all t ∈ [0, T ]

Yt = ξT +

∫ T

t
f(s, Ys, Zs, ks)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ks(e)Ñ(ds, de) +AT −At + CT− − Ct−,

(3.1)

Yt ≥ ξt for all t ∈ [0, T ] a.s.,

(3.2)

A is a nondecreasing right-continuous predictable process with A0 = 0 and such that

∫ T

0
1{Yt>ξt}dA

c
t = 0 a.s. and (Yτ− − ξτ−)(Adτ −Adτ−) = 0 a.s. for all predictable τ ∈ T0,T ,

(3.3)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0

and such that (Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T .
(3.4)

Here Ac denotes the continuous part of the process A and Ad its discontinuous part.

Equations (3.3) and (3.4) are referred to as minimality conditions or Skorokhod conditions.

We note that, by a classical result of the general theory of processes ([8, Theorem IV.84]),

a process (Y, Z, k,A,C) ∈ S2 × IH2 × IH2
ν × S2 × S2 satis�es equation (3.1) in the above

de�nition if and only if Yτ = ξT +
∫ T
τ f(t, Yt, Zt, kt)dt−

∫ T
τ ZtdWt−

∫ T
τ

∫
E kt(e)Ñ(dt, de) +

AT −Aτ +CT−−Cτ−, where the equality holds a.s. for all τ ∈ T0,T . Let us also emphasize

that if (Y,Z, k,A,C) satis�es the above de�nition, then the process Y has left and right

limits.

Remark 3.4 If (Y, Z, k,A,C) is a solution to the RBSDE de�ned above, then ∆Ct(ω) =

Yt(ω) − Yt+(ω) for all (ω, t) ∈ Ω × [0, T ) outside an evanescent set. This observation is a

consequence of equation (3.1). It follows that Yt ≥ Yt+, for all t ∈ [0, T ), which implies that

Y is necessarily r.u.s.c.

Moreover, since in our framework the �ltration is quasi-left-continuous, martingales have

only totally inaccessible jumps. Hence, if τ is a predictable stopping time, we have Yτ−Yτ− =

−(Aτ −Aτ−) a.s. From this, together with Remark 2.2, it follows that the process Y is left-

continuous along stopping times at a stopping time τ if and only if ∆Aτ = 0 a.s.

We also note that equality (3.1) still holds with f(t, Yt, Zt, kt) replaced by f(t, Yt−, Zt, kt).

Furthermore, the process (Yt +
∫ t
0 f(s, Ys, Zs, ks)ds)t∈[0,T ] is a strong supermartingale (cf.

De�nition A.1).

Remark 3.5 (the particular case of a right-continuous obstacle) In the particular
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case of a right-continuous obstacle ξ, we have that Y is right-continuous. Indeed, observe

that Yt ≥ Yt+ ≥ ξt+ = ξt (due to the right upper semicontinuity of Y and to inequality

(3.2)). Hence, if t is such that Yt = ξt, then Yt = Yt+ = ξt. If t is such that Yt > ξt, then

Yt − Yt+ = Ct − Ct− = 0 (due to Remark 3.4 and to (3.4)). Thus, in both cases, Yt = Yt+;

so, Y is right-continuous.

Moreover, the right-continuity of Y combined with Remark 3.4 give Ct = Ct−, for all t. As

C is right-continuous, purely discontinuous and such that C0− = 0, we deduce C ≡ 0. Thus,

we recover the usual formulation of RBSDE with right-continuous obstacle.

A simple introductory example where a solution to our RBSDE (from De�nition 3.1) can

be explicitly computed is presented in the Appendix (cf. Example A.1).

Let us now investigate the question of existence and uniqueness of the solution to the

RBSDE de�ned above in the case where the driver f does not depend on y, z, and k . To
this purpose, we �rst state a lemma which will be used in the sequel.

Lemma 3.2 (A priori estimates) Let (Y 1, Z1, k1, A1, C1) ∈ S2 × IH2 × IH2
ν × S2 × S2

(resp. (Y 2, Z2, k2, A2, C2) ∈ S2×IH2×IH2
ν×S2×S2) be a solution to the RBSDE associated

with driver f1(ω, t) (resp. f2(ω, t)) and with obstacle ξ. There exists c > 0 such that for all

ε > 0, for all β ≥ 1
ε2

we have

‖k1 − k2‖2ν,β ≤ ε2‖f1 − f2‖2β ; ‖Z1 − Z2‖2β ≤ ε2‖f1 − f2‖2β ;

|||Y 1 − Y 2|||2β ≤ 4ε2(1 + 6c2)‖f1 − f2‖2β.(3.5)

Proof of Lemma 3.2: Let β > 0 and ε > 0 be such that β ≥ 1
ε2
. We set Ỹ := Y 1 − Y 2,

Z̃ := Z1−Z2, Ã := A1−A2, C̃ := C1−C2, k̃ := k1−k2, and f̃(ω, t) := f1(ω, t)− f2(ω, t).
We note that ỸT = ξT − ξT = 0; moreover,

Ỹτ =

∫ T

τ
f̃(t)dt−

∫ T

τ
Z̃tdWt−

∫ T

τ

∫
E
k̃t(e)Ñ(dt, de)+ÃT−Ãτ+C̃T−−C̃τ− a.s. for all τ ∈ T0,T .

Thus we see that Ỹ is an optional strong semimartingale in the vocabulary of [16] (cf.

Theorem A.3 for the de�nition) with decomposition Ỹ = Ỹ0 + M + A + B, where Mt :=∫ t
0 Z̃sdWs +

∫ t
0

∫
E k̃s(e)Ñ(ds, de), At := −

∫ t
0 f̃(s)ds− Ãt and Bt := −C̃t− (the notation is

that of Theorem A.3 and Corollary A.2 from the Appendix). Applying Gal'chouk-Lenglart's
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formula (more precisely Corollary A.2) to eβt Ỹ 2
t gives: almost surely, for all t ∈ [0, T ],

eβT Ỹ 2
T = eβt Ỹ 2

t +

∫
]t,T ]

β eβs(Ỹs)
2ds− 2

∫
]t,T ]

eβs Ỹs−f̃(s)ds− 2

∫
]t,T ]

eβs Ỹs−dÃs

+ 2

∫
]t,T ]

eβs Ỹs−Z̃sdWs + 2

∫
]t,T ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de) +

∫
]t,T ]

eβs Z̃2
sds

+
∑
t<s≤T

eβs(Ỹs − Ỹs−)2 −
∫
[t,T [

2 eβs Ỹsd(C̃)s+ +
∑
t≤s<T

eβs(Ỹs+ − Ỹs)2.

Thus, we get (recall that ỸT = 0): almost surely, for all t ∈ [0, T ],

(3.6)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds = −

∫
]t,T ]

β eβs(Ỹs)
2ds+ 2

∫
]t,T ]

eβs Ỹsf̃(s)ds+ 2

∫
]t,T ]

eβs Ỹs−dÃs

− 2

∫
]t,T ]

eβs Ỹs−Z̃sdWs − 2

∫
]t,T ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de)

−
∑
t<s≤T

eβs(Ỹs − Ỹs−)2 + 2

∫
[t,T [

eβs ỸsdC̃s −
∑
t≤s<T

eβs(Ỹs+ − Ỹs)2.

We give hereafter an upper bound for some of the terms appearing on the right-hand side

(r.h.s. for short) of the above equality.

Let us �rst consider the sum of the �rst and the second term on the r.h.s. of equality

(3.6). By applying the inequality 2ab ≤ (aε )2 + ε2b2, valid for all (a, b) ∈ R2, we get: a.s. for

all t ∈ [0, T ],

−
∫
]t,T ]

β eβs(Ỹs)
2ds+ 2

∫
]t,T ]

eβs Ỹsf̃(s)ds ≤ −
∫
]t,T ]

β eβs(Ỹs)
2ds+

1

ε2

∫
]t,T ]

eβs Ỹ 2
s ds

+ ε2
∫
]t,T ]

eβs f̃2(s)ds

= (
1

ε2
− β)

∫
]t,T ]

eβs(Ỹs)
2ds+ ε2

∫
]t,T ]

eβs f̃2(s)ds.

As β ≥ 1
ε2
, we have ( 1

ε2
− β)

∫
]t,T ] e

βs(Ỹs)
2ds ≤ 0, for all t ∈ [0, T ] a.s.

For the third term on the r.h.s. of (3.6) it can be shown that, a.s. for all t ∈ [0, T ],

2
∫
]t,T ] e

βs Ỹs−dÃs ≤ 0. The proof uses property (3.3) of the de�nition of the RBSDE and

the property Y i ≥ ξ, for i = 1, 2; the details are similar to those in the case of a cadlag

obstacle and are left to the reader (cf., for instance, [34, proof of Prop. A.1]).

For the the last but one term on the r.h.s. of (3.6) we show that, a.s. for all t ∈ [0, T ],

2
∫
[t,T [ e

βs ỸsdC̃s ≤ 0. Indeed, a.s. for all t ∈ [0, T ],
∫
[t,T [ e

βs ỸsdC̃s =
∑

t≤s<T eβs Ỹs∆C̃s.

Now, a.s. for all s ∈ [0, T ], Ỹs∆C̃s = (Y 1
s − Y 2

s )∆C1
s − (Y 1

s − Y 2
s )∆C2

s . We use property
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(3.4), the non-decreasingness of (almost all trajectories of) C1, and the fact that Y 2 ≥ ξ to
obtain: a.s. for all s ∈ [0, T ],

(Y 1
s − Y 2

s )∆C1
s = (Y 1

s − ξs)∆C1
s − (Y 2

s − ξs)∆C1
s = −(Y 2

s − ξs)∆C1
s ≤ 0.

Similarly, we obtain: a.s. for all s ∈ [0, T ], (Y 1
s − Y 2

s )∆C2
s = (Y 1

s − ξs)∆C
2
s ≥ 0. We

conclude that, a.s. for all t ∈ [0, T ], 2
∫
[t,T [ e

βs ỸsdC̃s ≤ 0. The above observations, together

with equation (3.6), lead to the following inequality: a.s., for all t ∈ [0, T ],

(3.7)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds ≤ ε2

∫
]t,T ]

eβs f̃2(s)ds− 2

∫
]t,T ]

eβs Ỹs−Z̃sdWs

− 2

∫
]t,T ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de)−

∑
t<s≤T

eβs(Ỹs − Ỹs−)2.

From the above inequality we derive �rst an estimate for ‖Z̃‖2β and ‖k̃‖2ν,β , and then an

estimate for |||Ỹ |||2β.

