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REFLECTED BSDES WHEN THE OBSTACLE IS NOT
RIGHT-CONTINUOUS AND OPTIMAL STOPPING

BY MIRYANA GRIGOROVA* , PETER IMKELLER*, ELIAS OFFENT, YOUSSEF OUKNINE?,
AND MARIE-CLAIRE QUENEZS

Humboldt University-Berlin *, University of Botswana T, Université Cadi Ayyad ¥, and
Université Paris-Diderot $

Abstract In the first part of the paper, we study reflected back-
ward stochastic differential equations (RBSDESs) with lower obstacle
which is assumed to be right upper-semicontinuous but not necessar-
ily right-continuous. We prove existence and uniqueness of the solu-
tions to such RBSDEs in appropriate Banach spaces. The result is
established by using some results from optimal stopping theory, some
tools from the general theory of processes such as Mertens decompo-
sition of optional strong supermartingales, as well as an appropriate
generalization of 1t6’s formula due to Gal’chouk and Lenglart. In the
second part of the paper, we provide some links between the RBSDE
studied in the first part and an optimal stopping problem in which
the risk of a financial position ¢ is assessed by an f-conditional ex-
pectation £/(-) (where f is a Lipschitz driver). We characterize the
"value function" of the problem in terms of the solution to our RB-
SDE. Under an additional assumption of left upper-semicontinuity
along stopping times on £, we show the existence of an optimal stop-
ping time. We also provide a generalization of Mertens decomposition
to the case of strong £-supermartingales.

1. Introduction. Backward stochastic differential equations (BSDEs) have been in-
troduced by Bismut ([4]) in the case of a linear driver. The general theory of existence and
uniqueness of solutions to BSDEs has been developed by Pardoux and Peng [29]. Through
a result of Feynman-Kac-type, these authors have linked the theory of BSDEs to that of
quasilinear parabolic partial differential equations (cf.[30]). BSDEs have found number of
applications in finance, among which pricing and hedging of European options and recursive
utilities (cf., for instance, [13], [14]). Also, a useful family of operators, the family of so-called
f-conditional expectations, has been defined through the notion of BSDEs and used in the
literature on dynamic risk measures (cf., for instance, (2], [32], [33], [35], [3] among others).
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Keywords and phrases: backward stochastic differential equation, reflected backward stochastic differen-
tial equation, optimal stopping, f-expectation, strong optional supermartingale, Mertens decomposition,
dynamic risk measure, strong £/-supermartingale
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We recall that the f-conditional expectation at time ¢ € [0,7] (where 7" > 0 is a fixed final
horizon) is the operator which maps a given square-integrable terminal condition {7 to the
position at time ¢ of (the first component of) the solution to the BSDE with parameters
(f,ér). The operator is denoted SJT()

Reflected backward stochastic differential equations (RBSDEs) can be seen as a variant of
BSDEs in which the (first component of the) solution is constrained to remain greater than
or equal to a given process called the obstacle. Compared to the case of (non-reflected)
BSDEs, there is an additional nondecreasing predictable process which keeps the (first
component of the) solution above the obstacle.

RBSDEs have been introduced by El Karoui et al. [12] in the case of a Brownian filtration
and a continuous obstacle. In [14], El Karoui and Quenez also study their links with the (non
linear) pricing of American options. There have been several extensions of these works to
the case of a discontinuous obstacle and/or a larger stochastic basis than the Brownian one
(cf. [18], [6], [19], [15], [20], [34]). In all these extensions an assumption of right-continuity
on the obstacle is made.

In the first part of the present paper we consider a further extension of the theory of
RBSDEs to the case where the obstacle is not necessarily right-continuous. Compared to
the right-continuous case, the additional nondecreasing process, which "pushes" the (first
component of the) solution to stay above the obstacle, is no longer right-continuous. To
prove our results we use some tools from the optimal stopping theory (cf. [27], [11], [21], [22]),
some tools from the general theory of processes (cf. [9]) such as Mertens decomposition of
strong optional (but not necessarily right-continuous) supermartingales (generalizing Doob-
Meyer decomposition), a result from the potential theory (cf. [9]), and a generalization of
Ito’s formula to the case of strong optional semimartingales in the vocabulary of [16] (but
not necessarily right-continuous) due to Gal’chouk and Lenglart (cf. [26]).

In the second part of the paper, we make some links between the RBSDEs studied in
the first part and optimal stopping with f-conditional expectations. More precisely, we
are interested in the following optimization problem: we are given a process £ modelling a
dynamic financial position. The risk of £ is assessed by a dynamic risk measure which (up to
a minus sign) is given by an f-conditional expectation. The process ¢ is assumed to be right
upper-semicontinuous, but not necessarily right-continuous. We aim at stopping the process
¢ in such a way that the risk be minimal. We characterize the value of the problem in terms
of the unique solution to the RBSDE associated with obstacle & and driver f studied in
the first part. We show the existence of an optimal stopping time for the problem under
an additional assumption of left upper-semicontinuity along stopping times on &, and the
existence of an e-optimal stopping time in the more general case where this assumption is
not made. We provide an optimality criterion characterizing the optimal stopping times for
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the problem in terms of properties of the "value process". We thus extend some results of
[34] to the case where the optimized process ¢ is not cadlag. We also establish a comparison
principle for the RBSDEs studied in the first part of our paper, as well as a generalization
of Mertens decomposition to the case of £f-strong supermartingales.

The remainder of the paper is organized as follows:

In Section 2 we give some preliminary definitions and properties. In Section 3 we define
our RBSDE and we prove existence and uniqueness of the solution. Section 4 is dedicated
to our optimal stopping problem with f-conditional expectations. In Subsection 4.1 we
formulate and motivate the problem. In Subsection 4.2 we characterize the value function
of the problem in terms of the solution of the RBSDE studied in Section 3; we also give
an optimality criterion and address the question of existence of e-optimal and optimal
stopping times. In Section 5 we derive some useful additional results: comparison principle
for our RBSDEs (Subsection 5.2) and "generalized" Mertens decomposition for £/-strong
supermartingales (Subsection 5.1). In Section 6 we briefly present some further extensions of
our work. In the Appendix we recall some useful results ("classical" Mertens decomposition,
a result from potential theory, Gal’chouk-Lenglart’s change of variables formula), we give
the proofs of three results (Prop. 2.1, Prop. A.6, and Prop. A.5) used in the main part of
the paper, and we also give some examples.

2. Preliminaries. Let T > 0 be a fixed positive real number. Let (E, &) be a measur-
able space equipped with a o-finite positive measure v. Let (2, F, P) be a probability space
equipped with a one-dimensional Brownian motion W and with an independent Poisson
random measure N (dt, de) with compensator dt @ v(de). We denote by N (dt, de) the com-
pensated process, i.e. N(dt,de) := N(dt,de) — dt ® v(de). Let IF = {F;: t € [0,T]} be the
(complete) natural filtration associated with W and N. For ¢ € [0, T, we denote by T; 7 the
set of stopping times 7 such that P(t < 7 < T') = 1. More generally, for a given stopping
time v € 7o, we denote by 7, 1 the set of stopping times 7 such that P(v <7 <T) = 1.

We use the following notation:

e P is the predictable o-algebra on 2 x [0, 7.

Prog is the progressive o-algebra on  x [0, 7.

B(R) (resp. B(R?)) is the Borel o-algebra on R (resp. R?).

L?(Fr) is the set of random variables which are Fp-measurable and square-integrable.
L? is the set of (&, B(R))-measurable functions ¢ : E — R such that ||¢||? =
[ 1e(e)Pv(de) < co. For £ € L2, k € L2, we define (£, k), := [}, £(e)k(e)v(de).
B(L?) is the Borel o-algebra on L2.

e IH? is the set of R-valued predictable processes ¢ with ||¢[,, := E [fOT \(j)tht} < 0.
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e H? is the set of R-valued processes | : (w,t,e) € (2 x [0,T] x E) — li(w,e)
which are predictable, that is (P ® &, B(R))-measurable, and such that ||I||%,, =

E [fOTHztnzdt} < .

We introduce the vector space S? defined as the space of R-valued optional (not necessarily

cadlag) processes ¢ such that |[|¢]| 32 := Eless SUp, 75 . |¢- 2] < o00. !

Proposition 2.1 The map ||-||s2 is a norm on S2. In particular, if ¢ € S* is such that
H]qﬁ\H?gg =0, then ¢ is indistinguishable from the null process, that is ¢ =0, 0 <t < T a.s.
Moreover, the space S* endowed with the norm ||||s2 és a Banach space.

The proof is given in the Appendix.

We will also use the following notation:

Let 3 > 0. For ¢ € IH?, HQZ)H% = E[fOTeBS $2ds]. We note that on the space IH? the
norms | - || and || - || g2 are equivalent. For | € HZ, HZHEB = EUOT % ||l5]|2ds]. On the
space JHZ the norms || - [|,,8 and || - || g2 are equivalent. For ¢ € S?, we define |H¢|H§ =
Elesssup ¢y, . e ¢2]. We note that Il 5 is @ norm on 8?2 equivalent to the norm ||| g2

Remark 2.1 By a slight abuse of notation, we shall also write ||¢||3,. (resp. H¢H%) for
E [fOT |¢)t\2dt} (resp. E [fOT Pt |¢t|2dt}) in the case of a progressively measurable real-valued
process ¢ (cf., e.g., Remark 2.1 in [6] for the same notation).

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

e f:Ox[0,T]xR?>x L2 - R
(w,t,y,2, k) — f(w,t,y,2, k) is Prog @ B(R?) @ B(L2)— measurable,
o E[f, £(t,0,0,0)%dt] < +oo.

A driver f is called a Lipschitz driver if moreover there exists a constant K > 0 such that
dP ® dt-a.e. , for each (y1,21,k) € R? x L2, (y2, 20, k2) € R? x L2,

|flw t,y1, 21, k) = flw, t,y2, 22, k)| < K(ly1 — y2| + |21 — 22| + [k — kelo)-

A Lipschitz driver f is called predictable if moreover f is P@B(R?)®B(L2)— measurable.

For real-valued random variables X and X,,, n € IN, the notation "X,, T X" will stand
for "the sequence (X,,) is nondecreasing and converges to X a.s.".
For a ladlag process ¢, we denote by ¢y and ¢;_ the right-hand and left-hand limit of ¢ at
t. We denote by Ay ¢; := ¢y, — ¢y the size of the right jump of ¢ at ¢, and by A¢y := ¢y —ps—
the size of the left jump of ¢ at t.

