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Abstract

In the first part of the paper, we study reflected backward stochastic differential equations

(RBSDEs) with lower obstacle which is assumed to be right upper-semicontinuous but not nec-

essarily right-continuous. We prove existence and uniqueness of the solutions to such RBSDEs

in appropriate Banach spaces. The result is established by using some tools from the general

theory of processes such as Mertens decomposition of optional strong (but not necessarily right-

continuous) supermartingales, some tools from optimal stopping theory, as well as an appropriate

generalization of Itô’s formula due to Gal’chouk and Lenglart. In the second part of the paper, we

provide some links between the RBSDE studied in the first part and an optimal stopping prob-

lem in which the risk of a financial position ξ is assessed by an f -conditional expectation Ef (·)

(where f is a Lipschitz driver). We characterize the "value function" of the problem in terms of

the solution to our RBSDE. Under an additional assumption of left upper-semicontinuity on ξ,

we show the existence of an optimal stopping time. We also provide a generalization of Mertens

decomposition to the case of strong Ef -supermartingales.
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1 Introduction

Backward stochastic differential equations (BSDEs) have been introduced by Bismut ([2], [3]) in the

case of a linear driver. The general theory of existence and uniqueness of solutions to BSDEs has

been developed by Pardoux and Peng [23]. Through a result of Feynman-Kac-type, these authors

have linked the theory of BSDEs to that of quasilinear parabolic partial differential equations (cf.[24]).

BSDEs have found number of applications in finance, among which pricing and hedging of European

options and recursive utilities (cf., for instance, [11]). Also, a useful family of operators, the so-called

f -conditional expectations, has been defined through the notion of BSDEs and used in the literature

on dynamic risk measures (cf., for instance, [25], [28], [14], [1], among others). We recall that the

f -conditional expectation at time t ∈ [0, T ] (where T > 0 is a fixed final horizon) is the operator

which maps a given terminal condition ξT to the position at time t of (the first component of) the

solution to the BSDE with parameters (f, ξT ). The operator is denoted Ef
t,T (·).

Reflected backward stochastic differential equations (RBSDEs) can be seen as a variant of BSDEs

in which the (first component of the) solution is constrained to remain greater than or equal to

a given process called the obstacle. Compared to the case of (non-reflected) BSDEs, there is an

additional nondecreasing predictable process which keeps the (first component of the) solution above

the obstacle. RBSDEs have been introduced by El Karoui et al. [10] and have proved useful, for

instance, in the study of American options. The work by El Karoui et al. [10] considers the case

of a Brownian filtration and a continuous obstacle. There have been several extensions of this work

to the case of a discontinuous obstacle (cf. [16], [4], [17], [13], [18], [27]). In all these extensions an

assumption of right-continuity on the obstacle is made.

In the first part of the present paper we consider a further extension of the theory of RBSDEs

to the case where the obstacle is not necessarily right-continuous. Compared to the right-continuous

case, the additional nondecreasing process, which "pushes" the (first component of the) solution to

stay above the obstacle, is no longer right-continuous. For the sake of simplicity, we place ourselves

in the framework of a Brownian filtration, but we note that our results can be generalized to the case

of a larger stochastic basis (cf. Section 6). We establish existence and uniqueness of the solution in

appropriate Banach spaces. To prove our results we use tools from the general theory of processes such

as Mertens decomposition of strong optional (but not necessarily right-continuous) supermartingales

(generalizing Doob-Meyer decomposition), some tools from optimal stopping theory, as well as a

generalization of Itô’s formula to the case of strong optional (but not necessarily right-continuous)

semimartingales due to Gal’chouk and Lenglart.