Estimate for ‖Z̃‖2β and ‖k̃‖2ν,β. Note �rst that we have:∫
]t,T ]

eβs ||k̃s||2νds−
∑
t<s≤T

eβs(Ỹs − Ỹs−)2 =

∫
]t,T ]

eβs ||k̃s||2νds−
∫
]t,T ]

eβs
∫
E
k̃2s(e)N(ds, de)

−
∑
t<s≤T

eβs(∆Ãs)
2

= −
∑
t≤s<T

eβs ∆Ã2
s −

∫
]t,T ]

eβs
∫
E
k̃2s(e)Ñ(ds, de),

where, in order to obtain the �rst equality, we have used the fact that the processes A· and

N(·, de) "do not have jumps in common" (recall that the processA jumps only at predictable

stopping times, while the process N(·, de) does not jump at predictable stopping times).

By adding the term
∫
]t,T ] e

βs ||k̃s||2νds on both sides of inequality (3.7) and by using the

above computation, we derive that almost surely, for all t ∈ [0, T ],

(3.8)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds+

∫
]t,T ]

eβs ||k̃s||2νds ≤ ε2
∫
]t,T ]

eβs f̃2(s)ds− 2

∫
]t,T ]

eβs Ỹs−Z̃sdWs

−
∫
]t,T ]

eβs
∫
E

(2Ỹs−k̃s(e) + k̃2s(e))Ñ(ds, de).

Let us show that the stochastic integral "with respect to dWs" has zero expectation. Note

�rst that

(3.9) sup
t∈]0,T ]

Ỹ 2
t− = sup

t∈Q∩]0,T ]
Ỹ 2
t− ≤ ess sup

τ∈T0,T
Ỹ 2
τ a.s
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where we have used the left-continuity of the process (Ỹs−) to obtain the equality. From

this property together with Cauchy-Schwarz inequality, we get E

[√∫ T
0 e2βs Ỹ 2

s−Z̃
2
sds

]
≤

|||Ỹ |||S2‖Z̃‖2β < ∞. By standard arguments, we deduce E
[∫ T

0 eβs Ỹs−Z̃sdWs

]
= 0. By

similar arguments, the last term on the r.h.s. of inequality (3.8) has also zero expectation.

By applying (3.8) with t = 0, and by taking expectations on both sides of the resulting

inequality, we obtain Ỹ 2
0 + ‖Z̃‖2β + ‖k̃‖2ν,β ≤ ε2‖f̃‖2β. We deduce the desired estimates:

(3.10) ‖Z̃‖2β ≤ ε2‖f̃‖2β and ‖k̃‖2ν,β ≤ ε2‖f̃‖2β.

Estimate for |||Ỹ |||2β. From inequality (3.7) we derive that a.s., for all t ∈ [0, T ],

(3.11)

eβt Ỹ 2
t ≤ ε2

∫
]t,T ]

eβs f̃2(s)ds− 2

∫
]t,T ]

eβs Ỹs−Z̃sdWs − 2

∫
]t,T ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de).

From this, together with Chasles' relation for stochastic integrals, we get, for all τ ∈ T0,T ,

eβτ Ỹ 2
τ ≤ ε2

∫
]0,T ]

eβs f̃2(s)ds− 2

∫
]0,T ]

eβs Ỹs−Z̃sdWs + 2

∫
]0,τ ]

eβs Ỹs−Z̃sdWs

− 2

∫
]0,T ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de) + 2

∫
]0,τ ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de) a.s.

By taking �rst the essential supremum over τ ∈ T0,T and then the expectation on both

sides of the above inequality, we obtain

(3.12)

E[ess sup
τ∈T0,T

eβτ Ỹ 2
τ ] ≤ ε2‖f̃‖2β+2E[ess sup

τ∈T0,T
|
∫ τ

0
eβs Ỹs−Z̃sdWs|]+2E[ess sup

τ∈T0,T
|
∫
]0,τ ]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de)|].

Let us consider the last term in (3.12). By using Remark A.14 applied to the right-continuous

process (
∫
]0,t] e

βs
∫
E Ỹs−k̃s(e)Ñ(ds, de))t∈[0,T ] and Burkholder-Davis-Gundy inequalities, we

get

(3.13)

2E[ess sup
τ∈T0,T

|
∫ τ

0
eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de)|] ≤ 2cE

√∫ T

0
e2βs

∫
E
Ỹ 2
s−k̃

2
s(e)N(ds, de)

 ,
where c > 0 is a positive "universal" constant (which does not depend on the other param-

eters).

The inequality (3.9) and the trivial inequality ab ≤ 1
2a

2 + 1
2b

2 lead to
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2cE

√∫ T

0
e2βs

∫
E
Ỹ 2
s−k̃

2
s(e)N(ds, de)

 ≤ E
√1

2
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

√
8c2
∫ T

0
eβs
∫
E
k̃2s(e)N(ds, de)


≤ 1

4
E

[
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

]
+ 4c2E

[∫ T

0
eβs
∫
E
k̃2s(e)N(ds, de)

]
=

1

4
|||Ỹ |||2β + 4c2‖k̃‖2ν,β .

Here, the equality has been obtained by adding and subtracting 4c2‖k̃‖2ν,β (on the left-

hand side) and by using the fact that E[
∫ T
0 eβs

∫
E k̃

2
s(e)Ñ(ds, de)] = 0. By using similar

arguments, we obtain that the last but one term in (3.12) satis�es

(3.14) 2E[ess sup
τ∈T0,T

∫ τ

0
eβs Ỹs−Z̃sdWs] ≤

1

2
|||Ỹ |||2β + 2c2‖Z̃‖2β,

where c is the same universal constant as above. By (3.12), we thus derive that 1
4 |||Ỹ |||

2

β ≤
ε2‖f̃‖2β + 2c2‖Z̃‖2β + 4c2‖k̃‖2ν,β . This inequality, together with the estimates from (3.10),

gives |||Ỹ |||2β ≤ 4ε2(1 + 6c2)‖f̃‖2β, which is the desired result. �

In the following lemma, we prove existence and uniqueness of the solution to the RBSDE

from De�nition 3.1 (in the case where the driver f does not depend on y, z and k ) and
we characterize the �rst component of the solution as the "value process" of an optimal

stopping problem.

Lemma 3.3 Suppose that f does not depend on y, z, k , that is f(ω, t, y, z, k ) = f(ω, t),

where f is a progressive process with E[
∫ T
0 f(t)2dt] < +∞. Let (ξt) be an obstacle. Then,

the RBSDE from De�nition 3.1 admits a unique solution (Y, Z, k,A,C) ∈ S2× IH2× IH2
ν ×

S2 × S2, and for each S ∈ T0,T , we have

YS = ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
f(t)dt | FS ] a.s.(3.15)

Moreover, the following property holds:

(3.16) YS = ξS ∨ YS+ a.s.

We also have YS+ = ess supτ>S E[ξτ +
∫ τ
S f(t)dt | FS ] a.s., for all S ∈ T0,T .

If, furthermore, the obstacle (ξt) is l.u.s.c. along stopping times, then (At) is continuous.

The proof of the lemma is divided in several steps. First, we exhibit a "natural candidate"

Y to be the �rst component of the solution to the RBSDE with parameters (f, ξ); we prove
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that Y belongs to the space S2 and we give an estimate of
∣∣∣∣∣∣Y ∣∣∣∣∣∣2S2 in terms of |||ξ|||2S2

and ‖f‖2IH2 . In the second step, we exhibit "natural candidates" for the processes A and

C, and a "natural candidate" M for the martingale part of the solution to the RBSDE

with parameters (f, ξ). In the third step, we prove that the processes A and C belong to

S2 and we give an estimate of |||A+ C−|||2S2 . In the fourth step, we apply the martingale

representation theorem to M , which gives the second component Z ∈ IH2 and the third

component k ∈ IH2
ν of the solution. In the �fth step, we show the uniqueness of the solution.

Finally, we prove property (3.16) and the last two assertions of the lemma.

Proof: For S ∈ T0,T , we de�ne Y (S) by

Y (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
f(u)du | FS ].(3.17)

By Proposition A.6 in the Appendix, there exists a ladlag optional process (Y t)t∈[0,T ] which

aggregates the family (Y (S))S∈T0,T , that is,

(3.18) Y S = Y (S) a.s. for all S ∈ T0,T .

Step 1. By using Jensen's inequality and the triangular inequality, we get

(3.19)

|Y S | ≤ ess sup
τ∈TS,T

E[|ξτ |+ |
∫ τ

S
f(u)du| | FS ] ≤ E[ess sup

τ∈TS,T
|ξτ |+

∫ T

0
|f(u)|du | FS ] = E[X|FS ],

a.s., for all S ∈ T0,T , where we have set

(3.20) X :=

∫ T

0
|f(u)|du+ ess sup

τ∈T0,T
|ξτ |.

We apply Cauchy-Schwarz inequality to obtain

(3.21) E[X2] ≤ cT‖f‖2IH2 + c|||ξ|||2S2 ,

where c > 0 is a positive constant, which, in the sequel, is allowed to di�er from line to line.

From (3.19), we get ess supS∈T0,T |Y S |2 ≤ ess supS∈T0,T |E[X|FS ]|2 = supt∈[0,T ] |E[X|Ft]|2,
where the equality follows from the right-continuity of the process (E[X|Ft])0≤t≤T , together
with Remark A.14, By using this and Doob's martingale inequalities in L2, we obtain

(3.22) E[ess sup
S∈T0,T

|Y S |2] ≤ E[ sup
t∈[0,T ]

|E[X|Ft]|2] ≤ cE[X2] ≤ cT‖f‖2IH2 + c|||ξ|||2S2 ,

where the last inequality follows from (3.21).
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Step 2. By Proposition A.6, the process (Y t+
∫ t
0 f(u)du)t∈[0,T ] is a strong supermartingale.

Due to the previous step and to the assumption f ∈ IH2, it is of class (D). Applying Mertens

decomposition (cf. Theorem A.1) gives the following

(3.23) Y t = −
∫ t

0
f(u)du+Mt −At − Ct− for all t ∈ [0, T ] a.s.,

whereM is a cadlag uniformly integrable martingale, A is a nondecreasing right-continuous

predictable process such that A0 = 0, E(AT ) < ∞, and C is a nondecreasing right-

continuous adapted purely discontinuous process such that C0− = 0, E(CT ) < ∞. Let

τ ∈ T0,T . By Remark A.17, ∆+Y τ = 1{Y τ=ξτ}∆+Y τ a.s. Now, by (3.23), ∆Cτ = −∆+Y τ

a.s. It follows that ∆Cτ = 1{Y τ=ξτ}∆Cτ a.s. In other terms, the process C satis�es the

minimality condition (3.4) (with Y replaced by Y ). Moreover, thanks to a result from opti-

mal stopping theory due to El Karoui (cf. [11, Prop. 2.34]; cf. also [22]), for each predictable

stopping time τ , we have ∆Aτ = 1{Y τ−= ξτ−}∆Aτ a.s. For the continuous part Ac of A,

again by a result from optimal stopping theory (cf. [23]), we have
∫ T
0 1{Y t>ξt}dA

c
t = 0 a.s.