"Note that when ¢ is right-continuous, [|¢|%2 = E[sup,c(o 1 |¢¢|] (cf. Remark A.14).
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Definition 2.2 Let T € T 1. An optional process (¢) is said to be right upper-semicontinuous
(raus.c.) (resp. left upper-semicontinuous (l.u.s.c.)) along stopping times at the stopping
time T if for all nonincreasing (resp. nondecreasing) sequence of stopping times (T,) such
that T | 7 (resp. 7" 1 1) a.s., ¢r > limsup,,_, o, ¢, a.s.. The process (¢) is said to be
r.u.s.c. (resp. lu.s.c.) along stopping times if it is r.u.s.c. (resp. l.u.s.c.) along stopping
times at each T € Tor. The right- (resp. left-) continuity property of an optional process
(¢1) along stopping times at a stopping time T is defined similarly.

Remark 2.2 Note that if (¢¢) is an optional process and T is a totally inaccessible stopping

time, then (o) is left-continuous along stopping times at 7.

If the process (¢r) has left limits, (¢¢) is lu.s.c. (resp. left-continuous) along stopping times

if and only if for each predictable stopping time T € Tor, ¢r— < @7 (resp. ¢r— = ¢7) a.s.
Note, moreover, that if an optional process (¢y) is right upper-semicontinuous (r.u.s.c.),

then it is T.u.s.c. along stopping times. The converse also holds true; it is a difficult result

of the general theory of processes proved in [7, Prop. 2, page 300].

3. Reflected BSDE whose obstacle is not cadlag. Let T' > 0 be a fixed terminal
time. Let f be a driver. Let § = (&)icpo,7] be a left-limited process in S?. We suppose
moreover that the process £ is r.aws.c. A process € satisfying the previous properties will be
called a barrier, or an obstacle.

Remark 3.3 Let us note that in the following definitions and results we can relax the
assumption of existence of left limits for the obstacle £. All the results still hold true provided
we replace the process (§i—)iejo,r) by the process (§,)iejo ) defined by &, := limsupgy o &s,
for all t €]0,T]. We recall that £ is a predictable process (cf. [8, Thm. 90, page 225]). We
call the process § the left upper-semicontinuous envelope of &.

Definition 3.1 A process (Y, Z,k, A, C) is said to be a solution to the reflected BSDE with
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parameters (f,§), where f is a driver and £ is an obstacle, if

(Y,Z,k,A,C) € 82 x H? x H? x 8% x S%and a.s. for all t € [0,T]
(3.1)

T T T
Y}—fT—i—/ f(s,YS,ZS,k:S)ds—/ ZSdWS—/ /ks(e)N(ds,de)+AT—At+CT_—Ct_,
t ¢ t JE

(3.2)
Y, > & forallt €[0,7T] a.s.,

A is a nondecreasing right-continuous predictable process with Ag = 0 and such that

(3.3)
T

/ 1{yt>§t}dA§ =0 a.s. and (Y,_ — 57_)(Aﬁ — Aﬁ_) =0 a.s. for all predictable T € ToT,
0

C' s a nondecreasing right-continuous adapted purely discontinuous process with Cy— =0

(3.4)
and such that (Y, —&-)(Cr — Cr-) =0 a.s. for all T € To 1.

Here A€ denotes the continuous part of the process A and A? its discontinuous part.
Equations (3.3) and (3.4) are referred to as minimality conditions or Skorokhod conditions.
We note that, by a classical result of the general theory of processes ([8, Theorem IV.84]),
a process (Y, Z, k, A,C) € §? x H? x IH2 x §? x §? satisfies equation (3.1) in the above
definition if and only if Y, = &+ [ f(t,Ys, Ze, ke)dt — [ ZedWy — [T [ ki(e) N (dt, de) +
Ap — A+ Cp_ — C;—, where the equality holds a.s. for all 7 € 7o 7. Let us also emphasize
that if (Y, Z,k, A, C) satisfies the above definition, then the process Y has left and right
limits.

Remark 3.4 If (Y, Z, k, A,C) is a solution to the RBSDE defined above, then AC(w) =
Yi(w) — Yip(w) for all (w,t) € Q x [0,T) outside an evanescent set. This observation is a
consequence of equation (3.1). It follows that Yy > Yiy, for all t € [0,T'), which implies that
Y is necessarily r.u.s.c.

Moreover, since in our framework the filtration is quasi-left-continuous, martingales have
only totally inaccessible jumps. Hence, if T is a predictable stopping time, we have Y —Y,_ =
—(A; — A;_) a.s. From this, together with Remark 2.2, it follows that the process Y is left-
continuous along stopping times at a stopping time 7 if and only if AA: =0 a.s.

We also note thatl equality (3.1) still holds with f(t,Yy, Zi, ki) replaced by f(t,Yi—, Zy, k).
Furthermore, the process (Y + fotf(s,Y;,Zs,ks)ds)te[o’;p] is a strong supermartingale (cf.
Definition A.1).

Remark 3.5 (the particular case of a right-continuous obstacle) In the particular
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case of a right-continuous obstacle £, we have that Y 1is right-continuous. Indeed, observe
that Yy > Y > &4 = & (due to the right upper semicontinuity of Y and to inequality
(3.2)). Hence, if t is such that Y, = &, then Y, = Yy = &. If t is such that Yy, > &, then
Y =Yy = C— Cy— =0 (due to Remark 3.4 and to (3.4)). Thus, in both cases, Yy = Yi4;
s0, Y 1is right-continuous.

Moreover, the right-continuity of Y combined with Remark 3.4 give Cy = Cy_, for all t. As
C' is right-continuous, purely discontinuous and such that Co— = 0, we deduce C' = 0. Thus,
we recover the usual formulation of RBSDE with right-continuous obstacle.

A simple introductory example where a solution to our RBSDE (from Definition 3.1) can
be explicitly computed is presented in the Appendix (cf. Example A.1).

Let us now investigate the question of existence and uniqueness of the solution to the
RBSDE defined above in the case where the driver f does not depend on y, z, and k. To
this purpose, we first state a lemma which will be used in the sequel.

Lemma 3.2 (A priori estimates) Let (Y!, Z' k', A, CY) € 8?2 x H? x H? x S§? x §?
(resp. (Y2, 2% k2, A?,C?) € S?x H?x IH? x S§? xS?) be a solution to the RBSDE associated
with driver fl(w,t) (resp. f?(w,t)) and with obstacle &. There exists ¢ > 0 such that for all

>0, for all 5 > E% we have
Ik = K215 < 5 = 7213 12t = 2215 < It = f2115;

2
(3-5) " =Y2ly < 4e*(1+6¢%)]f! —fZH%-

Proof of Lemma 3.2: Let 8 > 0 and £ > 0 be such that 8 > &. Weset Y := V! — Y?,
Z:=7'-72 A=A'—A2,C:=C*'—C?, k:=k'— k2, and f(w,t) = Y w,t) — f2(w,t).
We note that Yy = & — & = 0; moreover,

T
Y, = / f(t)dt— / ZidW,— / / ki(e)N(dt,de)+Ap—A,+Cpr_—Cyr_ as. for all 7 € To 7.

Thus we see that Y is an optional strong semimartingale in the vocabulary of [16] (cf.
Theorem A.3 for the deﬁnition) with decomposition Y =Yy + M + A+ B, where M, :=
fo Z AW, + fo fE N(ds,de), Ay = fo s)ds — A; and By := —C,_ (the notation is
that of Theorem A.3 and Corollary A2 from the Appendix). Applying Gal’chouk-Lenglart’s
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formula (more precisely Corollary A.2) to et Y2 gives: almost surely, for all ¢ € [0, 77,

BT }772 = Pt 17;2 + Beﬁs( )2ds /

45V, f(s)ds — 2 / Y, dA,
18,7 18,7

16,71

+2 / Y, ZdW, + 2 / s / Y,_kq(e)N(ds,de) + / P Z72ds
1t.T) 1£.7] E 1,11
D DL A AR (I S AR DI S A

t<s<T (6.7 t<s<T

Thus, we get (recall that Y7 = 0): almost surely, for all ¢ € [0, T7,
(3.6)

eﬁtfff—l-/ P Z2ds = — BeP(vy) ds+2/
.7

1,7}

s ffsf(s)ds—&—Q/ P Y, _dA,
1t,7] 1t,1]

—2/ P Y, Z,dW, —2/ e? | Yi_ky(e)N(ds, de)
Jt,7]

S eﬁs(g_ﬁ_)2+2/ 5 VdCy— Y (T — V)2,
[t.T]

t<s<T

5
&

We give hereafter an upper bound for some of the terms appearing on the right-hand side
(r.h.s. for short) of the above equality.

Let us first consider the sum of the first and the second term on the r.h.s. of equality
(3.6). By applying the inequality 2ab < (2)? 4+ £%b?, valid for all (a,b) € R?, we get: a.s. for
all t € [0, T,

- BeP5 (V) ds+2/ P Y, f(s)ds < — BeP3(Y,)2ds + 12/ P Y2ds
1t.T) 1t.T) 1,7 &% JIt, 1]
+€2/ P8 f2(s)ds
Jt.7
= (% — ﬁ)/ eP3(Y,)%ds + 52/ P f2(s)ds
€ 1,77 1,7
As B> %, we have (& ftTeﬁ Y;)2ds <0, for all t € [0,7] a.s.

For the third term on the r.h.s. of (3.6) it can be shown that, a.s. for all ¢t € [0, 7],
2 f]tﬂ efs }é_dgls < 0. The proof uses property (3.3) of the definition of the RBSDE and
the property Y* > &, for i = 1,2; the details are similar to those in the case of a cadlag
obstacle and are left to the reader (cf., for instance, [34, proof of Prop. A.1]).

For the the last but one term on the r.h.s. of (3.6) we show that, a.s. for all ¢ € [0, T,
Qf[t’T[eﬂS Y,dCy < 0. Indeed~7 a.s. for all t € [0,T], f[tyT[eﬁs Y,dCs = D t<s<T ePs Y, AC,.
Now, a.s. for all s € [0,7], Y;ACs = (Y} — Y2)AC! — (Y} — Y2)AC?. We use property
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(3.4), the non-decreasingness of (almost all trajectories of) C!, and the fact that Y2 > ¢ to
obtain: a.s. for all s € [0,T],

(Y2~ Y2AC! = (Y} — £)AC! — (Y2~ £)ACE = ~(Y2 — £)ACL < 0.