In the second part of the paper, we make some links between the RBSDEs studied in the first part and

optimal stopping with f -conditional expectations. More precisely, we are interested in the following

optimization problem: we are given a process ξ modelling a dynamic financial position. The risk

of ξ is assessed by a dynamic risk measure which (up to a minus sign) is given by an f -conditional

expectation. The process ξ is assumed to be right upper-semicontinuous, but not necessarily right-

continuous. We aim at stopping the process ξ in such a way that the risk be minimal. We characterize

the value of the problem in terms of the unique solution to the RBSDE associated with obstacle ξ

and driver f studied in the first part. We show the existence of an optimal stopping time for the

problem under an additional assumption of left upper-semicontinuity of ξ, and the existence of an
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ε-optimal stopping time in the more general case where this assumption is not made. We provide an

optimality criterion characterizing the optimal stopping times for the problem in terms of properties

of the "value process". We thus extend some results of [27] to the case where the optimized process ξ

is not cadlag. We also establish a comparison principle for the RBSDEs studied in the first part of our

paper, as well as a generalization of Mertens decomposition to the case of Ef -strong supermartingales.

The remainder of the paper is organized as follows:

In Section 2 we give some preliminary definitions and properties. In Section 3 we define our RBSDE

and we prove existence and uniqueness of the solution. Section 4 is dedicated to our optimal stopping

problem with f -conditional expectations. In Subsection 4.1 we formulate and motivate the problem.

In Subsection 4.2 we characterize the value function of the problem in terms of the solution of the

RBSDE studied in Section 3; we also give an optimality criterion and address the question of existence

of ε-optimal and optimal stopping times. In Section 5 we derive some useful additional results:

comparison principle for our RBSDEs (Subsection 5.2) and "generalized" Mertens decomposition for

Ef -strong supermartingales (Subsection 5.1). In Section 6 we briefly present some further extensions

of our work. In the Appendix we make some recalls ("classical" Mertens decomposition, Galchouk-

Lenglart’s change of variables formula) and we give the proofs of two of the results (Prop. A.5 and

Prop. 2.1) used in the main part of the paper.

2 Preliminaries

Let T > 0 be a fixed positive real number. Let (Ω,F , P ) be a probability space equipped with a one-

dimensional Brownian motion W . Let IF = {Ft, t ≥ 0} be the completed natural filtration associated

with W . For t ∈ [0, T ], we denote by Tt,T the set of stopping times τ such that P (t ≤ τ ≤ T ) = 1.

More generally, for a given stopping time ν ∈ T0,T , we denote by Tν,T the set of stopping times τ such

that P (ν ≤ τ ≤ T ) = 1.

We denote by P be the predictable σ-algebra on Ω× [0, T ].

We use the following notation:

• L2(FT ) is the set of random variables which are FT -measurable and square-integrable.

• IH2,T is the set of real-valued predictable processes φ such that

‖φ‖2
IH2,T := E

[

(
∫ T

0
|φt|

2dt)
]

<∞.

• S2,T is the set of real-valued optional processes φ such that

|||φ|||2S2,T := E(ess supτ∈T0,T
|φτ |

2) <∞.

When there is no possibility of confusion, we denote IH2 instead of IH2,T , S2 instead of S2,T , as

well as ‖ · ‖2
IH2 instead of ‖ · ‖2

IH2,T and |||·|||2S2 instead of |||·|||2S2,T .

Remark 2.1 Let us emphasize that in our framework of completed brownian filtration every martin-

gale is continuous, up to a modification. We note as well that due to the optional sampling theorem
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every martingale in our framework is strong.

We also recall that in our framework the optional and predictable σ-algebras on Ω × [0, T ] coincide.

In the present paper the terms predictable and optional are thus interchangeable.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R
2 → R

(ω, t, y, z) 7→ f(ω, t, y, z) is P ⊗ B(R2)− measurable,

• E
[

(
∫ T

0
|f(t, 0, 0)|2dt)

]

<∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that dP⊗dt-a.e. ,

for each (y1, z1), (y2, z2),

|f(ω, t, y1, z1)− f(ω, t, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|).

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at t. We

denote by ∆+φt := φt+ − φt the size of the right jump of φ at t, and by ∆φt := φt − φt− the size of

the left jump of φ at t.

We give a useful property of the space S2.

Proposition 2.1 The space S2 endowed with the norm |||·|||S2 is a Banach space.