The process A thus satis�es the minimality condition (3.3) (with Y replaced by Y ). We

have Y T = Y (T ) = ξT a.s. (due to (3.17) and (3.18)). Also, from (3.17) and (3.18), we have

Y S = Y (S) ≥ ξS a.s. for all S ∈ T0,T , which, along with a classical result of the general

theory of processes (cf. [8, Theorem IV.84]) implies that Y t ≥ ξt, 0 ≤ t ≤ T , a.s.

Step 3. Let us consider the Mertens process associated with the strong supermartingale

Y · +
∫ ·
0 f(u)du, that is the process (At + Ct−), where the processes (At) and (Ct−) are

given by (3.23). We show that AT + CT− ∈ L2. By arguments similar to those used in

the proof of (3.19), we see that |Y S +
∫ S
0 f(u)du| ≤ E[X|FS ], where X is the random

variable de�ned in (3.20). This observation, together with a result from potential theory

(cf. Corollary A.1), gives E
[
(AT + CT−)2

]
≤ cE[X2], where c > 0. By combining this

inequality with inequality (3.21) , we obtain

(3.24) E
[
(AT + CT−)2

]
≤ cT‖f‖2IH2 + c|||ξ|||2S2 ,

where we have again allowed the positive constant c to vary from line to line. We conlude

that AT + CT− ∈ L2. Hence, AT and CT−(= CT ) are square integrable, which, due to the

nondecreasingness of A and C, is equivalent to A ∈ S2 and C ∈ S2.

Step 4. The martingale M from the decomposition (3.23) belongs to S2; this is a conse-

quence of Step 1., Step 3., and the fact that the process (
∫ t
0 f(u)du)t∈[0,T ] is in S2 (since

f ∈ IH2). By the martingale representation theorem (cf., e.g., Lemma 2.3 in [37]) there

exists a unique predictable process Z ∈ IH2 and a unique predictable k ∈ IH2
ν such that

dMt = ZtdWt +
∫
E kt(e)Ñ(dt, de). Combining this step with the previous ones gives that

(Y , Z, k,A,C) is a solution to the RBSDE with parameters f and ξ.
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Step 5. Let us now prove the uniqueness of the solution. Let Y be the �rst component

of a solution to the RBSDE with driver f and obstacle ξ. Then, by the previous Lemma

3.2 (applied with f1 = f2 = f) we obtain Y = Y in S2, where Y is given by (3.17). The

uniqueness of the other components follows from the uniqueness of Mertens decomposition of

strong optional supermartingales and from the uniqueness of the martingale representation.

(We note that the uniqueness of the second and the third component can be obtained also

by applying the previous Lemma 3.2.)

Step 6. Property (3.16) and the characterization of YS+ as the value function of an optimal

stopping problem follow from Proposition A.6 parts (ii) and (iii). The last assertion of

Lemma 3.3 follows from classical results (cf., for instance, the last statement in Thm. 20 of

[9, page 429], or [22]). �

With the help of the previous two lemmas, we now prove the existence and uniqueness

of the solution to the RBSDE from De�nition 3.1 in the case of a general Lipschitz driver.

Theorem 3.4 (Existence and uniqueness of the solution) Let ξ be a left-limited and

r.u.s.c. process in S2 and let f be a Lipschitz driver. The RBSDE with parameters (f, ξ)

from De�nition 3.1 admits a unique solution (Y, Z, k,A,C) ∈ S2 × IH2 × IH2
ν × S2 × S2.

Moreover, for all S ∈ T0,T , we have

(3.25) YS = ξS ∨ YS+ a.s.

Furthermore, if (ξt) is assumed l.u.s.c. along stopping times, then (At) is continuous (or

equivalently, the process (Yt) is l.u.s.c. along stopping times).

Remark 3.6 We will see that, as in the right-continuous case, the existence and uniqueness

result follows from a �xed point theorem applied in an appropriate Banach space. In the

right-continuous case, the Banach space is classically the product space IH2 × IH2 × IH2
ν

equipped with the norm ‖Y ‖2β + ‖Z‖2β + ‖k‖2ν,β (cf, e.g. [12], [20], [34]). However, this

Banach space does not suit our purpose. Indeed, let us make the following observation. Let

Y be an optional process such that ‖Y ‖β = 0. We then have Yt = 0, 0 ≤ t ≤ T dP ⊗ dt-a.e.
When Y is right-continuous, this implies the indistinguishability of Y from the null process

0, that is, the property Yt = 0, 0 ≤ t ≤ T a.s. However, if Y is not right-continuous, the

implication is not necessarily true. 2 Hence, applying a �xed point theorem in this space

cannot give us uniqueness of the solution of our re�ected BSDE in the sense of processes,

that is, up to indistinguishability.

2However, the property holds for the "triple bar" map ||| · |||β on S2. More precisely, if Y ∈ S2 with
|||Y |||β = 0, then Yt = 0, 0 ≤ t ≤ T a.s. because ||| · |||β is a norm on S2. Note that ‖ · ‖β is only a semi-norm
on S2.
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Proof: For each β > 0, we denote by B2β the space S2 × IH2 × IH2
ν which we equip with

the norm ‖(·, ·, ·)‖B2β de�ned by ‖(Y, Z, k)‖2B2β := |||Y |||2β + ‖Z‖2β + ‖k‖2ν,β , for (Y,Z, k) ∈
S2 × IH2 × IH2

ν . Since (IH2, ‖ · ‖β) and (IH2
ν , ‖ · ‖ν,β) are Banach spaces, and since by

Proposition 2.1, (S2, ||| · |||β) is a Banach space, it follows that (B2β, ‖ · ‖Bβ ) is a Banach

space.

We de�ne a mapping Φ from B2β into itself as follows: for a given (y, z, l) ∈ B2β , we
set Φ(y, z, l) := (Y,Z, k), where Y,Z, k are the �rst three components of the solution

(Y,Z, k,A,C) to the RBSDE associated with driver f(s) := f(s, ys, zs, ls) and with ob-

stacle ξ. The mapping Φ is well-de�ned by Lemma 3.3.

Let (y′, z′, l′) and (y′′, z′′, l′′) be two elements of B2β . We set (Y ′, Z ′, k′) = Φ(y′, z′, l′)

and (Y ′′, Z ′′, k′′) = Φ(y′′, z′′, l′′). We also set Ỹ := Y ′ − Y ′′, Z̃ := Z ′ − Z ′′, k̃ := k′ − k′′,
ỹ := y′ − y′′, z̃ := z′ − z′′, l̃ := l′ − l′′.

Let us prove that for a suitable choice of the parameter β > 0 the mapping Φ is a

contraction from the Banach space B2β into itself. By applying Lemma 3.2, we get

|||Ỹ |||2β + ‖Z̃‖2β + ‖k̃‖2ν,β ≤ 6ε2(1 + 4c2)‖f(y′, z′, l′)− f(y′′, z′′, l′′)‖2β ,

for all ε > 0, for all β ≥ 1
ε2
. By using the Lipschitz property of f and the fact that

(a+ b+ c)2 ≤ 3(a2 + b2 + c2) for all (a, b, c) ∈ R3, we obtain ‖f(y′, z′, l′)− f(y′′, z′′, l′′)‖2β ≤
CK(‖ỹ‖2β + ‖z̃‖2β + ‖l̃‖2ν,β), where CK is a positive constant depending on the Lipschitz

constant K only. Thus, for all ε > 0, for all β ≥ 1
ε2
, we have |||Ỹ |||2β + ‖Z̃‖2β + ‖k̃‖2ν,β ≤

6ε2CK(1 + 4c2)(‖ỹ‖2β + ‖z̃‖2β + ‖l̃‖2ν,β). Now, using Fubini's theorem, we get ‖ỹ‖2β ≤ T |||ỹ|||
2
β .

Hence, we have

|||Ỹ |||2β + ‖Z̃‖2β + ‖k̃‖2ν,β ≤ 6ε2CK(1 + 4c2)(T + 1)(|||ỹ|||2β + ‖z̃‖2β + ‖l̃‖2ν,β).

Thus, for ε > 0 such that 6ε2CK(1 + 4c2)(T + 1) < 1 and β > 0 such that β ≥ 1
ε2

the mapping Φ is a contraction. By the Banach �xed-point theorem, we get that Φ has a

unique �xed point in B2β , denoted by (Y, Z, k), that is, such that (Y,Z, k) = Φ(Y, Z, k). By

de�nition of the mapping Φ, the process (Y,Z, k) is thus equal to the �rst three components

of the solution (Y, Z, k,A,C) to the re�ected BSDE associated with the driver process

g(ω, t) := f(ω, t, Yt(ω), Zt(ω), kt(ω)) and with obstacle ξ. It follows that (Y,Z, k,A,C) is

the unique solution to the RBSDE with parameters (f, ξ).

Property (3.25) follows from Eq. (3.16) of Lemma 3.3 and from the fact that (Y,Z, k,A,C)

is equal to the solution of the re�ected BSDE associated with the driver process g(ω, t) :=

f(ω, t, Yt(ω), Zt(ω), kt(ω)).

The last assertion of the theorem follows from Lemma 3.3 (fourth assertion) applied with

the process g(ω, t) := f(ω, t, Yt(ω), Zt(ω), kt(ω)).

�
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4. Optimal stopping with f-conditional expectations.

4.1. Formulation of the problem. Let T > 0 be the terminal time and f be a predictable

Lipschitz driver. Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in S2 modelling a

dynamic �nancial position. The risk of ξ is assessed by a dynamic risk measure equal, up

to a minus sign, to the f -conditional expectation of ξ. More precisely: let T ′ ∈ [0, T ] be a

�xed (for the present) instant before the terminal time T ; the gain of the position at T ′

is equal to ξT ′ and the risk at time t, where t ∈ [0, T ′], is assessed by −Eft,T ′(ξT ′). Here,
we use the usual notation Ef·,T ′(ξT ′) for the �rst component of the BSDE with driver f ,

terminal time T ′ and terminal condition ξT ′ ; the random variable Eft,T ′(ξT ′) is referred to

as the f -conditional expectation of ξT ′ at time t. The modelling is similar when T ′ ∈ [0, T ]

is replaced by a more general stopping time τ ∈ T0,T 3 .

We are now interested in stopping the process ξ in such a way that the risk be minimal.