Similarly, we obtain: a.s. for all s € [0,7], (Y — Y2)AC? = (Y — £&)AC? > 0. We
conclude that, a.s. for all ¢ € [0,T7], 2 f[t T e?5¥,dC, < 0. The above observations, together
with equation (3.6), lead to the following inequality: a.s., for all ¢ € [0, T],

Pty? +/ e Z%ds < 82/ e’ f2(s)ds — 2/ Y, Z AW,
1t,7] 1¢,T]

T
(3.7) e o
2 o / Yook, (e)N(ds,de) — 7 o (¥, = Vio)2.
1t.T] E t<s<T

From the above inequality we derive first an estimate for ||Z ||%3 and ||I;:H12, 5, and then an

estimate for || V5.

Estimate for HZH% and le:Hzﬁ Note first that we have:

[ lRlBas = 3 -V = [ R [ [ o s
1¢,T 1¢,T 1¢,T E

t<s<T
— ) (A4
t<s<T
=— Z P NA? — eﬁs/ k2(e)N (ds, de),

t<s<T Jt,T] E
where, in order to obtain the first equality, we have used the fact that the processes A. and
N(-,de) "do not have jumps in common" (recall that the process A jumps only at predictable
stopping times, while the process N(-,de) does not jump at predictable stopping times).
By adding the term f}tT]
above computation, we derive that almost surely, for all ¢ € [0, 7],
(3.8)

eﬂtfftQ—i-/ P Zfds—i—/ eBSHI}S\Edsgg/ efs fz(s)ds—Q/ PY,_ Z AW,
6.7 Jt.T] ] Jt.T]

th] t, T
- / ofs / (2T, _Fs(e) + R2(e)) N (ds, de).
J¢,7] B

Let us show that the stochastic integral "with respect to dWs" has zero expectation. Note
first that

% ||ks||2ds on both sides of inequality (3.7) and by using the

(3.9) sup Y2 = sup Y2 <esssupY? as
t€]0,7 teQn]o,T] T€T0,T
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where we have used the left-continuity of the process (Yi_) to obtain the equality. From

this property together with Cauchy-Schwarz inequality, we get E [\/ fOT e2Bs }Z?Zfds] <

IV lls2llZll25 < oo. By standard arguments, we deduce E [fUTeﬂs ﬁ_stWs] = 0. By

similar arguments, the last term on the r.h.s. of inequality (3.8) has also zero expectation.
By applying (3.8) with ¢t = 0, and by taking expectations on both sides of the resulting

inequality, we obtain Y + HZH% + ||l;:||3ﬁ < 52||f||% We deduce the desired estimates:

(3.10) 12113 < 2|1 £1IF and KI5 < (IF113.

Estimate for ||D~/H|Z From inequality (3.7) we derive that a.s., for all ¢ € [0,7],
(3.11)

Py <e? P f2(s)ds — 2/ Py, Z,dW, — 2/ eﬁs/ Y,_kq(e)N(ds, de).
16,7 14,7 7]

From this, together with Chasles’ relation for stochastic integrals, we get, for all 7 € 7o 7,

e57?2<5/ P f2(s )ds—2/ P Y, Z,dW, +2/ Y, Z,dW,
10,7] 10.7] 07]

—2/ / Y, k(e dsde+2/ /}7/% N(ds,de) a
OT] 10,7]

By taking first the essential supremum over 7 € 7o r and then the expectation on both
sides of the above inequality, we obtain

(3.12)
Elesssupe”” V2] < 52Hf\|5+2E[ess sup| [ Y, Z,dW,||+2E[esssup ]/ / Yk
T€To,T T€T0, 7 0 T€T0, 7 0,7]

Let us consider the last term in (3.12). By using Remark A.14 applied to the right-continuous
process (f]o,t} % [, Y, ky(e)N(ds,de))scpo.r) and Burkholder-Davis-Gundy inequalities, we
get

(3.13)

2E[esssup\ P / Y,_k(e)N(ds,de)|] < 2¢cE \/ / e28s / Y2 k2(e)N(ds,de)| ,

TG%,T

where ¢ > 0 is a positive "universal” constant (which does not depend on the other param-
eters).
The inequality (3.9) and the trivial inequality ab < %aQ + %bQ lead to

N(ds, de)|].
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T
2cE / e2Ps
0

<lp
— 4

- 1 - T -
2 k2(e)N(ds,de)| < FE \/2 esssup ef7 Y2 \/802 / efs / k2(e)N(ds,de)
0 E

T€T0, T

.

esssup e”” YT2
TG%,T

T
N 1 - -
racp | [ [ RN s, de)| = {ITIE + a2,

Here, the equality has been obtained by adding and subtracting 4¢?|k|? 5 (on the left-
hand side) and by using the fact that E[fOT e’ [ k%(e)N(ds,de)] = 0. By using similar
arguments, we obtain that the last but one term in (3.12) satisfies

T L 1 - B

(3.14) 2Bfesssup | ¥ V. 2] < SV + 221 213,
T€To,r JO

where ¢ is the same universal constant as above. By (3.12), we thus derive that %HD}]HZ <

eQHfH% + QCQHZH% + 402||I~c||35. This inequality, together with the estimates from (3.10),

gives HD}]HZ <4e?(1+ GCQ)HfH%, which is the desired result. O

In the following lemma, we prove existence and uniqueness of the solution to the RBSDE
from Definition 3.1 (in the case where the driver f does not depend on y, z and £) and
we characterize the first component of the solution as the "value process" of an optimal
stopping problem.

Lemma 3.3 Suppose that f does not depend on y,z, Kk, that is f(w,t,y,2,k) = f(w,t),
where [ is a progressive process with E[f(;[ f(t)%dt] < +oo. Let (&) be an obstacle. Then,
the RBSDE from Definition 3.1 admits a unique solution (Y, Z, k,A,C) € 8 x IH? x IH? x
8% x 82, and for each S € Ty, we have

(3.15) Ys = esssup E[¢; + /T f(t)dt| Fs] as.
S

TETSVT

Moreover, the following property holds:
(3.16) Ys=¢&sVYsy as.

We also have Ysy = esssup,~g E[&, + [5 f(t)dt | Fs] as., for all S € Tor.
If, furthermore, the obstacle (&) is l.u.s.c. along stopping times, then (A¢) is continuous.

The proof of the lemma is divided in several steps. First, we exhibit a "natural candidate"
Y to be the first component of the solution to the RBSDE with parameters (f,&); we prove
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that Y belongs to the space S? and we give an estimate of H‘?‘HEQ in terms of |H§|H?92
and || f||3;2- In the second step, we exhibit "natural candidates" for the processes A and
C, and a "natural candidate" M for the martingale part of the solution to the RBSDE
with parameters (f,£). In the third step, we prove that the processes A and C belong to
S? and we give an estimate of [||A + C,H|‘292. In the fourth step, we apply the martingale
representation theorem to M, which gives the second component Z € IH? and the third
component k € IH? of the solution. In the fifth step, we show the uniqueness of the solution.
Finally, we prove property (3.16) and the last two assertions of the lemma.

Proof: For S € Ty, we define Y (S) by

(3.17) Y (S) := esssup E[¢; + / f(u)du | Fs].

T€Ts,T

By Proposition A.6 in the Appendix, there exists a ladlag optional process (?t)te[O,T} which
aggregates the family (Y(5))ser; . that is,

(3.18) Ys=Y(9) as. forall S € Tor.

Step 1. By using Jensen’s inequality and the triangular inequality, we get
(3.19)

T
[Ys| < esssup E[|&-] + \/ f(u)du| | Fs] < Elesssup |&; | —I—/ |f(u)|du | Fs] = E[X|Fg],

TETS, T T€Ts, T
a.s., for all S € Ty, where we have set
(3.20) X = / u)|du + esssup |&7|.
7€T0,T

We apply Cauchy-Schwarz inequality to obtain
(3.21) EIX?) < T2 + cll€llze,

where ¢ > 0 is a positive constant, which, in the sequel, is allowed to differ from line to line.
From (3.19), we get esssupger, ., [Ys]? < ess SUPSeT, o |E[X|Fs]|? = SUPye(o,7] |B[X|F] %,
where the equality follows from the right-continuity of the process (E[X|F])o<t<T, together

with Remark A.14, By using this and Doob’s martingale inequalities in L?, we obtain

(3.22) Elesssup [Ys”] < E[ sup |E[X|F]|?] < cB[X?] < T f |32 + clléllze,
SeTo, te[0,7

where the last inequality follows from (3.21).
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Step 2. By Proposition A.6, the process (?t—i—fg f(u)du)scio,r is a strong supermartingale.
Due to the previous step and to the assumption f € IH?, it is of class (D). Applying Mertens
decomposition (cf. Theorem A.1) gives the following

t
(323) ?t = —/ f(u)du + Mt — At — Ct_ for all t € [O, T] a.s.,
0

where M is a cadlag uniformly integrable martingale, A is a nondecreasing right-continuous
predictable process such that Ay = 0, E(Ar) < oo, and C is a nondecreasing right-
continuous adapted purely discontinuous process such that Co— = 0, E(Cr) < oo. Let
7 € Tor- By Remark A.17, ALY, = I{VT:&}AJFYT a.s. Now, by (3.23), AC,; = ~A,Y,
a.s. It follows that AC, = 1{77=§T}ACT a.s. In other terms, the process C' satisfies the
minimality condition (3.4) (with Y replaced by Y'). Moreover, thanks to a result from opti-
mal stopping theory due to El Karoui (cf. [11, Prop. 2.34]; cf. also [22]), for each predictable
stopping time 7, we have AA, = 1{777:677}AAT a.s. For the continuous part A€ of A,

again by a result from optimal stopping theory (cf. [23]), we have fOT 1{7t>€t}dA§ =0 as.
The process A thus satisfies the minimality condition (3.3) (with Y replaced by Y). We
have Y =Y (T) = &7 a.s. (due to (3.17) and (3.18)). Also, from (3.17) and (3.18), we have
Ys =Y(S) > &g as. for all S € T, which, along with a classical result of the general
theory of processes (cf. [8, Theorem IV.84]) implies that Y; > &, 0 <t < T, a.s.

Step 3. Let us consider the Mertens process associated with the strong supermartingale
Y. + [, f(u)du, that is the process (A; + Cy—), where the processes (A;) and (C;—) are
given by (3.23). We show that Ay + Cp_ € L?. By arguments similar to those used in
the proof of (3.19), we see that |Yg + fosf(u)du] < E[X|Fs], where X is the random
variable defined in (3.20). This observation, together with a result from potential theory
(cf. Corollary A.1), gives E [(AT + CT,)ﬂ < cE[X?], where ¢ > 0. By combining this
inequality with inequality (3.21) , we obtain

(3:24) E [(Ar + Cr)?] < T f 32 +elléle.

where we have again allowed the positive constant ¢ to vary from line to line. We conlude
that Ay + Cr_ € L% Hence, Ay and Cr_(= Cr) are square integrable, which, due to the
nondecreasingness of A and C, is equivalent to A € S? and C € §2.