Proof: The proof is given in the Appendix. �

We will also use the following notation:

Let β > 0. For φ ∈ IH2, ‖φ‖2β := E[
∫ T

0
eβs φ2

sds]. We note that on the space IH2 the norms ‖ · ‖β and

‖ · ‖IH2 are equivalent. For φ ∈ S2, we deifine |||φ|||2β := E[ess supτ∈T0,T
eβτ φ2

τ ]. We note that |||·|||β is a

norm on S2 (the proof is similar to that of Prop. 2.1) equivalent to the norm |||·|||S2.

3 Reflected BSDEs whose obstacles are not cadlag

Let T > 0 be a fixed terminal time. Let f be a driver. Let ξ = (ξt)t∈[0,T ] be a left-limited process

in S2. We suppose moreover that the process ξ is right upper-semicontinuous (r.u.s.c. for short). A

process ξ satisfying the previous properties will be called a barrier, or an obstacle.

Remark 3.2 Let us note that in the following definitions and results we can relax the assumption of

existence of left limits for the obstacle ξ. All the results still hold true provided we replace the process

(ξt−)t∈]0,T ] by the process (ξ
t
)t∈]0,T ] defined by ξ

t
:= lim sups↑t,s<t ξs, for all t ∈]0, T ]. We recall that ξ is

a predictable process (cf. [6, Thm. 90, page 225]). We call the process ξ the left upper-semicontinuous

envelope of ξ.

4



Definition 3.1 A process (Y, Z,A, C) is said to be a solution to the reflected BSDE with parameters

(f, ξ), where f is a driver and ξ is an obstacle, if

(Y, Z,A, C) ∈ S2 × IH2 × S2 × S2

Yτ = ξT +

∫ T

τ

f(t, Yt, Zt)dt−

∫ T

τ

ZtdWt + AT − Aτ + CT− − Cτ− a.s. for all τ ∈ T0,T , (3.1)

Yt ≥ ξt for all t ∈ [0, T ] a.s., (3.2)

A is a nondecreasing right-continuous predictable process with A0 = 0, E(AT ) <∞ and such that
∫ T

0

1{Yt>ξt}dA
c
t = 0 a.s. and (Yτ− − ξτ−)(A

d
τ − Ad

τ−) = 0 a.s. for all (predictable) τ ∈ T0,T , (3.3)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0, E(CT ) <∞

and such that (Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T . (3.4)

Here Ac denotes the continuous part of the nondecreasing process A and Ad its discontinuous part.

Remark 3.3 We note that a process (Y, Z,A, C) ∈ S2 × IH2×S2 ×S2 satisfies equation (3.1) in the

above definition if and only if

Yt = ξT +

∫ T

t

f(s, Ys, Zs)ds−

∫ T

t

ZsdWs + AT −At + CT− − Ct− for all t ∈ [0, T ] a.s.

Remark 3.4 We also note that if (Y, Z,A, C) is a solution to the RBSDE defined above, then

∆Ct(ω) = Yt(ω) − Yt+(ω) for all (ω, t) ∈ Ω × [0, T ] outside an evanescent set. This observation

is a consequence of equation (3.1).

Remark 3.5 If (Y, Z,A, C) ∈ S2×IH2×S2×S2 satisfies the above definition, then the process Y has

left and right limits. Moreover, the process (Yt +
∫ t

0
f(s, Ys, Zs)ds)t∈[0,T ] is a strong supermartingale

(cf. Definition A.1).

We first investigate the question of existence and uniqueness of the solution to the RBSDE defined

above in the case where the driver f does not depend on y and z. To this purpose, we first prove a

lemma which will be used in the sequel.

Lemma 3.2 (A priori estimates) Let (Y 1, Z1, A1, C1) ∈ S2×IH2×S2×S2 (resp. (Y 2, Z2, A2, C2) ∈

S2 × IH2 × S2 × S2) be a solution to the RBSDE associated with driver f 1(ω, t) (resp. f 2(ω, t)) and

with obstacle ξ. There exists c > 0 such that for all ε > 0, for all β ≥ 1
ε2

we have

‖Z1 − Z2‖2β ≤ ε2‖f 1 − f 2‖2β

|||Y 1 − Y 2|||
2

β ≤ 2ε2(1 + 2c2)‖f 1 − f 2‖2β.
(3.5)