We are thus led to formulating the following optimal stopping problem (at time 0):

(4.26) v(0) = −ess sup
τ∈T0,T

Ef0,τ (ξτ ).

We recall that in our framework (as opposed to the simpler case of a brownian �ltration)

the monotonicity property of f -conditional expectations is not automatically satis�ed. From

now on we make the following assumption on the driver f , which ensures the nondecreasing

property of Ef (·) by the comparison theorem for BSDEs with jumps (cf. [33, Thm. 4.2]).

Assumption 4.1 Assume that dP ⊗ dt-a.e. for each (y, z, k1, k2) ∈ R2 × (L2
ν)2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈θy,z,k1,k2t , k1 − k2〉ν ,

with

θ : [0, T ]× Ω× R2 × (L2
ν)2 → L2

ν ; (ω, t, y, z, k1, k2) 7→ θy,z,k1,k2t (ω, ·)

P ⊗ B(R2) ⊗ B((L2
ν)2)-measurable, satisfying ‖θy,z,k1,k2t (·)‖ν ≤ K for all (y, z, k1, k2) ∈

R2 × (L2
ν)2, dP ⊗ dt-a.e. , where K is a positive constant, and such that

(4.27) θy,z,k1,k2t (e) ≥ −1,

for all (y, z, k1, k2) ∈ R2 × (L2
ν)2, dP ⊗ dt⊗ dν(e)− a.e.

3Recall that a process Y is the solution to the BSDE associated with driver f , terminal time τ and
terminal condition ζ (where ζ is an Fτ -measurable square-integrable random variable) if for almost all
ω ∈ Ω, for all t ∈ [0, T ], Yt(ω) = Ȳt(ω), where Ȳ denotes the solution to the BSDE associated with driver
f1t≤τ , terminal time T and terminal condition ζ. The process Y is also denoted Ef·,τ (ζ).
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The above assumption is satis�ed if, for example, f is of class C1 with respect to k such

that ∇kf is bounded (in L2
ν) and ∇kf ≥ −1 (see Proposition A.2. in [10]).

Remark 4.7 The strict comparison theorem for BSDEs with jumps (cf. Theorem 4.4 in

[33]) ensures that if the inequality (4.27) is strict, then Ef (·) is strictly monotonous in the

following sense: for τ ∈ T0,T , for ξ1, ξ2 ∈ L2(Fτ ) such that ξ1 ≤ ξ2 a.s. , and for S ∈ T0,T
such that S ≤ τ a.s., the property EfS,τ (ξ1) = EfS,τ (ξ2) a.s., implies ξ1 = ξ2 a.s.

A counter-example to the strict monotonicity of Ef (·) in the case where the strict inequality

in (4.27) is not assumed is given in [33] (cf. also Example A.2 in the Appendix).

As is usual in optimal control, we embed the above problem (4.26) in a larger class of

problems. We thus consider for each S ∈ T0,T , the random variable

(4.28) v(S) = −ess sup
τ∈TS,T

EfS,τ (ξτ ),

which corresponds to the minimal risk measure at time S. Our aim is to characterize v(S)

for each S ∈ T0,T , and to study the existence of an S-optimal stopping time τ∗ ∈ TS,T , i.e.
a stopping time τ∗ ∈ TS,T such that v(S) = −EfS,τ∗(ξτ∗) a.s.

4.2. Characterization of the value function as the solution of an RBSDE. In this section,

we show that the minimal risk measure v de�ned by (4.28) coincides with −Y , where Y is

(the �rst component of) the solution to the re�ected BSDE associated with driver f and

obstacle ξ. We also investigate the question of the existence of an ε-optimal stopping time,

and that of the existence of an optimal stopping time (under suitable assumptions on the

process ξ).

The following terminology will be used in the sequel. Let Y be a process in S2. Let f be

a predictable Lipschitz driver satisfying Assumption 4.1.

• The process (Yt) is said to be a strong Ef -supermartingale (resp Ef -submartingale),

if EfS,τ (Yτ ) ≤ YS (resp. EfS,τ (Yτ ) ≥ YS) a.s. on S ≤ τ , for all S, τ ∈ T0,T .
The process (Yt) is said to be a strong Ef -martingale if it is both a strong Ef -super
and Ef -submartingale.

• Let S, τ ∈ T0,T be such that S ≤ τ a.s. The process Y is said to be a strong Ef -
supermartingale (resp. a strong Ef -submartingale) on [S, τ ] if for all σ, µ ∈ T0,T such

that S ≤ σ ≤ µ ≤ τ a.s., we have Yσ ≥ Efσ,µ(Yµ) a.s. (resp. Yσ ≤ Efσ,µ(Yµ) a.s.) We

say that Y is a strong Ef -martingale on [S, τ ] if it is both a strong Ef -super and

submartingale on [S, τ ].

Remark 4.8 We note that a process Y ∈ S2 is a strong Ef -martingale on [S, τ ] (where S,

τ ∈ T0,T are such that S ≤ τ a.s.) if and only if, on [S, τ ], Y is indistinguishable from the
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solution to the BSDE associated with driver f , terminal time τ and terminal condition Yτ .

It follows that for a process Y ∈ S2 to be a strong Ef -martingale on [S, τ ], it is su�cient

to have: Yσ = Efσ,τ (Yτ ) a.s., for all σ ∈ T0,T such that S ≤ σ ≤ τ a.s.

Property 4.1 Let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let S, τ ∈
T0,T with S ≤ τ a.s. Let Y be a strong Ef -supermartingale on [S, τ ]. We introduce the

following two assertions:

(i) The process Y is a strong Ef -martingale on [S, τ ].

(ii) YS = EfS,τ (Yτ ) a.s.

Assertion (i) implies Assertion (ii).

If, in Assumption 4.1, we further assume the strict inequality θy,z,k1,k2t > −1, then Assertion

(ii) implies Assertion (i).

Proof: The implication (i) ⇒ (ii) is due to the de�nition. Let us show the converse

implication. Let σ ∈ T0,T be such that S ≤ σ ≤ τ a.s. By using (ii) and the con-

sistency property of f -expectations, we obtain YS = EfS,σ
(
Efσ,τ (Yτ )

)
a.s. By using the

strong Ef -supermartingale property of Y and the monotonicity of f -expectations, we ob-

tain EfS,σ
(
Efσ,τ

(
Yτ
))
≤ EfS,σ

(
Yσ
)
≤ YS a.s. From the previous two equations we get YS =

EfS,σ
(
Efσ,τ

(
Yτ
))

= EfS,σ
(
Yσ
)
a.s. In particular,

(4.29) EfS,σ
(
Yσ
)

= EfS,σ
(
Efσ,τ

(
Yτ
))

a.s.

Since θy,z,k1,k2t > −1, Ef (·) is strictly monotonous (cf. Remark 4.7). From this, together

with equality (4.29) and the inequality Yσ ≥ Efσ,τ
(
Yτ
)
a.s., we get Yσ = Efσ,τ

(
Yτ
)
a.s. The

process Y is thus a strong Ef -martingale on [S, τ ]. �

We next show a lemma which will be used in the proof of the main result of this section.

Lemma 4.1 Let f be a predictable Lipschitz driver satisfying Assumption 4.1 and ξ be a

left-limited r.u.s.c. process in S2. Let (Y, Z, k,A,C) be the solution to the re�ected BSDE

with parameters (f, ξ) as in De�nition 3.1. Let ε > 0 and S ∈ T0,T . Let τ εS be de�ned by

(4.30) τ εS := inf{t ≥ S : Yt ≤ ξt + ε}.

The following two statements hold:

(i) YτεS ≤ ξτεS + ε a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ εS ].
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We note that τ εS de�ned in (4.30) is a stopping time as the début after S of a progressive

set. Note also that τ εS is valued in [0, T ] as YT = ξT a.s.

Proof:We �rst prove statement (i). By way of contradiction, we suppose P (YτεS > ξτεS+ε) >

0. We have ∆CτεS = CτεS −C(τεS)− = 0 on the set {YτεS > ξτεS +ε}. On the other hand, due to

Remark 3.4, ∆CτεS = YτεS − Y(τεS)+. Thus, YτεS = Y(τεS)+ on the set {YτεS > ξτεS + ε}. Hence,

(4.31) Y(τεS)+ > ξτεS + ε on the set {YτεS > ξτεS + ε}.

We will obtain a contradiction with this statement. Let us �x ω ∈ Ω. By de�nition of τ εS(ω),

there exists a non-increasing sequence (tn) = (tn(ω)) ↓ τ εS(ω) such that Ytn(ω) ≤ ξtn(ω)+ε,

for all n ∈ IN . Hence, lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω) + ε. As the process ξ is

r.u.s.c. , we have lim supn→∞ ξtn(ω) ≤ ξτεS (ω). On the other hand, as (tn(ω)) ↓ τ εS(ω), we

have lim supn→∞ Ytn(ω) = Y(τεS)+(ω). Thus, Y(τεS)+(ω) ≤ ξτεS (ω)+ε, which is in contradiction

with (4.31). We conclude that YτεS ≤ ξτεS + ε a.s.

Let us now prove statement (ii). By de�nition of τ εS , we have: for a.e. ω ∈ Ω, for all

t ∈ [S(ω), τ εS(ω)[, Yt(ω) > ξt(ω) + ε. Hence, for a.e. ω ∈ Ω, the function t 7→ Act(ω) is

constant on [S(ω), τ εS(ω)[; by continuity of almost every trajectory of the process Ac, Ac· (ω)

is constant on the closed interval [S(ω), τ εS(ω)], for a.e. ω. Furthermore, for a.e. ω ∈ Ω, the

function t 7→ Adt (ω) is constant on [S(ω), τ εS(ω)[. Moreover, Y(τεS)− ≥ ξ(τεS)− + ε a.s. , which

implies that ∆AdτεS
= 0 a.s. Finally, for a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, ∆Ct(ω) =

Ct(ω) − Ct−(ω) = 0; therefore, for a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, ∆+Ct−(ω) =

Ct(ω)−Ct−(ω) = 0, which implies that, for a.e. ω ∈ Ω, the function t 7→ Ct−(ω) is constant

on [S(ω), τ εS(ω)[. By left-continuity of almost every trajectory of the process (Ct−), we get

that for a.e. ω ∈ Ω, the function t 7→ Ct−(ω) is constant on the closed interval [S(ω), τ εS(ω)].

Thus, for a.e. ω ∈ Ω, the map t 7→ At(ω) +Ct−(ω) is constant on [S(ω), τ εS(ω)]. Hence, Y is

the solution on [S, τ εS ] of the BSDE associated with driver f , terminal time τ εS and terminal

condition YτεS . We conclude by using Remark 4.8. �

With the help of the previous lemma, we derive the main result of this section.