Step 4. The martingale M from the decomposition (3.23) belongs to S?; this is a conse-
quence of Step 1., Step 3., and the fact that the process (fot fu)du)icio,m is in S? (since
f € IH?). By the martingale representation theorem (cf., e.g., Lemma 2.3 in [37]) there
exists a unique predictable process Z € IH? and a unique predictable k € IH? such that
dMy = Z;dW, + |5 k¢(e)N (dt, de). Combining this step with the previous ones gives that
(Y, Z,k, A, C) is a solution to the RBSDE with parameters f and &.
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Step 5. Let us now prove the uniqueness of the solution. Let Y be the first component
of a solution to the RBSDE with driver f and obstacle £&. Then, by the previous Lemma
3.2 (applied with f! = f2 = f) we obtain Y =Y in S?, where Y is given by (3.17). The
uniqueness of the other components follows from the uniqueness of Mertens decomposition of
strong optional supermartingales and from the uniqueness of the martingale representation.
(We note that the uniqueness of the second and the third component can be obtained also
by applying the previous Lemma 3.2.)

Step 6. Property (3.16) and the characterization of Vg as the value function of an optimal
stopping problem follow from Proposition A.6 parts (ii) and (iii). The last assertion of
Lemma 3.3 follows from classical results (cf., for instance, the last statement in Thm. 20 of
[9, page 429], or [22]). O

With the help of the previous two lemmas, we now prove the existence and uniqueness
of the solution to the RBSDE from Definition 3.1 in the case of a general Lipschitz driver.

Theorem 3.4 (Existence and uniqueness of the solution) Let ¢ be a left-limited and
r.u.s.c. process in S? and let f be a Lipschitz driver. The RBSDE with parameters (f,&)
from Definition 8.1 admits a unique solution (Y, Z, k,A,C) € 8? x IH? x IH? x §% x §2.
Moreover, for all S € To T, we have

(3.25) Ys =£&sVYsy as.

Furthermore, if (&) is assumed l.u.s.c. along stopping times, then (A;) is continuous (or
equivalently, the process (Y;) is l.u.s.c. along stopping times).

Remark 3.6 We will see that, as in the right-continuous case, the existence and uniqueness
result follows from a fized point theorem applied in an appropriate Banach space. In the
right-continuous case, the Banach space is classically the product space IH? x IH? x IH?
equipped with the norm HYH% + ||Z||% + Hk||3ﬁ (cf, e.g. [12], [20], [34]). However, this
Banach space does not suit our purpose. Indeed, let us make the following observation. Let
Y be an optional process such that ||Y||g = 0. We then haveY; =0, 0 <t <T dP ® dt-a.e.
When Y is right-continuous, this implies the indistinguishability of Y from the null process
0, that s, the property Yy = 0, 0 < t < T a.s. However, if Y is not right-continuous, the
implication is not necessarily true. 2 Hence, applying a fived point theorem in this space
cannot give us uniqueness of the solution of our reflected BSDFE in the sense of processes,
that is, up to indistinguishability.

*However, the property holds for the "triple bar" map || - Iz on S2%. More precisely, if Y € S? with
[IY]l; =0, then Y; =0, 0 <t < T a.s. because || - ||, is a norm on S2. Note that || - || is only a semi-norm
on S2.
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Proof: For each g > 0, we denote by Bé the space S? x IH? x IH?2 which we equip with
the norm (-, )|z defined by [[(Y, Z, k)!@% = Y5 + 1213 + [[KlIZ 5, for (Y, Z,k) €
8% x H* x H?2. Since (IH?,| - ||g) and (HZ,| - |,3) are Banach spaces, and since by
Proposition 2.1, (82, - l5) is a Banach space, it follows that (B%, | - ls;) is a Banach
space.

We define a mapping ® from B% into itself as follows: for a given (y,z,l) € B%, we
set ®(y,z,0) == (Y,Z,k), where Y, Z k are the first three components of the solution
(Y, Z,k, A, C) to the RBSDE associated with driver f(s) := f(s,ys,2s,ls) and with ob-
stacle £&. The mapping ® is well-defined by Lemma 3.3.

Let (v, 2,l') and (y”,2",1") be two elements of Bg. We set (Y, Z' k') =
and (Y", Z" k") = ®(y",2",1"). We also set Y :=Y' —Y" Z:=2' — 2", k :
Gi=y —y Zi=2 =2 =1 1"

oy, 2, 1)
Kk

Let us prove that for a suitable choice of the parameter § > 0 the mapping ® is a
contraction from the Banach space Bg into itself. By applying Lemma 3.2, we get

~ 2 ~ ~
IVl + 1215 + 11k17 5 < 62 (1 + 4| (', 2, 1) = fy", 2" 1)

for all € > 0, for all § > 6% By using the Lipschitz property of f and the fact that
(a+b+c)? < 3(a® —1—132 +¢?) for all (a,b,c) € R3, we obtain ||f(y/,2/,1') — f(y”,z”,l”)H% <
CK(||Q||% + ||2H% + Hl||35), where Ck is a positive constant depending on the Lipschitz
constant K only. Thus, for all € > 0, for all 8 > 2%, we have HD}H\Z + HZH% + HI%H%B <
6e2Ck (1 +402)(H7JH% + H%H% + Hngﬁ) Now, using Fubini’s theorem, we get ng”% < T\Hg]\”é
Hence, we have

~ 2 ~ ~ - 2 N ~
IV ls + 12113 + kN7 5 < 62Cre (1 + 4¢*)(T + D)(I3ll5 + 1213 + 1117, 5)-

Thus, for ¢ > 0 such that 6e2Cx(1 + 4¢*)(T +1) < 1 and 8 > 0 such that 8 > &
the mapping @ is a contraction. By the Banach fixed-point theorem, we get that ® has a
unique fixed point in B2, denoted by (Y, Z, k), that is, such that (Y, Z, k) = ®(Y, Z, k). By
definition of the mapping ®, the process (Y, Z, k) is thus equal to the first three components
of the solution (Y, Z,k, A,C) to the reflected BSDE associated with the driver process
g(w,t) == f(w,t,Y(w), Zt(w), kt(w)) and with obstacle £. It follows that (Y, Z,k, A, C) is
the unique solution to the RBSDE with parameters (f,&).

Property (3.25) follows from Eq. (3.16) of Lemma 3.3 and from the fact that (Y, Z, k, A, C)
is equal to the solution of the reflected BSDE associated with the driver process g(w,t) :=
f(wv 2 Y;f(w)v Zt(w)’ kt(w>)'

The last assertion of the theorem follows from Lemma 3.3 (fourth assertion) applied with
the process g(w,t) := f(w,t,Yi(w), Zi(w), kt(w)).

O
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4. Optimal stopping with f-conditional expectations.

4.1. Formulation of the problem. Let T > 0 be the terminal time and f be a predictable
Lipschitz driver. Let (&,0 < t < T) be a left-limited r.u.s.c. process in S? modelling a
dynamic financial position. The risk of £ is assessed by a dynamic risk measure equal, up
to a minus sign, to the f-conditional expectation of £&. More precisely: let 7' € [0,T] be a
fixed (for the present) instant before the terminal time T'; the gain of the position at T”
is equal to & and the risk at time ¢, where ¢ € [0,7"], is assessed by —Et{T,(ﬁT/). Here,
we use the usual notation E.{T, (&) for the first component of the BSDE with driver f,
terminal time 7" and terminal condition &7v; the random variable Stf 7 (&7r) is referred to
as the f-conditional expectation of &7+ at time ¢. The modelling is similar when T’ € [0, 7]
is replaced by a more general stopping time 7 € To 1 3
We are now interested in stopping the process ¢ in such a way that the risk be minimal.
We are thus led to formulating the following optimal stopping problem (at time 0):

(4.26) v(0) = —ess sup & (&)

T€T0,

We recall that in our framework (as opposed to the simpler case of a brownian filtration)
the monotonicity property of f-conditional expectations is not automatically satisfied. From
now on we make the following assumption on the driver f, which ensures the nondecreasing
property of £7(-) by the comparison theorem for BSDEs with jumps (cf. [33, Thm. 4.2]).

Assumption 4.1 Assume that dP ® dt-a.e. for each (y, z, ki, k2) € R? x (L?)?,
f(ta Y, z, kl) - f(t, Y,z, k2) Z <0i/7z’k17k2 ) kl - k2>1/)

with
0:[0,T] x Qx R? x (L?)? = L2; (w, t,y, 2, ki, ko) — 6V7RR (0w )

P ® B(R?) @ B((L?)?)-measurable, satisfying |]9?’Z’k1’k2(-)|],, < K for dll (y,z ki, k) €
R? x (L2)?, dP @ dt-a.e., where K is a positive constant, and such that

(4.27) grakk (o) > 1,

for all (y, z, k1, k2) € R? x (L?)2, dP ® dt ® dv(e) — a.e.

3Recall that a process Y is the solution to the BSDE associated with driver f, terminal time 7 and
terminal condition ¢ (where ¢ is an F.-measurable square-integrable random variable) if for almost all
w € Q, for all t € [0,T], Yi(w) = Yi(w), where Y denotes the solution to the BSDE associated with driver
fli<,, terminal time T and terminal condition ¢. The process Y is also denoted S.{T(C).
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The above assumption is satisfied if, for example, f is of class C! with respect to k such
that V. f is bounded (in L2) and V. f > —1 (see Proposition A.2. in [10]).

Remark 4.7 The strict comparison theorem for BSDEs with jumps (cf. Theorem 4.4 in
[33]) ensures that if the inequality (4.27) is strict, then /() is strictly monotonous in the
following sense: for T € Tor, for £4,62 € L*(F;) such that &' < &% a.s., and for S € Tor
such that S < 7 a.s., the property 5§T(gl) = 53;7(52) a.s., implies €' = €2 a.s.

A counter-exzample to the strict monotonicity of E¥(-) in the case where the strict inequality
in (4.27) is not assumed is given in [33] (cf. also Example A.2 in the Appendiz).

As is usual in optimal control, we embed the above problem (4.26) in a larger class of
problems. We thus consider for each S € 7g 7, the random variable

(4.28) v(S) = —ess sup 5§7T(§T),

TETs,T

which corresponds to the minimal risk measure at time S. Our aim is to characterize v(S)
for each S € Ty 1, and to study the existence of an S-optimal stopping time 7% € Tg 7, i.e.
a stopping time 7* € Tg 7 such that v(S) = —Sg (&) as.