Proof: Let β > 0 and ε > 0 be such that β ≥ 1
ε2

. We set Ỹ := Y 1−Y 2, Z̃ := Z1−Z2, Ã := A1−A2,

C̃ := C1 − C2, and f̃(ω, t) := f 1(ω, t)− f 2(ω, t). We note that ỸT = ξT − ξT = 0; moreover,

Ỹτ =

∫ T

τ

f̃(t)dt−

∫ T

τ

Z̃tdWt + ÃT − Ãτ + C̃T− − C̃τ− a.s. for all τ ∈ T0,T .
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Thus we see that Ỹ is an optional (strong) semimartingale (in the vocabulary of [15]) with decom-

position Ỹ = Ỹ0 +M + A + B, where Mt :=
∫ t

0
Z̃sdWs, At := −

∫ t

0
f̃(s)ds− Ãt and Bt := −C̃t− (the

notation is that of Theorem A.3 and Corollary A.2 from the Appendix). Applying Corollary A.2 to

Ỹ gives: almost surely, for all t ∈ [0, T ],

eβT Ỹ 2
T = eβt Ỹ 2

t +

∫

]t,T ]

β eβs(Ỹs)
2ds

− 2

∫

]t,T ]

eβs Ỹs−f̃(s)ds− 2

∫

]t,T ]

eβs Ỹs−dÃs

+ 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs +

∫

]t,T ]

eβs Z̃2
sds

+
∑

t<s≤T

eβs(Ỹs − Ỹs−)
2 −

∫

[t,T [

2 eβs Ỹsd(C̃)s+ +
∑

t≤s<T

eβs(Ỹs+ − Ỹs)
2.

Thus, we get (recall that ỸT = 0): almost surely, for all t ∈ [0, T ],

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds = −

∫

]t,T ]

β eβs(Ỹs)
2ds+ 2

∫

]t,T ]

eβs Ỹsf̃(s)ds+ 2

∫

]t,T ]

eβs Ỹs−dÃs

− 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs −
∑

t<s≤T

eβs(Ỹs − Ỹs−)
2

+ 2

∫

[t,T [

eβs Ỹsd(C̃)s+ −
∑

t≤s<T

eβs(Ỹs+ − Ỹs)
2.

Hence, a.s. for all t ∈ [0, T ],

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds ≤ −

∫

]t,T ]

β eβs(Ỹs)
2ds+ 2

∫

]t,T ]

eβs Ỹsf̃(s)ds+ 2

∫

]t,T ]

eβs Ỹs−dÃs

− 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs + 2

∫

[t,T [

eβs Ỹsd(C̃)s+.

(3.6)

Let us first consider the sum of the first and the second term on the r.h.s. of the above inequality

(3.6). By applying the inequality 2ab ≤ (a
ε
)2 + ε2b2, valid for all a ∈ R, for all b ∈ R, we get: a.e. for

all t ∈ [0, T ],

−

∫

]t,T ]

β eβs(Ỹs)
2ds+ 2

∫

]t,T ]

eβs Ỹsf̃(s)ds ≤ −

∫

]t,T ]

β eβs(Ỹs)
2ds+

1

ε2

∫

]t,T ]

eβs Ỹ 2
s ds+ ε2

∫

]t,T ]

eβs f̃ 2(s)ds

= (
1

ε2
− β)

∫

]t,T ]

eβs(Ỹs)
2ds+ ε2

∫

]t,T ]

eβs f̃ 2(s)ds.

As β ≥ 1
ε2

, we have ( 1
ε2
− β)

∫

]t,T ]
eβs(Ỹs)

2ds ≤ 0, for all t ∈ [0, T ] a.s.

Next, we show that the last term on the right-hand side of inequality (3.6) is non-positive. More

precisely, a.s. for all t ∈ [0, T ],
∫

[t,T [
eβs Ỹsd(C̃)s+ ≤ 0. Indeed, a.s. for all t ∈ [0, T ],

∫

[t,T [
eβs Ỹsd(C̃)s+ =

∫

[t,T [
eβs ỸsdC̃s =

∑

t≤s<T eβs Ỹs∆C̃s. Now, a.s. for all s ∈ [0, T ],

Ỹs∆C̃s = (Y 1
s − Y 2

s )∆C
1
s − (Y 1

s − Y 2
s )∆C

2
s . (3.7)
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We use property (3.4), the non-decreasingness of (almost all trajectories of) C1, and the fact that

Y 2 ≥ ξ to obtain: a.s. for all s ∈ [0, T ],

(Y 1
s − Y 2

s )∆C
1
s = (Y 1

s − ξs)∆C
1
s − (Y 2

s − ξs)∆C
1
s = 0− (Y 2

s − ξs)∆C
1
s ≤ 0.