Theorem 4.2 (Characterization theorem) Let T > 0 be the terminal time. Let (ξt, 0 ≤
t ≤ T ) be a left-limited r.u.s.c. process in S2 and let f be a predictable Lipschitz driver

satisfying Assumption 4.1. Let (Y,Z, k,A,C) be the solution to the re�ected BSDE with

parameters (f, ξ) as in De�nition 3.1.

(i) For each stopping time S ∈ T0, we have

(4.32) YS = ess sup
τ∈TS,T

EfS,τ (ξτ ) a.s.
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(ii) For each S ∈ T0,T and each ε > 0, the stopping time τ εS de�ned by (4.30) is (Lε)-

optimal for problem (4.32), that is

(4.33) YS ≤ EfS,τεS (ξτεS ) + Lε a.s. ,

where L is a constant which only depends on T and the Lipschitz constant K of f .

Remark 4.9 This result still holds when the assumption of existence of left limits for the

process ξ is relaxed (cf. also Remark 3.3).

In the case where ξ is right-continuous, we recover Theorem 3.2 of [34].

Proof: Let ε > 0 and let τ ∈ TS,T . By Proposition A.5 in the Appendix, the process (Yt)

is a strong Ef -supermartingale. Hence, for each τ ∈ TS,T , we have

YS ≥ EfS,τ (Yτ ) ≥ EfS,τ (ξτ ) a.s. ,

where the second inequality follows from the inequality Y ≥ ξ and the monotonicity prop-

erty of Ef (·) (with respect to terminal condition). By taking the supremum over τ ∈ TS,T ,
we get

(4.34) YS ≥ ess sup
τ∈TS,T

EfS,τ (ξτ ) a.s.

It remains to show the converse inequality. Due to part (ii) of the previous Lemma 4.1 we

have YS = EfS,τεS (YτεS ) a.s. From this equality, together with part (i) of Lemma 4.1 and

the monotonicity property of Ef (·), we derive

(4.35) YS = EfS,τεS (YτεS ) ≤ EfS,τεS (ξτεS + ε) ≤ EfS,τεS (ξτεS ) + Lε a.s.,

where the last inequality follows from the estimates on BSDEs (cf. Proposition A.4 in [33]).

Inequality (4.33) thus holds. From (4.35) we also deduce YS ≤ ess supτ∈TS,T E
f
S,τ (ξτ ) +Lε

a.s. As ε is an arbitrary positive number, we get YS ≤ ess supτ∈TS,T E
f
S,τ (ξτ ) a.s. By (4.34)

this inequality is an equality. �

We now investigate the question of the existence of optimal stopping times for the optimal

stopping problem (4.32). We �rst provide an optimality criterion for the problem (4.32).

Proposition 4.2 (Optimality criterion) Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c.

process in S2 and let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let

S ∈ T0,T and τ̂ ∈ TS,T . If Y is a strong Ef -martingale on [S, τ̂ ] with Yτ̂ = ξτ̂ a.s., then the

stopping time τ̂ is S-optimal (i.e. YS = EfS,τ̂ (ξτ̂ ) a.s.). The converse statement also holds

true, if, in addition, the inequality from Assumption 4.1 is strict (that is, θy,z,k1,k2t > −1).
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Proof: The �rst claim is immediate. Let us prove the second (and last) claim. Assume the

strict inequality in Assumption 4.1. Let τ̂ be S-optimal, i.e. YS = EfS,τ̂ (ξτ̂ ) a.s. Since by

Theorem 4.2 and by Proposition A.5, Y is a strong Ef -supermartingale, we have

YS ≥ EfS,τ̂ (Yτ̂ ) ≥ EfS,τ̂ (ξτ̂ ) = YS a.s. ,

where the last inequality holds because Y ≥ ξ. It follows that YS = EfS,τ̂ (Yτ̂ ) a.s. Since

θy,z,k1,k2t > −1, Property 4.1 can be applied, which yields that Y is a strong Ef -martingale

on [S, τ̂ ]. Moreover, since EfS,τ̂ (Yτ̂ ) = EfS,τ̂ (ξτ̂ ) a.s. with Yτ̂ ≥ ξτ̂ a.s. , the strict monotonicity

of Ef implies that Yτ̂ = ξτ̂ a.s. �

We note that, even in the case where ξ is right-continuous, the large inequality θy,z,k1,k2t ≥
−1 from Assumption 4.1 is not su�cient for the last statement of the above proposition to

hold true; a counter-example is given in the Appendix (cf. Example A.2).

In Theorem 4.2 (ii), we have shown the existence of an Lε-optimal stopping time for

problem (4.26). Under an additional assumption of left upper-semicontinuity along stopping

times of the process ξ, we will show the existence of an optimal stopping time. To this

purpose, we �rst give a lemma which is to be compared with Lemma 4.1.

Lemma 4.2 Let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let (ξt, 0 ≤
t ≤ T ) be a left-limited r.u.s.c. process in S2 which we assume also to be l.u.s.c. along

stopping times. Let (Y, Z, k,A,C) be the solution to the re�ected BSDE with parameters

(f, ξ). Let S ∈ T0,T . We de�ne τ∗S by

(4.36) τ∗S := inf{u ≥ S : Yu = ξu}.

The following assertions hold:

(i) Yτ∗S = ξτ∗S a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ∗S ].

Proof: To prove the �rst statement we note that Yτ∗S ≥ ξτ∗S a.s., since Y is (the �rst

component of) the solution to the RBSDE with barrier ξ. We show that Yτ∗S ≤ ξτ∗S a.s.

by using the assumption of right-upper semicontinuity on the process ξ; the arguments are

similar to those used in the proof of part (i) of Lemma 4.1 and are left to the reader.

Let us prove the second statement. By de�nition of τ∗S , we have that for a.e. ω ∈ Ω, Yt(ω) >

ξt(ω) on [S(ω), τ∗S(ω)[; hence, for a.e. ω, the trajectory Ac(ω) is constant on [S(ω), τ∗S(ω)[

and even on the closed interval [S(ω), τ∗S(ω)] due to the continuity. On the other hand, due

to the assumption of l.u.s.c. along stopping times on the process ξ, we have A(ω) = Ac(ω)
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for a.e. ω (see Theorem 3.4). Thus, for a.e. ω, A(ω) is constant on [S(ω), τ∗S(ω)]. We show

that Ct−(ω) is constant on [S(ω), τ∗S(ω)] by the same arguments as those of the proof of

part (ii) of Lemma 4.1. We conclude by using Remark 4.8. �

Remark 4.10 We see from the above proof that the assumption of l.u.s.c. of ξ in Lemma

4.2 can be replaced by the assumption ∆Aτ∗S = 0. The assumption ∆Aτ∗S = 0 is weaker than

the assumption of l.u.s.c. of ξ as illustrated in Example A.3 of the Appendix.

By the previous lemma and the �rst statement ("the optimality criterion") from Proposition

4.2, we derive the following existence result.

Proposition 4.3 Let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let

(ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in S2 which we assume also to be l.u.s.c.

along stopping times. Let S ∈ T0,T . The stopping time τ∗S de�ned in (4.36) is optimal for

problem (4.32), that is YS = ess supτ∈TS,T E
f
S,τ (ξτ ) = EfS,τ∗S (ξτ∗S ) a.s.

Remark 4.11 We note that, due to Remark 4.10 and to the optimality criterion, the op-

timality of τ∗S in the above proposition still holds if we relax the assumption of l.u.s.c. of

ξ to the (weaker) assumption ∆Aτ∗S = 0 a.s. We recall that, by Remark 3.4, the condition

∆Aτ∗S = 0 a.s. is equivalent to Y being left-continuous along stopping times at τ∗S. If the

condition ∆Aτ∗S = 0 a.s. is violated, the stopping time τ∗S might not be optimal (cf. Example

A.3 from the Appendix).

We show the following property.

Proposition 4.4 Let T > 0 be the terminal time. Let (ξt, 0 ≤ t ≤ T ) be a left-limited

r.u.s.c. process in S2 and let f be a predictable Lipschitz driver satisfying Assumption

4.1. Let (Y,Z, k,A,C) be the solution to the re�ected BSDE with parameters (ξ, f) as in

De�nition 3.1. The process Y is the Ef -Snell envelope of ξ, that is, the smallest strong

Ef -supermartingale greater than or equal to ξ.

Remark 4.12 This result still holds when ξ is not left-limited (cf. Remarks 3.3 and 4.9).

From Proposition 4.4 and Theorem 4.2, we deduce that the "value process" of the optimal

stopping problem (4.28) is characterized as the Ef -Snell envelope of the reward process ξ.

In the particular case of a classical (linear) expectation (that is, when f = 0), we recover a

characterization from the classical optimal stopping theory stating that the "value process"

of the "classical" linear optimal stopping problem coincides with the Snell envelope of ξ,

which is smallest strong supermartingale greater than or equal to ξ (cf, e.g., [1]).

Proof: By Proposition A.5 in the Appendix, the process Y is a strong Ef -supermartingale.

Moreover, since Y is (the �rst component of) the solution to the re�ected BSDE with
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parameters (f, ξ), it is greater than or equal to ξ (cf. Def. 3.1).

It remains to show the minimality property. Let Y ′ be another Ef -supermartingale greater

than or equal to ξ. Let S ∈ T0,T . For each τ ∈ TS,T , we have Y ′S ≥ E
f
S,τ (Y ′τ ) ≥ EfS,τ (ξτ )

a.s. , where the second inequality follows from the inequality Y ′ ≥ ξ and the monotonicity

property of Ef with respect to the terminal condition. By taking the supremum over τ ∈
TS,T , we get Y ′S ≥ ess supτ∈TS,T E

f
S,τ (ξτ ) = YS a.s. , where the last equality follows from

Theorem 4.2. The desired result follows. �

5. Additional results.

5.1. Ef -Mertens decomposition of Ef -strong supermartingales. We now show an Ef -
Mertens decomposition for Ef -strong supermartingales, which generalizes Mertens decom-

position to the case of f -expectations. We �rst show the following lemma.

Lemma 5.1 Let (Yt) ∈ S2 be a strong Ef -supermartingale (resp. Ef -submartingale). Then,

(Yt) is right upper-semicontinuous (resp. right lower-semicontinuous).

Proof: Suppose that (Yt) is a strong Ef -supermartingale. Let τ ∈ T0,T and let (τn) be a

nonincreasing sequence of stopping times with limn→+∞ τn = τ a.s. and for all n ∈ IN ,

τn > τ a.s. on {τ < T}. Suppose that limn→+∞ Yτn exists a.s. The random variable

limn→+∞ Yτn is Fτ -measurable as the �ltration is right-continuous. Let us show that

Yτ ≥ lim
n→+∞

Yτn a.s.