4.2. Characterization of the value function as the solution of an RBSDE. In this section,
we show that the minimal risk measure v defined by (4.28) coincides with —Y, where Y is
(the first component of) the solution to the reflected BSDE associated with driver f and
obstacle £&. We also investigate the question of the existence of an e-optimal stopping time,
and that of the existence of an optimal stopping time (under suitable assumptions on the
process §).

The following terminology will be used in the sequel. Let Y be a process in S2. Let f be
a predictable Lipschitz driver satisfying Assumption 4.1.

e The process (Y;) is said to be a strong £/-supermartingale (resp £/-submartingale),
if 5577(1/7) <Yy (resp. 5§T(Yr) >Yg) as. on S <7, forall ;7€ Tor.

The process (Y;) is said to be a strong £f-martingale if it is both a strong £7-super
and £/-submartingale.

e Let S,7 € Tor be such that S < 7 a.s. The process Y is said to be a strong &l
supermartingale (resp. a strong £/-submartingale) on [S, 7] if for all o, € To,r such
that S < o < u < 7 a.s., we have Y, > Eéc,u(Yu) a.s. (resp. Y, < Eiu(Yu) a.s.) We
say that Y is a strong £f-martingale on [S,7] if it is both a strong £7-super and
submartingale on [9, 7].

Remark 4.8 We note that a process Y € S? is a strong £ -martingale on [S, 7] (where S,
7 € Tor are such that S < 7 a.s.) if and only if, on [S, 7], Y is indistinguishable from the



18 M. GRIGOROVA ET AL.

solution to the BSDE associated with driver f, terminal time T and terminal condition Y.
It follows that for a process Y € S? to be a strong Ef-martingale on [S, 7], it is sufficient
to have: Y, = SJ,T(YT) a.s., for all o € Tor such that S <o <7 a.s.

Property 4.1 Let f be a predictable Lipschitz driver satisfying Assumption /.1. Let S, T €
Tor with S < 7 a.s. Let Y be a strong ET-supermartingale on [S, 7). We introduce the
following two assertions:

(i) The process Y is a strong £ -martingale on [S, 7).
(i) Yo =&l (V7) as.

Assertion (1) implies Assertion (ii).
If, in Assumption 4.1, we further assume the strict inequality Hfzhb > —1, then Assertion

(ii) implies Assertion (i).

Proof: The implication (i) = (é¢i) is due to the definition. Let us show the converse
implication. Let o € 7To7 be such that § < o < 7 as. By using (i) and the con-
sistency property of f-expectations, we obtain Yg = EgU(EJ,T(YT)) a.s. By using the
strong £7-supermartingale property of Y and the monotonicity of f-expectations, we ob-
tain Ega(ci’if (YT)) < 5£U(Ya) < Yg a.s. From the previous two equations we get Yg =
5570 (&J;T (YT)) = 5§U (YU) a.s. In particular,

(4.29) &L, (Ve) = &L, (E1.(Y7)) as.

o,T

Since §¥7Fk2 5 1 £f(.) is strictly monotonous (cf. Remark 4.7). From this, together
with equality (4.29) and the inequality Y, > SJ,T (YT) a.s., we get Y, = &{T (YT) a.s. The
process Y is thus a strong £/-martingale on [S, 7]. O

We next show a lemma which will be used in the proof of the main result of this section.

Lemma 4.1 Let f be a predictable Lipschitz driver satisfying Assumption 4.1 and & be a
left-limited r.u.s.c. process in S%. Let (Y,Z,k, A, C) be the solution to the reflected BSDE
with parameters (f,€) as in Definition 3.1. Let € > 0 and S € To . Let 75 be defined by

(4.30) 7é:=inf{t > S: Y, <& +¢€}.

The following two statements hold:

(i) Yrg <&rs e as.
(ii) The process Y is a strong £/ -martingale on [S, 7§].
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We note that 7& defined in (4.30) is a stopping time as the début after S of a progressive
set. Note also that 7¢ is valued in [0,7] as Y7 = &7 a.s.

Proof: We first prove statement (i). By way of contradiction, we suppose P(Y7¢ > &< +¢€) >
0. We have ACTg = CT§ - C(rg)— = 0 on the set {Yrg > &g +¢}. On the other hand, due to
Remark 3.4, ACre = Yie — Y(T§)+. Thus, Yrz = Y(T§)+ on the set {YTE > &re + e}. Hence,

(4.31) Yirz)+ > &g + € on the set {Yre > & + e}

We will obtain a contradiction with this statement. Let us fix w € Q. By definition of 7§(w),
there exists a non-increasing sequence (t,) = (tn(w)) | 75(w) such that Y3, (w) < &, (w)+e¢,
for all n € IN. Hence, limsup,,_,. Yz, (w) < limsup,, . &, (w) + €. As the process £ is
ras.c., we have limsup,,_, &, (w) < &<(w). On the other hand, as (t,(w)) | 75(w), we
have limsup,, V3, (W) = Y(r2) 1 (w). Thus, ¥(7¢)1 (w) < &z (w)+e, which is in contradiction
with (4.31). We conclude that Yre < &< +¢ as.

Let us now prove statement (i7). By definition of 7, we have: for a.e. w € Q, for all
t € [S(w), 7E(W)[, Yi(w) > &(w) + e. Hence, for a.e. w € §, the function ¢ — Af(w) is
constant on [S(w), 7§(w)[; by continuity of almost every trajectory of the process A¢, A%(w)
is constant on the closed interval [S(w), 7§(w)], for a.e. w. Furthermore, for a.e. w € Q, the
function ¢ + A¢(w) is constant on [S(w), 7§(w)[. Moreover, Yirg)- 2 §(rg)- +¢€ as., which
implies that AACTlg = 0 a.s. Finally, for a.e. w € Q, for all t E [S(w) (W), ACH(w) =
Ci(w) — Ci—(w) = 0; therefore, for a.e. w € Q, for all t € [S(w),75(w)], A+Ci—(w) =
Ci(w) — Cy—(w) = 0, which implies that, for a.e. w € Q, the function ¢ — Cy_(w) is constant
on [S(w), 75(w)[. By left-continuity of almost every trajectory of the process (Cy—), we get
that for a.e. w € €, the function ¢ — C;_(w) is constant on the closed interval [S(w), 7§ (w)].
Thus, for a.e. w € Q, the map t — A;(w) + Cy—(w) is constant on [S(w), 7§(w)]. Hence Y is
the solution on [S, 7¢] of the BSDE associated with driver f, terminal time 7§ and terminal
condition Y-¢. We conclude by using Remark 4.8. O

With the help of the previous lemma, we derive the main result of this section.

Theorem 4.2 (Characterization theorem) LetT > 0 be the terminal time. Let (&,0 <
t < T) be a left-limited r.u.s.c. process in S and let f be a predictable Lipschitz driver
satisfying Assumption 4.1. Let (Y, Z,k, A,C) be the solution to the reflected BSDE with
parameters (f,€) as in Definition 3.1.

(i) For each stopping time S € Ty, we have

(4.32) Ys =ess sup 557(57) a.s.
T€Ts,T
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(ii) For each S € Tor and each € > 0, the stopping time 75 defined by (4.30) is (Le)-
optimal for problem (4.32), that is

(4.33) Ys < &l .(65) +Le as.,
where L 1s a constant which only depends on T and the Lipschitz constant K of f.

Remark 4.9 This result still holds when the assumption of existence of left limits for the
process £ is relazed (cf. also Remark 3.3).

In the case where £ is right-continuous, we recover Theorem 3.2 of [34].

Proof: Let € > 0 and let 7 € Tg . By Proposition A.5 in the Appendix, the process (Y;)
is a strong £7-supermartingale. Hence, for each 7 € Ts.r, we have

YS Z g£7T(K—) Z Sé,T(fT) a'S'J

where the second inequality follows from the inequality Y > £ and the monotonicity prop-
erty of /() (with respect to terminal condition). By taking the supremum over 7 € Ts 1,
we get

(4.34) Ys > ess sup 5’57(&) a.s.
T€Ts,T ’

It remains to show the converse inequality. Due to part (i7) of the previous Lemma 4.1 we
have Yg = 53; Tg(YTE) a.s. From this equality, together with part (i) of Lemma 4.1 and

the monotonicity property of £(-), we derive
(4.35) Vo= (Yre) SEL e (Grs +2) <EL o () + Le as,

where the last inequality follows from the estimates on BSDEs (cf. Proposition A.4 in [33]).
Inequality (4.33) thus holds. From (4.35) we also deduce Yg < esssup,cp, . EgT(fT) + Le

a.s. As € is an arbitrary positive number, we get Ys < esssup.cry, 557(57) a.s. By (4.34)
this inequality is an equality. (Il

We now investigate the question of the existence of optimal stopping times for the optimal
stopping problem (4.32). We first provide an optimality criterion for the problem (4.32).

Proposition 4.2 (Optimality criterion) Let (§,0 < t < T) be a left-limited r.u.s.c.
process in S% and let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let
SeTor and 7 € Tsr. If Y is a strong ET-martingale on [S, 7] with Yz = & a.s., then the
stopping time T is S-optimal (i.e. Yg = Egj(&) a.s.). The converse statement also holds
true, if, in addition, the inequality from Assumption 4.1 is strict (that is, Hf’z’kl’kz > —1).
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Proof: The first claim is immediate. Let us prove the second (and last) claim. Assume the
strict inequality in Assumption 4.1. Let 7 be S-optimal, i.e. Yg = 83;%(&) a.s. Since by
Theorem 4.2 and by Proposition A.5, Y is a strong £f-supermartingale, we have

Yo > E5.(V2) > €L.(&) = Ys as.,

where the last inequality holds because Y > £. It follows that Yg = Eg:j(Y%) a.s. Since

=Kk~ 1 Property 4.1 can be applied, which yields that Y is a strong £/-martingale

on [9,7]. Moreover, since Eg%(Y%) = Ebf:%(&) a.s. with Y;> > &; a.s., the strict monotonicity
of &1 implies that Yz = &; as. O

We note that, even in the case where £ is right-continuous, the large inequality 67 2Rk >
—1 from Assumption 4.1 is not sufficient for the last statement of the above proposition to
hold true; a counter-example is given in the Appendix (cf. Example A.2).

In Theorem 4.2 (ii), we have shown the existence of an Le-optimal stopping time for
problem (4.26). Under an additional assumption of left upper-semicontinuity along stopping
times of the process &, we will show the existence of an optimal stopping time. To this
purpose, we first give a lemma which is to be compared with Lemma 4.1.

Lemma 4.2 Let f be a predictable Lipschitz driver satisfying Assumption 4.1. Let (§,0 <
t < T) be a left-limited r.u.s.c. process in S* which we assume also to be lLu.s.c. along
stopping times. Let (Y, Z,k, A, C) be the solution to the reflected BSDE with parameters
(f,€). Let S € Tor. We define 75 by

(4.36) 7g:=inf{u > S:Y, =&}

The following assertions hold:

(i) Yoz =&z as
(ii) The process Y is a strong £/ -martingale on [S,7E].

Proof: To prove the first statement we note that Y-» > &-» as., since Y is (the first
component of) the solution to the RBSDE with barrier £&. We show that Yoo < &y as.
by using the assumption of right-upper semicontinuity on the process &; the arguments are
similar to those used in the proof of part (i) of Lemma 4.1 and are left to the reader.

Let us prove the second statement. By definition of 7§, we have that for a.e. w € Q, Y (w) >
&(w) on [S(w), 7é(w)[; hence, for a.e. w, the trajectory A°(w) is constant on [S(w), 7§ (w)]
and even on the closed interval [S(w), 74(w)] due to the continuity. On the other hand, due
to the assumption of l.u.s.c. along stopping times on the process &, we have A(w) = A%(w)
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for a.e. w (see Theorem 3.4). Thus, for a.e. w, A(w) is constant on [S(w), 7§(w)]. We show
that C;—(w) is constant on [S(w),7§(w)] by the same arguments as those of the proof of
part (i) of Lemma 4.1. We conclude by using Remark 4.8. O

Remark 4.10 We see from the above proof that the assumption of lLu.s.c. of & in Lemma
4.2 can be replaced by the assumption AArx = 0. The assumption AAx = 0 is weaker than
the assumption of Lu.s.c. of & as illustrated in Frample A.8 of the Appendix.

By the previous lemma and the first statement ("the optimality criterion") from Proposition
4.2, we derive the following existence result.

Proposition 4.3 Let f be o predictable Lipschitz driver satisfying Assumption 4.1. Let
(&,0 <t < T) be a left-limited r.u.s.c. process in S? which we assume also to be l.u.s.c.
along stopping times. Let S € Tor. The stopping time 7 defined in (4.36) is optimal for
problem (4.32), that is Ys = esssup 7, . 5&7(&) = ngé (&rz) a.s.

Remark 4.11 We note that, due to Remark 4.10 and to the optimality criterion, the op-
timality of 7§ in the above proposition still holds if we relax the assumption of lu.s.c. of
¢ to the (weaker) assumption AATg = 0 a.s. We recall that, by Remark 3.4, the condition
AATg = 0 a.s. is equivalent to Y being left-continuous along stopping times at 7. If the
condition AATg =0 a.s. is violated, the stopping time 7§ might not be optimal (cf. Example
A.3 from the Appendiz).

We show the following property.

Proposition 4.4 Let T > 0 be the terminal time. Let (§,0 < t < T) be a left-limited
r.au.s.c. process in S? and let f be a predictable Lipschitz driver satisfying Assumption
4.1. Let (Y, Z,k, A, C) be the solution to the reflected BSDE with parameters (&, f) as in
Definition 3.1. The process Y is the £f-Snell envelope of &, that is, the smallest strong
Ef-supermartingale greater than or equal to &.

Remark 4.12 This result still holds when & is not left-limited (cf. Remarks 3.8 and 4.9).

From Proposition 4.4 and Theorem 4.2, we deduce that the "value process" of the optimal
stopping problem (4.28) is characterized as the EF-Snell envelope of the reward process &.
In the particular case of a classical (linear) expectation (that is, when f = 0), we recover a
characterization from the classical optimal stopping theory stating that the "value process"
of the "classical" linear optimal stopping problem coincides with the Snell envelope of &,
which is smallest strong supermartingale greater than or equal to & (cf, e.g., [1]).

Proof: By Proposition A.5 in the Appendix, the process Y is a strong £f-supermartingale.
Moreover, since Y is (the first component of) the solution to the reflected BSDE with
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parameters (f,&), it is greater than or equal to £ (cf. Def. 3.1).

It remains to show the minimality property. Let Y/ be another £f-supermartingale greater
than or equal to §. Let S € 7o . For each 7 € Tgr, we have Y{ > 5§,T(YT/) > Egj(&)
a.s., where the second inequality follows from the inequality Y/ > £ and the monotonicity
property of EF with respect to the terminal condition. By taking the supremum over 7 €
Tsr, we get Yg > esssup,cr . 5§T(§T) = Ys a.s., where the last equality follows from
Theorem 4.2. The desired result follows. ([l

5. Additional results.

5.1. Ef-Mertens decomposition of Ef-strong supermartingales. We now show an &7-
Mertens decomposition for £/-strong supermartingales, which generalizes Mertens decom-
position to the case of f-expectations. We first show the following lemma.

Lemma 5.1 Let (Y;) € S? be a strong EF -supermartingale (resp. £ -submartingale). Then,
(Yy) is right upper-semicontinuous (resp. right lower-semicontinuous).

Proof: Suppose that (V;) is a strong £f-supermartingale. Let 7 € 7o and let (7,) be a
nonincreasing sequence of stopping times with lim, 400 7, = 7 a.s. and for all n € IV,
o, > 7T a.s. on {7 < T}. Suppose that lim, ,;~ Y, exists a.s. The random variable
limg, 400 Y7, is Fr-measurable as the filtration is right-continuous. Let us show that

Y, > lim Y, as.

n—-4o00

Since (Y}) is a strong Ef-supermartingale and the sequence (1) is nonincreasing, we have,
for all n € IN, &{Tn(YTn) < SﬂiTnH(YTﬂH) < Y;. We deduce that the sequence of random
variables (5! mm (Yr

n

))nemv is nondecreasing (hence, converges a.s.) and its limit (in the a.s.
sense) satisfies Y; > limy, 400 T 8{ 7. (Y7,) a.s. This observation, combined with the con-
tinuity property of BSDEs with respect to terminal time and terminal condition (cf. [33,
Prop. A.6]) gives

Y, > lim & (Y.)=¢&_(lim ;)= lim Y, as.

n—-+o0o ’ " 'n—+o00 n—-+o00

This result, together with a result of the general theory of processes (cf. [7, Prop. 2, page
300]), ensures that the optional process (Y;) is right-upper semicontinuous.
O

Theorem 5.2 (£/-Mertens decomposition) Let (Y;) be a process in S%. Let f be a
predictable Lipschitz driver satisfying Assumption 4.1. The process (Y;) is a strong E7-
supermartingale (resp. £ -submartingale) if and only if there exists a nondecreasing (resp.
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nonincreasing) right-continuous predictable process A in S* with Ag = 0 and a nondecreas-
ing (resp. nonincreasing) right-continuous adapted purely discontinuous process C in S?
with Co_ = 0, as well as two processes Z € IH? and k € H2, such that a.s. for all t € [0,T),

T T T
Y, = YT+/ f(s,Y;,ZS,ks)ds+AT—At+CT_—Ct_—/ ZSdWS—/ / ks(e) N (ds, de).
t t t E

This decomposition is unique.

Proof: The "if part" has been shown in Proposition A.5 of the Appendix. Let us show the
"only if" part. Suppose that (Y;) is a strong £7-supermartingale. Hence, (Y;) is clearly the
E7-Snell envelope of (Y;), that is the smallest strong £7-supermartingale greater or equal to
(Y;). By the characterization of the solution of a reflected BSDE as the £/-Snell envelope of
the obstacle process (cf. Proposition 4.4 and Remark 4.12), we derive that the process (Y;)
coincides with the solution of the reflected BSDE associated with the obstacle (Y;) (which
is r.u.s.c. by Lemma 5.1). The desired conclusion follows.

The uniqueness of the processes Z, k, A, C of the decomposition follows from the uniqueness
of the solution of the reflected BSDE. t

When Y is right-continuous, the process C of the £f-Mertens decomposition is equal to
0. In this case, the previous theorem reduces to the so-called £f-Doob-Meyer decomposition
(cf. Proposition A.6 in [10]; cf. also [36] and [31]).
Through different techniques, a similar result to the above Theorem 5.2 has been estab-
lished in the recent paper [5] (in the Brownian framework).

Remark 5.13 It follows from the previous theorem that strong Ef-supermartingales and
strong £ -submartingales have left and right limits.

5.2. Comparison theorem for RBSDEs .

Theorem 5.3 (Comparison) Let &4, €2 be two obstacles. Let fland f* be predictable
Lipschitz drivers satisfying Assumption 4.1. Let (Y, Z% ki, A',C*) be the solution of the
RBSDE associated with (¢%, f%) , i = 1,2. Suppose that £} < &}, 0 <t < T a.s. and that
2 Y2 Z2 k) < fU (Y2 Z2,k2), 0<t <T dP ® dt-a.s.

Then, Y2 <Y}, Vt€[0,7T] a.s.

Proof: Step 1: Let us first consider the case where, along with the assumptions of the
theorem, the following additional assumption holds: f2(t,y,z,k) < fl(t,y,z,k) for all
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(y,2,k) € R?® x L2 dP ® dt-a.s. Let S € Tor. By the comparison theorem for BSDEs,
for each 7 in Tgr we have Egi(ﬁz) < 53;17(3) a.s. By taking the essential supremum over
7 € Tsr and by using Theorem 4.2, we get Y2 < Y as.

Step 2: Let us now place ourselves under the assumptions of the theorem (without the
additional assumption on f! and f? from Step 1). Let 6f be the process defined by
Sfy == f2(t, Y2, Z2,k2) — fL(t, Y2, Z2,k?). Note that (Y2, Z2% k?) is the solution of the
reflected BSDE associated with obstacle ¢2 and driver f1(t,vy, 2, k) + 6 f;. Now, by assump-
tion, we have fl(t,y,z, k) +f; < fi(t,y,2,k) for all (y,z k). By Step 1 applied to the
drivers f! and f1(t,y,z,k) 4+ §f; (instead of f2), we get Y2 < Y1 O

6. Further developments. In our ongoing work (cf. [17]), we study the case of doubly
reflected BSDEs where the barriers are not right-continuous.

APPENDIX A
The following observation is given for the convenience of the reader.

Remark A.14 Let Y be a right-continuous (or left-continuous) adapted process. Then,
Supseo, 7] Yr = SuPsejo,r)nq Yt a-S., which implies that sup,cio ) Y: is a random variable.
Moreover, due to the definition of the essential supremum, we have SUPyefo,) Yt = €sSsup;epo 1) Yr =
esssup ey, Yr a.s.

Definition A.1 Let (Y),c0,1) be an optional process. We say that Y is a strong (optional)
supermartingale if Y, is integrable for all T € Tor and Ys > E[Y. | Fg| a.s., for all
S, € Tor such that S <7 a.s.