Since (Yt) is a strong Ef -supermartingale and the sequence (τn) is nonincreasing, we have,

for all n ∈ IN , Efτ,τn(Yτn) ≤ Efτ,τn+1(Yτn+1) ≤ Yτ . We deduce that the sequence of random

variables (Efτ,τn(Yτn))n∈IN is nondecreasing (hence, converges a.s.) and its limit (in the a.s.

sense) satis�es Yτ ≥ limn→+∞ ↑ Efτ,τn(Yτn) a.s. This observation, combined with the con-

tinuity property of BSDEs with respect to terminal time and terminal condition (cf. [33,

Prop. A.6]) gives

Yτ ≥ lim
n→+∞

Efτ,τn(Yτn) = Efτ,τ ( lim
n→+∞

Yτn) = lim
n→+∞

Yτn a.s.

This result, together with a result of the general theory of processes (cf. [7, Prop. 2, page

300]), ensures that the optional process (Yt) is right-upper semicontinuous.

�

Theorem 5.2 (Ef -Mertens decomposition) Let (Yt) be a process in S2. Let f be a

predictable Lipschitz driver satisfying Assumption 4.1. The process (Yt) is a strong Ef -
supermartingale (resp. Ef -submartingale) if and only if there exists a nondecreasing (resp.
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nonincreasing) right-continuous predictable process A in S2 with A0 = 0 and a nondecreas-

ing (resp. nonincreasing) right-continuous adapted purely discontinuous process C in S2

with C0− = 0, as well as two processes Z ∈ IH2 and k ∈ H2
ν , such that a.s. for all t ∈ [0, T ],

Yt = YT +

∫ T

t
f(s, Ys, Zs, ks)ds+AT−At+CT−−Ct−−

∫ T

t
ZsdWs−

∫ T

t

∫
E
ks(e)Ñ(ds, de).

This decomposition is unique.

Proof: The "if part" has been shown in Proposition A.5 of the Appendix. Let us show the

"only if" part. Suppose that (Yt) is a strong Ef -supermartingale. Hence, (Yt) is clearly the

Ef -Snell envelope of (Yt), that is the smallest strong Ef -supermartingale greater or equal to

(Yt). By the characterization of the solution of a re�ected BSDE as the Ef -Snell envelope of
the obstacle process (cf. Proposition 4.4 and Remark 4.12), we derive that the process (Yt)

coincides with the solution of the re�ected BSDE associated with the obstacle (Yt) (which

is r.u.s.c. by Lemma 5.1). The desired conclusion follows.

The uniqueness of the processes Z, k, A, C of the decomposition follows from the uniqueness

of the solution of the re�ected BSDE. �

When Y is right-continuous, the process C of the Ef -Mertens decomposition is equal to

0. In this case, the previous theorem reduces to the so-called Ef -Doob-Meyer decomposition

(cf. Proposition A.6 in [10]; cf. also [36] and [31]).

Through di�erent techniques, a similar result to the above Theorem 5.2 has been estab-

lished in the recent paper [5] (in the Brownian framework).

Remark 5.13 It follows from the previous theorem that strong Ef -supermartingales and

strong Ef -submartingales have left and right limits.

5.2. Comparison theorem for RBSDEs .

Theorem 5.3 (Comparison) Let ξ1, ξ2 be two obstacles. Let f1and f2 be predictable

Lipschitz drivers satisfying Assumption 4.1. Let (Y i, Zi, ki, Ai, Ci) be the solution of the

RBSDE associated with (ξi, f i) , i = 1, 2. Suppose that ξ2t ≤ ξ1t , 0 ≤ t ≤ T a.s. and that

f2(t, Y 2
t , Z

2
t , k

2
t ) ≤ f1(t, Y 2

t , Z
2
t , k

2
t ), 0 ≤ t ≤ T dP ⊗ dt-a.s.

Then, Y 2
t ≤ Y 1

t , ∀t ∈ [0, T ] a.s.

Proof: Step 1: Let us �rst consider the case where, along with the assumptions of the

theorem, the following additional assumption holds: f2(t, y, z, k) ≤ f1(t, y, z, k) for all
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(y, z, k) ∈ R2 × L2
ν dP ⊗ dt-a.s. Let S ∈ T0,T . By the comparison theorem for BSDEs,

for each τ in TS,T we have Ef
2

S,τ (ξ2τ ) ≤ Ef
1

S,τ (ξ1τ ) a.s. By taking the essential supremum over

τ ∈ TS,T and by using Theorem 4.2, we get Y 2
S ≤ Y 1

S a.s.

Step 2: Let us now place ourselves under the assumptions of the theorem (without the

additional assumption on f1 and f2 from Step 1). Let δf be the process de�ned by

δft := f2(t, Y 2
t , Z

2
t , k

2
t ) − f1(t, Y 2

t , Z
2
t , k

2
t ). Note that (Y 2, Z2, k2) is the solution of the

re�ected BSDE associated with obstacle ξ2 and driver f1(t, y, z, k) + δft. Now, by assump-

tion, we have f1(t, y, z, k) + δft ≤ f1(t, y, z, k) for all (y, z, k). By Step 1 applied to the

drivers f1 and f1(t, y, z, k) + δft (instead of f2), we get Y 2 ≤ Y 1. �

6. Further developments. In our ongoing work (cf. [17]), we study the case of doubly

re�ected BSDEs where the barriers are not right-continuous.

APPENDIX A

The following observation is given for the convenience of the reader.

Remark A.14 Let Y be a right-continuous (or left-continuous) adapted process. Then,

supt∈[0,T ] Yt = supt∈[0,T ]∩Q Yt a.s., which implies that supt∈[0,T ] Yt is a random variable.

Moreover, due to the de�nition of the essential supremum, we have supt∈[0,T ] Yt = ess supt∈[0,T ] Yt =

ess supτ∈T0,T Yτ a.s.

De�nition A.1 Let (Y )t∈[0,T ] be an optional process. We say that Y is a strong (optional)

supermartingale if Yτ is integrable for all τ ∈ T0,T and YS ≥ E[Yτ | FS ] a.s., for all

S, τ ∈ T0,T such that S ≤ τ a.s.

We recall a decomposition of strong optional supermartingales, known as Mertens decom-

position (see e.g. [9, Theorem 20, page 429, combined with Remark 3(b), page 205] and [9,

Appendix 1, Thm.20, equalities (20.2)]).

Theorem A.1 (Mertens decomposition) Let Y be a strong optional supermartingale of

class (D). There exists a unique right-continuous left-limited uniformly integrable martingale

(Mt), a unique predictable right-continuous nondecreasing process (At) with A0 = 0 and

E[AT ] < ∞, and a unique right-continuous adapted nondecreasing process (Ct), which is

purely discontinuous, with C0− = 0 and E[CT ] <∞, such that

(A.37) Yt = Mt −At − Ct−, 0 ≤ t ≤ T a.s.

In particular, all trajectories of Y have left and right limits.

Remark A.15 Since the �ltration in our framework is quasi-left-continuous, martingales

have only totally inaccessible jumps. From this and from Mertens decomposition (A.37), we

deduce that, for each predictable stopping time τ , Yτ − Yτ− = −(Aτ −Aτ−) a.s.
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Remark A.16 By Mertens decomposition (A.37), we get ∆Ct = Ct − Ct− = Yt − Yt+.
Hence, Yt ≥ Yt+, for all t ∈ [0, T ), which implies that Y is necessarily r.u.s.c. Moreover,

Y is right-continuous if and only if C ≡ 0.

By using this remark, we recover the well-known Doob-Meyer decomposition for right-

continuous supermartingales of class (D). Indeed, let Y be a right-continuous supermartin-

gale (in the usual sense) of class (D). Then Y is a strong (optional) supermartingale in the

sense of the above de�nition (due to the optional sampling theorem for right-continuous

supermartingales). Mertens decomposition of Y reduces to Y = M − A (where M and A

are as above), as C ≡ 0. This corresponds to Doob-Meyer decomposition of Y .

The following result from potential theory can be found in [9].

Theorem A.2 (Dellacherie-Meyer) LetK be a non-decreasing predictable process (which

is not necessarily right-continuous). Let U be the potential of the process K, i.e.

Ut := E[KT −Kt |Ft]

for all t ∈ [0, T ]. Assume that there exists a non-negative FT -measurable random variable

X such that US ≤ E[X|FS ] a.s. for all S ∈ T0,T . Then, there exists a constant c > 0 such

that

(A.38) E[K2
T ] ≤ cE[X2].

Proof: For the proof of the result the reader is referred to Paragraph 18 in [9, Appendix 1]

generalizing Theorem VI.99 of the same reference to the case of a non-decreasing process

which is not necessarily right-continuous nor left-continuous. �

By using the previous theorem, we obtain the following integrability property of the

Mertens process associated with a strong optional supermartingale, which is used in the

proof of Lemma 3.3.

Corollary A.1 (Mertens process of a strong supermartingale: a useful estimate)

Let Y be a strong optional supermartingale of class (D) such that: for all S ∈ T0,T ,
|YS | ≤ E[X|FS ] a.s., where X is a non-negative FT -measurable random variable.

Let us consider the Mertens process of Y , that is the process (At +Ct−), where A and C

are the two nondecreasing processes of Mertens decomposition of Y from equation (A.37).

There exists a constant c > 0 such that

(A.39) E
[
(AT + CT−)2

]
≤ cE[X2].
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Proof: Let us introduce the notation Kt := At+Ct− (K is the Mertens process of Y ). Note

that K is a non-decreasing predictable process (which is not necessarily right-continuous).

Let S ∈ T0,T . From Mertens decomposition, we have YS = MS − KS a.s. and YT =

MT −KT a.s. By subtracting the second equation from the �rst, and by taking conditional

expectations, we derive that YS − E[YT |FS ] = E[KT − KS |FS ] a.s. Hence, the process

(Ut) de�ned by Ut := Yt − E[YT |Ft] is the potential associated with the non-decreasing

predictable process K. Now, we have

(A.40) |US | = |YS − E[YT |FS ]| ≤ |YS |+ E[|YT ||FS ] ≤ E[2X|FS ] a.s. ,

where the last inequality follows from the assumption. By applying Theorem A.2, there

exists a constant c > 0 such that E[K2
T ] ≤ cE[X2], which is the desired conclusion. �

We recall the change of variables formula for optional strong semimartingales which are

not necessarily right-continuous. The result can be seen as a generalization of the classical

Itô formula and can be found in [16, Theorem 8.2] (cf. also [26, Chapter VI, Section 3, page

538]). We recall the result in our framework in which the underlying �ltered probability

space satis�es the usual conditions.