We recall a decomposition of strong optional supermartingales, known as Mertens decom-
position (see e.g. |9, Theorem 20, page 429, combined with Remark 3(b), page 205] and |9,
Appendix 1, Thm.20, equalities (20.2)]).

Theorem A.1 (Mertens decomposition) LetY be a strong optional supermartingale of
class (D). There exists a unique right-continuous left-limited uniformly integrable martingale
(My), a unique predictable right-continuous nondecreasing process (A) with Ag = 0 and
E[A7] < o0, and a unique right-continuous adapted nondecreasing process (Ct), which is
purely discontinuous, with Co— = 0 and E[Cr] < 0o, such that

(A37) }/t:Mt_At_tha OStST a.s.
In particular, all trajectories of Y have left and right limaits.

Remark A.15 Since the filtration in our framework is quasi-left-continuous, martingales
have only totally inaccessible jumps. From this and from Mertens decomposition (A.37), we
deduce that, for each predictable stopping time 7, Y; — Y, = —(A; — A;_) a.s.
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Remark A.16 By Mertens decomposition (A.37), we get ACy = Cy — Ci— =Y, — Yyt
Hence, Y, > Y4, for all t € [0,T), which implies that Y is necessarily r.u.s.c. Moreover,
Y s right-continuous if and only if C' = 0.

By using this remark, we recover the well-known Doob-Meyer decomposition for right-
continuous supermartingales of class (D). Indeed, let Y be a right-continuous supermartin-
gale (in the usual sense) of class (D). Then Y is a strong (optional) supermartingale in the
sense of the above definition (due to the optional sampling theorem for right-continuous
supermartingales). Mertens decomposition of Y reduces to Y = M — A (where M and A
are as above), as C' = 0. This corresponds to Doob-Meyer decomposition of Y.

The following result from potential theory can be found in [9].

Theorem A.2 (Dellacherie-Meyer) Let K be a non-decreasing predictable process (which
is not necessarily right-continuous). Let U be the potential of the process K, i.e.

Ut = E[KT - Kt ’Ft]

for all t € [0,T]. Assume that there ezists a non-negative Fr-measurable random variable
X such that Us < E[X|Fs] a.s. for all S € Tor. Then, there exists a constant ¢ > 0 such
that

(A.38) E[K%] < cE[X?).

Proof: For the proof of the result the reader is referred to Paragraph 18 in [9, Appendix 1|
generalizing Theorem VI.99 of the same reference to the case of a non-decreasing process
which is not necessarily right-continuous nor left-continuous. O

By using the previous theorem, we obtain the following integrability property of the
Mertens process associated with a strong optional supermartingale, which is used in the
proof of Lemma 3.3.

Corollary A.1 (Mertens process of a strong supermartingale: a useful estimate)
Let Y be a strong optional supermartingale of class (D) such that: for all S € Tor,
|Ys| < E[X|Fs] a.s., where X is a non-negative Fr-measurable random variable.

Let us consider the Mertens process of Y, that is the process (A + Cy—), where A and C
are the two nondecreasing processes of Mertens decomposition of Y from equation (A.37).
There exists a constant ¢ > 0 such that

(A.39) E|(Ar + CT,)Q} < cE[X?).
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Proof: Let us introduce the notation K; := A;+Cy— (K is the Mertens process of V). Note
that K is a non-decreasing predictable process (which is not necessarily right-continuous).
Let S € 7or. From Mertens decomposition, we have Ys = Mg — Kg a.s. and Yp =
M7 — K7 a.s. By subtracting the second equation from the first, and by taking conditional
expectations, we derive that Yg — E[Yp|Fs] = E[Kr — Kg|Fs| a.s. Hence, the process
(Up) defined by Uy :=Y; — E[Yr|F] is the potential associated with the non-decreasing
predictable process K. Now, we have

(A40)  |Us| = Vs — E[Y7|Fs)| < |Ys| + E[[Y1]|Fs] < E[2X|Fs] as. .

where the last inequality follows from the assumption. By applying Theorem A.2, there
exists a constant ¢ > 0 such that E[K?] < cE[X?], which is the desired conclusion. O

We recall the change of variables formula for optional strong semimartingales which are
not necessarily right-continuous. The result can be seen as a generalization of the classical
It6 formula and can be found in [16, Theorem 8.2] (cf. also [26, Chapter VI, Section 3, page
538]). We recall the result in our framework in which the underlying filtered probability
space satisfies the usual conditions.

Theorem A.3 (Gal’chouk-Lenglart) Let n € IN. Let X be an n-dimensional optional
strong semimartingale, i.e. X = (X! ..., X") is an n-dimensional optional process with
decomposition X* = XE+M*+A*+ Bk for allk € {1,...,n}, where M* is a (cadlag) local
martingale, AF is a right-continuous adapted process of finite variation such that Ay = 0,
and BF is a left-continuous adapted process of finite variation which is purely discontinuous
and such that Bg = 0. Let F' be a twice continuously differentiable function on R™. Then,

F(X;) = F(Xo) + Z (Xs-)d(AF + M*)s + E > D*D'F(X,_)d < M* M >
10 t] 2 k1=1"10:t]

— ZDkF(XS,)AXf

>

0<s<t

2

0<s<t

+3 | DFF(X)d(BY).y
=1 ” [0,¢]

ZD’“ A+X’f] 0<t<T as.,

where D* denotes the differentiation operator with respect to the k-th coordinate, and M*¢
denotes the continuous part of M*.

Corollary A.2 LetY be a one-dimensional optional strong semimartingale with decompo-
sition Y =Yg+ M + A+ B, where M, A, and B are as in the above theorem. Let > 0.
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Then, almost surely, for allt > 0,

Y2 =Y+ [ BeTYZds+ 2/ Y, _d(A+ M), +/ P d < Me,MC >,

10,1] 10,1] 10,1
+ ) eBS(Ys—YS_)%/ 2"V d(B)oy + Y P (Yo - V3%
0<s<t [0,¢] 0<s<t

Proof: It suffices to apply Gal’chouk-Lenglart’s formula with n = 2, F(z,y) = 2y?, X} =
ePt and X? =Y;. Indeed, by applying Theorem A.3 and by noting that the local martingale

part and the purely discontinuous part of X! are both equal to 0, we obtain
AY2 =Y+ Be'BSYSQdS—i—Q/
10,¢] 10,¢]

+ Z eBS (}/;2 _ (}/5_)2 . 2}/5_(}/5 . Ys_))
0<s<t

+/ 265 YV d(B)ys + 3 o (V)2 — 2Vi(Yay — V).
(0.t

0<s<t

1
Y, d(A+ M)s+ 2/ 2eP5d < M, M >,
10,4]

The desired expression follows as Y2 — (V)2 —2Y,_ (Vs — Y, ) = (Vi — Y, )? and (Y, )? —
(Ye)? = 2Yy(Yoy = ¥5) = (Yo — Yo)%. 0

Proposition A.5 (BSDE with "generalized" driver vs. BSDE) Let f be a predictable
Lipschitz driver satisfying Assumption 4.1. Let A be a nondecreasing (resp. nonincreasing)
right-continuous predictable process in S? with Ay = 0 and let C be a nondecreasing (resp.

nonincreasing) right-continuous adapted purely discontinuous process in S? with Co_ = 0.
Let (Y, Z, k) € 8? x H? x H? satisfy a.s. for all t € [0,T],
(A.41)
T
Y; :YT+/ f(s,Ys,ZS,kS)ds—l—AT—At+0T—C’t_—/ ZsdWs— / / N (ds, de).
¢ t

Then the process (Y;) is a strong 7 -supermartingale (resp. £ -submartingale).

Proof: We address the case where A and C are nondecreasing. Let 7,60 € 7y be such that
7 <6 a.s. Let us show that Y, > é’fg(Yg) a.s.

We denote by (X, 7,1) the solution to the BSDE associated with driver f, terminal time 6,
and terminal condition Yp; then 5 »(Yo) = X; a.s. (by definition of £7).

Set , =Y, — Xy, Zy = Zy — my and ki = k; — ;. Then

—d}_/t = htdt + dAt + dCt_ - thWt - / Et(e)N(dt, de), Yg = O,
E
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where hy := f(t,Yi—, Z¢, ki) — f(t, X¢—, 7, ). By the same arguments as those of the proof
of the comparison theorem for BSDEs with jumps (cf. [33, Thm. 4.2|, or [36]), using As-
sumption 4.1 on f, we can show that

(A42) h,t > 5,5?;5 + 6,52,5 + <’}’t y l;:t>y, 0 <t< T, dP ® dt — a.e.

HXt— JTt skt It
IR A

where v, 1= and where 0 and [ are predictable bounded processes (which can

be expressed as increment rates of f with respect to y and z).
Let I';. be the unique solution of the following forward SDE

(A.43) dlrs =T {d;ds + BsdW + / vs(e)N (ds, de)] s D=1
E
Suppose for a while that we have shown
- 0 0
(A.44) r..Y;>FE [/ I dAg —1—/ I';sdCs | }'T] a.s.
T T
Then, since I'; s > 0 and I'; - = 1, we have Y, > 0 a.s., that is Y, > X, = 5f9(Y9) a.s.,

which is the desired result. It remains to show (A.44). To simplify the notation, we denote
[, by [y for s > 7. We use that Y is a strong optional semimartingale with decomposition

Y = M'+A'+B', where M} = [} ZdW+ [ [, ks(e)N(ds, de), A} := — [3 hyds— A, and
B} := —C;_, and we apply Gal’chouk-Lenglart’s formula from Theorem A.3 with n := 2,
X':=Y, X2:=T, and F(z!,2?) := 2'22. We obtain

(A.45)

0
FTYT:—/F (Zs + Ys_Bs)dWs — / s(Ys0s + Zsfs — hs)ds

+/TB;SdAs /ch // €) + Yons(e))N(ds,de) — ) ALAY,.

T7<s<6

By using the fact that A. and N (-, de) do not have common jumps, we get ZTSSS@ AT AY; =
ff [ Ts—7s(e)ks(e)N(ds, de). By replacing this expression in equation (A.45) and by doing
some computations, we obtain

(A.46)
FTYT:—/QF (2 + Yo By)dW, — / (Vai8s + Zyfs + (s, Es)y — hs)ds
/ [s_dAs +/ sdCys — / / e) + Y, 7s(e) +vs(e)ks(e))N(ds, de).

Now, the stochastic integral with respect to "dW," in the above equation is a martingale
(since I' € 2, Z € IH?, Y € 82, and j is bounded). The stochastic integral with respect
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to the Poisson random measure is also a martingale. By taking the conditional expectation
and by using the inequality (A.42), we derive (A.44). The proof is thus complete. O

Proof of Proposition 2.1: We first show that [|-|s2 is a norm on the space of optional
processes. The positive homogeneity and the triangular inequality are easy to check. Suppose
now that ¢ € 8% is such that [|¢[|g= = 0. Then, esS SUPgeT; |ps|? = 0 a.s., which, by
definition of the essential supremum, implies that |¢s|> = 0 a.s. for all S € Tor. By a
classical result of the General Theory of Processes ([8, Theorem IV.84]), we obtain that
the process ¢ is indistinguishable from the null process, that is ¢; =0, 0 <t < T a.s. We
conclude that ||-||| g2 is a norm on S2.

Let us prove that the space (S?, ||-||s2) is complete. We only sketch the proof since its main
steps are similar to those of the proof of the completeness of the space (L2, || - ||12). Let
(¢") be a Cauchy sequence in S for the norm ||| g2. We extract a subsequence (¢ )y
such that [[¢™+ — @™ |g < 5, for all k € IN. Setting gf := Yp_ |¢*"" — ¢™| for

each n, by the triangular inequality, we derive that [|¢"||s2 < D p_y }qu;”““ — gbnkmsz <

Y ore1 2% < > 2% = 1. We set ¢, := lim,Tg}", for all t € [0,T] (the limit exists in

[0, +00] as the sequence (g}), is non-negative non-decreasing). Being the limit of optional
|2 = sup,, ess SUPre7; 1 97|
a.s., using the monotone convergence theorem, we derive that [|g||g2 = lim,1{|g"||g2- As

processes, the process g is optional. Since esssup, . . sup,, lg?

the sequence (||¢"(|s2) is bounded by 1, we get |[g[[s2 < 1. We then adapt the arguments

from the proof of the completeness of (L?, || - ||z2) to show that lim, [|g — ¢"[|s> = 0, and
that [|¢ — ¢™ || 52 =2 0, which concludes the proof. O
— 00

The following result of the optimal stopping theory is used in the proof of Lemma 3.3.

Proposition A.6 Let (Y(S)) be the family defined for S € Tor by

(A.47) Y (S) := esssup E[¢, +/ f(u)du | Fgl,
T€Ts,T S
(i) There exists a ladlag optional process (?t)te[O,T} which aggregates the family (Y (S))
(i.e. Ys=Y(S), for all S € Tor).
Moreover, the process (Y + fg f(u)du)scio,m is a strong supermartingale.
(ii) We have Ys =&sV Y gt a.s. for all S.
(iii) Furthermore, Y gy = esssup,~g E[& + [¢ f(u)du | Fs] a.s., for all S.

Remark A.17 It follows from (ii) that ALY 5 = 1{75=65}A+?S a.s.

Proof: For completeness, we give here a short proof (cf. [27] when £ is left- and right-limited,
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and |22, Sect.B| in the general case). For S € Ty 1, we define ?(S) by

(A.48) ?( / f(u)du = esssup E[¢; + / f(u)du | Fg].

TGTS T

where the equality follows from the definition of Y (S) (see (A.47)). For S € Tor, define

(A.49) ?JF(S) =esssup B¢ + / f(u)du | Fg].
T>8

By some well-known results of optimal stopping theory (cf., e.g. [21, Prop. D.3] or [22,

=+
Prop. 1.12]), the family of random variables (Y (5)) is a supermartingale family which is
right-continuous along stopping times in expectation. By classical results (cf., e.g., [11] or

—
[25, Prop. 4.1]), there exists a process (Y, ) which aggregates this family. By [21, Prop. D.3|
(cf. also |22, Prop. 1.9]), we have

(A.50) Y (S) = (&s +/ fw)du) VY (S) as.,
0
for all S € Ty 1. It follows that the process (?t) defined by

(A.51) Y= (€t+/0 f(U)dU)Vi+

aggregates the family (Y(9)). Since (Y(9)) is a supermartingale family, (Y) is a strong
supermartingale. Now, we know (cf., e.g., [22, Prop. 4.14|, combined with [24, Appendix A1,
paragraph 1]) that ?JF(S) = ?(S%—), for all S € 7o, where ?(S%—) denotes the right-hand
limit of Y along stopping times at S, as defined, for instance, in [22, Def. 4.5]. On the other
hand, we know that the process (V) aggregates the family (Y(S)), which entails that the
process (Y4 ) aggregates the family (Y (S+)). By using Eq. (A.50), we conclude that

_ S _
(A.52) Ys= (s —|—/ flu)du)VYgy as.
0
for all S. By (A.48), we derive Y (S) = fo wydu =Yg — fo u)du a.s., for all
S € Tor- The ladlag optional process (Yt)te[o 7] fo w)du) te 0,7 thus aggregates

the family (Y(5))ser; .- Moreover, (Y + fo du) = (Y,) is a strong supermartingale,
which gives (7). By using (A.52), we derive (i7). By using (A.49), we obtain (7). O
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Example A.1 (A toy example) Let (&) be a deterministic continuous decreasing bounded
function. We set Yy := sup,&s = & and Ay == &o — &, for all t € [0,T]. It is well-
known (cf. [12], or the classical Skorokhod’s problem as recalled in [21]) that (Y,0,0,A)
is the unique solution to the RBSDE with driver f = 0 and (continuous) obstacle &. Let
us now change the obstacle & at a single point to € [0,T). More precisely, we consider
a function & such that & = &, for t # to, and &, > &,. We note that & is r.u.s.c. but
not right-continuous. In this very simple example, we can compute explicitly a solution to
the RBSDE (defined in Definition 8.1) with parameters (0,€). We set Y; := SUPg>4 &, for
t €10, T). We first rewrite Y in a different manner. For t > ty, we have Y; = & = Y;. For
t < to, we have Y; = Max(SUPg>y £, &, &ty) = max(supysy &, &) = max(&y,&,). We set
t1 = sup{s > 0: & > &,}, with the convention sup(@) = 0. We note that Y = &,, for
t € [t1,to], and Yy = & =Y;, fort € [0,t1). We define Cy := (&, — &to) Listy, for t € [0,T).
We see that C' is non-decreasing, cad-lag, purely discontinuous (in fact, C has one single
Jump), and it satisfies the minimality condition (3.4). We now consider the following two
cases: (i) the case &, > &, and (i1) the case &, < &, In the case (i), we have t; = 0; we
set Ay := 0, fort € [0,t0], and Ay := &, — &, fort € (to,T). In the case (ii), we have t; > 0
and &, = &, ; we define Ay by Ay == & —&;, fort € [0,t1), Ay := & — &, fort € [t1,to], and
Ay =80 — &, + &y — &, fort € (to, T]. In both cases, the function A is non-decreasing, con-
tinuous, and it satisfies the minimality condition (3.3). Moreover, it can be easily checked
that, Y; = &p + Ap — Ay + Cp_ — Cy_, for all t € [0,T]. We conclude that (Y,0,0,A,C)
is a solution to the reflected BSDE with parameters (0,€). We prove in Lemma 3.3 that
(Y,0,0, A, C) is the unique solution. We notice that Y has a jump on the right at to; the
size AJrYto Of the jump Satisﬁes AJrY;fo = }7t0+ - Y/;‘/o = gto - gto = 7(Cto - C’to—)'

Example A.2 (Counter-example) Let v(du) := 61(du), where §; denotes the Dirac
measure at 1. The process Ny := N([0,t] x {1}) is then a Poisson process with parame-
ter 1, and we have Ny := N([0,t] x {1}) = N, —t. Let the driver f be given by f(t,y,z,£) =
(—1,0), = —L(1). We introduce the associated adjoint process I'y , defined for each r € [t,T]
by L'y = 1{NT_Nt:0}e’"*t. Let the pay-off process £ be given by & = l{Nel}e*t, forallt €
[0,T]. Note that & is adapted and right-continuous. By the representation property for linear
BSDEs with jumps ([33, Thm.3.4]) and classical computations, we get

515{7(&) = E[l & | R = e " Eln, —n—oyLin, 513 | Fil = e vy B[y, - v,—oy | F2l,
forallt € ]0,T), for all T € Ty . We deduce that Y; := ess SUPreT; 1 5ZT(§T) =et Ln>13 =
&, for allt € [0,T] (as E[lyn, _n,—o} | Ft] < 1 and the upper bound is attained for T =1t).

Let us focus on the optimal stopping problem at time t = 0. The above computations imply
that, for t =0, Yo := esssup, .. 8({7(57) =& = 0. Moreover, the essential supremum (at

time 0) is attained at any stopping time T € Tor (indeed, 5({7(57) =0, for all T € Tor).
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This is true, in particular, for the stopping time 7T defined by 7 := T. However, we will
see that the process Y (computed above) is not an Ef-martingale on [0,7]. To do so, let
us denote by X the (first component) of the solution to the BSDE with driver f, terminal
time T, and terminal condition Yp = &p. For u € [0,7] = [0,T], we have X,, = SiT(ﬁT) =
e " Ly > BNy —no=0y | Ful = 7 Ly, >3 P[N — Ny = 0] = e T 1{n,>1}- Hence, for
u € (0,T), we have Yy, = e > e~ 1 = X, on the set {N, > 1}. Hence, the processes X
and Y are not indistinguishable.

Let us also note that in this ezample E is not strictly monotonous. To see this, we consider
¢ =0 and & = & = e Tlyory. We have & < €2 and £ (€Y) = £[4(0) = 0 =
5({T(§T) = S&T(@), However, & # 0 with a positive probability.

Example A.3 Let (§) be an RCLL deterministic bounded function, increasing on [0, tg],
decreasing on [to,T], and supposed to be continuous on [0,T] except at ty €]0,T[ with
§to < &to—- Note that the function £ is not Lu.s.c. at time tg. We set Yy = supg>,&s
and Ay ==Yy — Yy, for all t € [0,T]. By the classical Skorokhod’s problem (cf. also [12]),
(Y,0,0, A) is the unique solution to the RBSDE with driver f =0 and obstacle £&. We have
Vi = &) if t < to, and Yy = &, if t > to. Let 75 = inf{u > 0: Y, = &,}. We have
75 = to. Note that here AA= = AAy, = &,— — &, > 0. However, 75 = tg is not optimal for
Yo = supy>&s = &t because &, < &,—. In fact, there does not exist an oplimal stopping
time for Yj.

Let us now consider the case where, instead of being decreasing on [to, T|, the function &
is increasing on [to, T] with &0 = &,—. Note that, again, the function & is not l.u.s.c. For
each t € [0,T], Y; = supg>; & = &iy—. The process A is constant equal to 0, and 75 =T is
optimal for Yy (and also for Yy, for all t € [0,T]).
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