Theorem A.3 (Gal'chouk-Lenglart) Let n ∈ IN . Let X be an n-dimensional optional

strong semimartingale, i.e. X = (X1, . . . , Xn) is an n-dimensional optional process with

decomposition Xk = Xk
0 +Mk+Ak+Bk, for all k ∈ {1, . . . , n}, whereMk is a (cadlag) local

martingale, Ak is a right-continuous adapted process of �nite variation such that A0 = 0,

and Bk is a left-continuous adapted process of �nite variation which is purely discontinuous

and such that B0 = 0. Let F be a twice continuously di�erentiable function on Rn. Then,

F (Xt) = F (X0) +
n∑
k=1

∫
]0,t]

DkF (Xs−)d(Ak +Mk)s +
1

2

n∑
k,l=1

∫
]0,t]

DkDlF (Xs−)d < Mkc,M lc >s

+
∑

0<s≤t

[
F (Xs)− F (Xs−)−

n∑
k=1

DkF (Xs−)∆Xk
s

]
+

n∑
k=1

∫
[0,t[

DkF (Xs)d(Bk)s+

+
∑

0≤s<t

[
F (Xs+)− F (Xs)−

n∑
k=1

DkF (Xs)∆+X
k
s

]
, 0 ≤ t ≤ T a.s. ,

where Dk denotes the di�erentiation operator with respect to the k-th coordinate, and Mkc

denotes the continuous part of Mk.

Corollary A.2 Let Y be a one-dimensional optional strong semimartingale with decompo-

sition Y = Y0 +M + A+ B, where M , A, and B are as in the above theorem. Let β > 0.
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Then, almost surely, for all t ≥ 0,

eβt Y 2
t = Y 2

0 +

∫
]0,t]

β eβs Y 2
s ds+ 2

∫
]0,t]

eβs Ys−d(A+M)s +

∫
]0,t]

eβs d < M c,M c >s

+
∑

0<s≤t
eβs(Ys − Ys−)2 +

∫
[0,t[

2 eβs Ysd(B)s+ +
∑

0≤s<t
eβs(Ys+ − Ys)2.

Proof: It su�ces to apply Gal'chouk-Lenglart's formula with n = 2, F (x, y) = xy2, X1
t =

eβt, and X2
t = Yt. Indeed, by applying Theorem A.3 and by noting that the local martingale

part and the purely discontinuous part of X1 are both equal to 0, we obtain

eβt Y 2
t = Y 2

0 +

∫
]0,t]

β eβs Y 2
s ds+ 2

∫
]0,t]

eβs Ys−d(A+M)s +
1

2

∫
]0,t]

2 eβs d < M c,M c >s

+
∑

0<s≤t
eβs
(
Y 2
s − (Ys−)2 − 2Ys−(Ys − Ys−)

)
+

∫
[0,t[

2 eβs Ysd(B)s+ +
∑

0≤s<t
eβs
(
(Ys+)2 − (Ys)

2 − 2Ys(Ys+ − Ys)
)
.

The desired expression follows as Y 2
s − (Ys−)2−2Ys−(Ys−Ys−) = (Ys−Ys−)2 and (Ys+)2−

(Ys)
2 − 2Ys(Ys+ − Ys) = (Ys+ − Ys)2. �

Proposition A.5 (BSDE with "generalized" driver vs. BSDE) Let f be a predictable

Lipschitz driver satisfying Assumption 4.1. Let A be a nondecreasing (resp. nonincreasing)

right-continuous predictable process in S2 with A0 = 0 and let C be a nondecreasing (resp.

nonincreasing) right-continuous adapted purely discontinuous process in S2 with C0− = 0.

Let (Y, Z, k) ∈ S2 ×H2 ×H2
ν satisfy a.s. for all t ∈ [0, T ],

(A.41)

Yt = YT +

∫ T

t
f(s, Ys, Zs, ks)ds+AT−At+CT−−Ct−−

∫ T

t
ZsdWs−

∫ T

t

∫
E
ks(e)Ñ(ds, de).

Then the process (Yt) is a strong Ef -supermartingale (resp. Ef -submartingale).

Proof: We address the case where A and C are nondecreasing. Let τ, θ ∈ T0 be such that

τ ≤ θ a.s. Let us show that Yτ ≥ Efτ,θ(Yθ) a.s.
We denote by (X,π, l) the solution to the BSDE associated with driver f , terminal time θ,

and terminal condition Yθ; then Efτ,θ(Yθ) = Xτ a.s. (by de�nition of Ef ).
Set Ȳt = Yt −Xt, Z̄t = Zt − πt and k̄t = kt − lt. Then

−dȲt = htdt+ dAt + dCt− − Z̄tdWt −
∫
E
k̄t(e)Ñ(dt, de), Ȳθ = 0,
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where ht := f(t, Yt−, Zt, kt)− f(t,Xt−, πt, lt). By the same arguments as those of the proof

of the comparison theorem for BSDEs with jumps (cf. [33, Thm. 4.2], or [36]), using As-

sumption 4.1 on f , we can show that

(A.42) ht ≥ δtȲt + βtZ̄t + 〈γt , k̄t〉ν , 0 ≤ t ≤ T, dP ⊗ dt− a.e.

where γt := θ
Xt−,πt,kt,lt
t and where δ and β are predictable bounded processes (which can

be expressed as increment rates of f with respect to y and z).

Let Γτ,· be the unique solution of the following forward SDE

(A.43) dΓτ,s = Γτ,s−

[
δsds+ βsdWs +

∫
E
γs(e)Ñ(ds, de)

]
; Γτ,τ = 1.

Suppose for a while that we have shown

(A.44) Γτ,τ Ȳτ ≥ E
[∫ θ

τ
Γτ,s− dAs +

∫ θ

τ
Γτ,s dCs | Fτ

]
a.s.

Then, since Γτ,s ≥ 0 and Γτ,τ = 1, we have Ȳτ ≥ 0 a.s., that is Yτ ≥ Xτ = Efτ,θ(Yθ) a.s. ,

which is the desired result. It remains to show (A.44). To simplify the notation, we denote

Γτ,s by Γs for s ≥ τ . We use that Ȳ is a strong optional semimartingale with decomposition

Ȳ = M1+A1+B1, whereM1
t =

∫ t
0 Z̄sdWs+

∫ t
0

∫
E k̄s(e)Ñ(ds, de), A1

t := −
∫ t
0 hsds−As, and

B1
t := −Ct−, and we apply Gal'chouk-Lenglart's formula from Theorem A.3 with n := 2,

X1 := Ȳ , X2 := Γ, and F (x1, x2) := x1x2. We obtain

(A.45)

ΓτY τ = −
∫ θ

τ
Γs−(Z̄s + Ȳs−βs)dWs −

∫ θ

τ
Γs(Ȳs−δs + Z̄sβs − hs)ds

+

∫ θ

τ
Γs−dAs +

∫ θ

τ
ΓsdCs −

∫ θ

τ

∫
E

Γs−(k̄s(e) + Ȳs−γs(e))Ñ(ds, de)−
∑
τ≤s≤θ

∆Γs∆Ys.

By using the fact thatA· andN(·, de) do not have common jumps, we get
∑

τ≤s≤θ ∆Γs∆Ys =∫ θ
τ

∫
E Γs−γs(e)k̄s(e)N(ds, de). By replacing this expression in equation (A.45) and by doing

some computations, we obtain

(A.46)

ΓτY τ = −
∫ θ

τ
Γs−(Z̄s + Ȳs−βs)dWs −

∫ θ

τ
Γs(Ȳs−δs + Z̄sβs + 〈γs, k̄s〉ν − hs)ds

+

∫ θ

τ
Γs−dAs +

∫ θ

τ
ΓsdCs −

∫ θ

τ

∫
E

Γs−(k̄s(e) + Ȳs−γs(e) + γs(e)k̄s(e))Ñ(ds, de).

Now, the stochastic integral with respect to "dWs" in the above equation is a martingale

(since Γ ∈ S2, Z̄ ∈ IH2, Ȳ ∈ S2, and β is bounded). The stochastic integral with respect
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to the Poisson random measure is also a martingale. By taking the conditional expectation

and by using the inequality (A.42), we derive (A.44). The proof is thus complete. �

Proof of Proposition 2.1: We �rst show that |||·|||S2 is a norm on the space of optional

processes. The positive homogeneity and the triangular inequality are easy to check. Suppose

now that φ ∈ S2 is such that |||φ|||S2 = 0. Then, ess supS∈T0,T |φS |
2 = 0 a.s., which, by

de�nition of the essential supremum, implies that |φS |2 = 0 a.s. for all S ∈ T0,T . By a

classical result of the General Theory of Processes ([8, Theorem IV.84]), we obtain that

the process φ is indistinguishable from the null process, that is φt = 0, 0 ≤ t ≤ T a.s. We

conclude that |||·|||S2 is a norm on S2.
Let us prove that the space (S2, |||·|||S2) is complete. We only sketch the proof since its main

steps are similar to those of the proof of the completeness of the space (L2, ‖ · ‖L2). Let

(φn) be a Cauchy sequence in S2 for the norm |||·|||S2 . We extract a subsequence (φnk)k∈IN
such that |||φnk+1 − φnk |||S2 ≤

1
2k
, for all k ∈ IN . Setting gnt :=

∑n
k=1 |φ

nk+1

t − φnk | for
each n, by the triangular inequality, we derive that |||gn|||S2 ≤

∑n
k=1

∣∣∣∣∣∣φnk+1

t − φnk
∣∣∣∣∣∣
S2 ≤∑n

k=1
1
2k
≤
∑∞

k=1
1
2k

= 1. We set gt := limn↑gnt , for all t ∈ [0, T ] (the limit exists in

[0,+∞] as the sequence (gnt )n is non-negative non-decreasing). Being the limit of optional

processes, the process g is optional. Since ess supτ∈T0,T supn |gnτ |2 = supn ess supτ∈T0,T |g
n
τ |2

a.s. , using the monotone convergence theorem, we derive that |||g|||S2 = limn↑|||gn|||S2 . As
the sequence (|||gn|||S2) is bounded by 1, we get |||g|||S2 ≤ 1. We then adapt the arguments

from the proof of the completeness of (L2, ‖ · ‖L2) to show that limn |||g − gn|||S2 = 0, and

that |||φ− φnl |||S2 −→
l→∞

0, which concludes the proof. �

The following result of the optimal stopping theory is used in the proof of Lemma 3.3.

Proposition A.6 Let (Y (S)) be the family de�ned for S ∈ T0,T by

Y (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
f(u)du | FS ],(A.47)

(i) There exists a ladlag optional process (Y t)t∈[0,T ] which aggregates the family (Y (S))

(i.e. Y S = Y (S), for all S ∈ T0,T ).
Moreover, the process (Y t +

∫ t
0 f(u)du)t∈[0,T ] is a strong supermartingale.

(ii) We have Y S = ξS ∨ Y S+ a.s. for all S.

(iii) Furthermore, Y S+ = ess supτ>S E[ξτ +
∫ τ
S f(u)du | FS ] a.s., for all S.

Remark A.17 It follows from (ii) that ∆+Y S = 1{Y S=ξS}∆+Y S a.s.

Proof: For completeness, we give here a short proof (cf. [27] when ξ is left- and right-limited,



RBSDES WITH IRREGULAR OBSTACLE AND OPTIMAL STOPPING 31

and [22, Sect.B] in the general case). For S ∈ T0,T , we de�ne Y (S) by

(A.48) Y (S) := Y (S) +

∫ S

0
f(u)du = ess sup

τ∈TS,T
E[ξτ +

∫ τ

0
f(u)du | FS ].

where the equality follows from the de�nition of Y (S) (see (A.47)). For S ∈ T0,T , de�ne

(A.49) Y
+

(S) := ess sup
τ>S

E[ξτ +

∫ τ

0
f(u)du | FS ].

By some well-known results of optimal stopping theory (cf., e.g. [21, Prop. D.3] or [22,

Prop. 1.12]), the family of random variables (Y
+

(S)) is a supermartingale family which is

right-continuous along stopping times in expectation. By classical results (cf., e.g., [11] or

[25, Prop. 4.1]), there exists a process (Y
+

t ) which aggregates this family. By [21, Prop. D.3]

(cf. also [22, Prop. 1.9]), we have

(A.50) Y (S) = (ξS +

∫ S

0
f(u)du) ∨ Y

+
(S) a.s.,

for all S ∈ T0,T . It follows that the process (Y t) de�ned by

(A.51) Y t := (ξt +

∫ t

0
f(u)du) ∨ Y

+

t

aggregates the family (Y (S)). Since (Y (S)) is a supermartingale family, (Y t) is a strong

supermartingale. Now, we know (cf., e.g., [22, Prop. 4.14], combined with [24, Appendix A1,

paragraph 1]) that Y
+

(S) = Y (S+), for all S ∈ T0,T , where Y (S+) denotes the right-hand

limit of Y along stopping times at S, as de�ned, for instance, in [22, Def. 4.5]. On the other

hand, we know that the process (Y t) aggregates the family (Y (S)), which entails that the

process (Y t+) aggregates the family (Y (S+)). By using Eq. (A.50), we conclude that

(A.52) Y S = (ξS +

∫ S

0
f(u)du) ∨ Y S+ a.s.

for all S. By (A.48), we derive Y (S) = Y (S) −
∫ S
0 f(u)du = Y S −

∫ S
0 f(u)du a.s., for all

S ∈ T0,T . The ladlag optional process (Y t)t∈[0,T ] = (Y t −
∫ t
0 f(u)du)t∈[0,T ] thus aggregates

the family (Y (S))S∈T0,T . Moreover, (Y t +
∫ t
0 f(u)du) = (Y t) is a strong supermartingale,

which gives (i). By using (A.52), we derive (ii). By using (A.49), we obtain (iii). �
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Example A.1 (A toy example) Let (ξt) be a deterministic continuous decreasing bounded

function. We set Yt := sups≥t ξs = ξt and At := ξ0 − ξt, for all t ∈ [0, T ]. It is well-

known (cf. [12], or the classical Skorokhod's problem as recalled in [21]) that (Y, 0, 0, A)

is the unique solution to the RBSDE with driver f ≡ 0 and (continuous) obstacle ξ. Let

us now change the obstacle ξ at a single point t0 ∈ [0, T ). More precisely, we consider

a function ξ̄ such that ξ̄t = ξt, for t 6= t0, and ξ̄t0 > ξt0. We note that ξ̄ is r.u.s.c. but

not right-continuous. In this very simple example, we can compute explicitly a solution to

the RBSDE (de�ned in De�nition 3.1) with parameters (0, ξ̄). We set Ȳt := sups≥t ξ̄s, for

t ∈ [0, T ]. We �rst rewrite Ȳ in a di�erent manner. For t > t0, we have Ȳt = ξt = Yt. For

t ≤ t0, we have Ȳt = max(sups≥t,s 6=t0 ξs, ξ̄t0) = max(sups≥t ξs, ξ̄t0) = max(ξt, ξ̄t0). We set

t1 := sup{s ≥ 0 : ξs ≥ ξ̄t0}, with the convention sup(∅) = 0. We note that Ȳt = ξ̄t0 , for

t ∈ [t1, t0], and Ȳt = ξt = Yt, for t ∈ [0, t1). We de�ne C̄t := (ξ̄t0 − ξt0)1t≥t0 , for t ∈ [0, T ].

We see that C̄ is non-decreasing, cad-lag, purely discontinuous (in fact, C̄ has one single

jump), and it satis�es the minimality condition (3.4). We now consider the following two

cases: (i) the case ξ̄t0 ≥ ξt0, and (ii) the case ξ̄t0 < ξt0 . In the case (i), we have t1 = 0; we

set Āt := 0, for t ∈ [0, t0], and Āt := ξt0− ξt, for t ∈ (t0, T ]. In the case (ii), we have t1 > 0

and ξt1 = ξ̄t0 ; we de�ne Āt by Āt := ξ0−ξt, for t ∈ [0, t1), Āt := ξ0−ξt1, for t ∈ [t1, t0], and

Āt := ξ0− ξt1 + ξt0− ξt, for t ∈ (t0, T ]. In both cases, the function Ā is non-decreasing, con-

tinuous, and it satis�es the minimality condition (3.3). Moreover, it can be easily checked

that, Ȳt = ξ̄T + ĀT − Āt + C̄T− − C̄t−, for all t ∈ [0, T ]. We conclude that (Ȳ , 0, 0, Ā, C̄)

is a solution to the re�ected BSDE with parameters (0, ξ̄). We prove in Lemma 3.3 that

(Ȳ , 0, 0, Ā, C̄) is the unique solution. We notice that Ȳ has a jump on the right at t0; the

size ∆+Ȳt0 of the jump satis�es ∆+Ȳt0 := Ȳt0+ − Ȳt0 = ξt0 − ξ̄t0 = −(Ct0 − Ct0−).

Example A.2 (Counter-example) Let ν(du) := δ1(du), where δ1 denotes the Dirac

measure at 1. The process Nt := N([0, t] × {1}) is then a Poisson process with parame-

ter 1, and we have Ñt := Ñ([0, t]×{1}) = Nt− t. Let the driver f be given by f(t, y, z, `) :=

〈−1, `〉ν = −`(1). We introduce the associated adjoint process Γt,., de�ned for each r ∈ [t, T ]

by Γt,r = 1{Nr−Nt=0}e
r−t. Let the pay-o� process ξ be given by ξt := 1{Nt≥1}e

−t, for all t ∈
[0, T ]. Note that ξ is adapted and right-continuous. By the representation property for linear

BSDEs with jumps ([33, Thm.3.4]) and classical computations, we get

Eft,τ (ξτ ) = E[Γt,τξτ | Ft] = e−tE[1{Nτ−Nt=0}1{Nτ≥1} | Ft] = e−t 1{Nt≥1}E[1{Nτ−Nt=0} | Ft],

for all t ∈ [0, T ], for all τ ∈ Tt,T . We deduce that Yt := ess supτ∈Tt,T E
f
t,τ (ξτ ) = e−t 1{Nt≥1} =

ξt, for all t ∈ [0, T ] (as E[1{Nτ−Nt=0} | Ft] ≤ 1 and the upper bound is attained for τ = t).

Let us focus on the optimal stopping problem at time t = 0. The above computations imply

that, for t = 0, Y0 := ess supτ∈T0,T E
f
0,τ (ξτ ) = ξ0 = 0. Moreover, the essential supremum (at

time 0) is attained at any stopping time τ ∈ T0,T (indeed, Ef0,τ (ξτ ) = 0, for all τ ∈ T0,T ).
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This is true, in particular, for the stopping time τ̂ de�ned by τ̂ := T. However, we will

see that the process Y (computed above) is not an Ef -martingale on [0, τ̂ ]. To do so, let

us denote by X the (�rst component) of the solution to the BSDE with driver f , terminal

time T , and terminal condition YT = ξT . For u ∈ [0, τ̂ ] = [0, T ], we have Xu = Efu,T (ξT ) =

e−u 1{Nu≥1}E[1{NT−Nu=0} | Fu] = e−u 1{Nu≥1}P [NT − Nu = 0] = e−T 1{Nu≥1}. Hence, for

u ∈ (0, T ), we have Yu = e−u > e−T = Xu on the set {Nu ≥ 1}. Hence, the processes X

and Y are not indistinguishable.

Let us also note that in this example Ef is not strictly monotonous. To see this, we consider

ξ1 := 0 and ξ2 := ξT = e−T 1{NT≥1}. We have ξ1 ≤ ξ2 and Ef0,T (ξ1) = Ef0,T (0) = 0 =

Ef0,T (ξT ) = Ef0,T (ξ2). However, ξT 6= 0 with a positive probability.

Example A.3 Let (ξt) be an RCLL deterministic bounded function, increasing on [0, t0[,

decreasing on [t0, T ], and supposed to be continuous on [0, T ] except at t0 ∈]0, T [ with

ξt0 < ξt0−. Note that the function ξ is not l.u.s.c. at time t0. We set Yt := sups≥t ξs
and At := Y0 − Yt, for all t ∈ [0, T ]. By the classical Skorokhod's problem (cf. also [12]),

(Y, 0, 0, A) is the unique solution to the RBSDE with driver f ≡ 0 and obstacle ξ. We have

Yt = ξt0−, if t < t0, and Yt = ξt, if t ≥ t0. Let τ
∗
0 := inf{u ≥ 0: Yu = ξu}. We have

τ∗0 = t0. Note that here ∆Aτ∗0 = ∆At0 = ξt0−− ξt0 > 0. However, τ∗0 = t0 is not optimal for

Y0 = sups≥0 ξs = ξt0− because ξt0 < ξt0−. In fact, there does not exist an optimal stopping

time for Y0.

Let us now consider the case where, instead of being decreasing on [t0, T ], the function ξ

is increasing on [t0, T ] with ξT = ξt0−. Note that, again, the function ξ is not l.u.s.c. For

each t ∈ [0, T ], Yt = sups≥t ξs = ξt0−. The process A is constant equal to 0, and τ∗0 = T is

optimal for Y0 (and also for Yt, for all t ∈ [0, T ]).
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