Similarly, we obtain: a.s. for all s ∈ [0, T ],

(Y 1
s − Y 2

s )∆C
2
s = (Y 1

s − ξs)∆C
2
s + (ξs − Y 2

s )∆C
2
s = (Y 1

s − ξs)∆C
2
s + 0 ≥ 0.

We conclude that the last term on the r.h.s. of equation (3.6) is non-positive (in the above sense).

It can be also shown that the third term on the r.h.s. of (3.6) is also non-positive (in the above

sense); the proof uses property (3.3) of the definition of the RBSDE and the property Y i ≥ ξ, for

i = 1, 2; the details are similar to those in the case of a cadlag obstacle and are left to the reader (cf.,

for instance, [27, proof of Prop. A.1]).

The above observations, together with equation (3.6), lead to

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds ≤ ε2

∫

]t,T ]

eβs f̃ 2(s)ds− 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs, for all t ∈ [0, T ], a.s. (3.8)

We now show that the last term on the r.h.s. of the previous inequality (3.8) has zero expectation. To

this purpose, we show that E

[

√

∫ T

0
e2βs Ỹ 2

s−Z̃
2
sds

]

<∞. By using the left-continuity of a.e. trajectory

of the process (Ỹs−), we have

(Ỹs−)
2(ω) ≤ sup

t∈Q
(Ỹt−)

2(ω), for all s ∈ (0, T ], for a.e. ω ∈ Ω. (3.9)

On the other hand, for all t ∈ (0, T ], (Ỹt−)
2 ≤ ess supτ∈T0,T

(Ỹτ)
2 a.s.; hence,

sup
t∈Q

(Ỹt−)
2 ≤ ess sup

τ∈T0,T

(Ỹτ )
2 a.s. (3.10)

From equations (3.9) and (3.10) we obtain

∫ T

0

e2βs Ỹ 2
s−Z̃

2
sds ≤

∫ T

0

e2βs sup
t∈Q

(Ỹt−)
2Z̃2

sds ≤

∫ T

0

e2βs ess sup
τ∈T0,T

(Ỹτ )
2Z̃2

sds a.s. (3.11)

Using this, together with Cauchy-Schwarz inequality, gives

E





√

∫ T

0

e2βs Ỹ 2
s−Z̃

2
sds



 ≤ E





√

ess sup
τ∈T0,T

(̃Yτ )2

√

∫ T

0

e2βs Z̃2
sds



 ≤ |||Ỹ |||S2‖Z̃‖2β,

We have that |||Ỹ |||S2 <∞ due to the inequality |||Ỹ |||S2 ≤ |||Y 1|||S2 + |||Y 2|||S2 and to Y 1 and Y 2 being

in S2. We also have that ‖Z̃‖2β < ∞, due to the fact that Z1, Z2 ∈ IH2 and to the equivalence of

the norms ‖ · ‖2β and ‖ · ‖IH2. We conclude that E

[

√

∫ T

0
e2βs Ỹ 2

s−Z̃
2
sds

]

< ∞; whence, by standard

arguments, we get E
[

∫ T

0
eβs Ỹs−Z̃sdWs

]

= 0.
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By applying (3.8) with t = 0, and by taking expectations on both sides of the resulting inequality,

we obtain Ỹ 2
0 + ‖Z̃‖2β ≤ ε2‖f̃‖2β. Hence,

‖Z̃‖2β ≤ ε2‖f̃‖2β. (3.12)

From (3.8) we also get, for all τ ∈ T0,T ,

eβτ Ỹ 2
τ ≤ ε2

∫

]0,T ]

eβs f̃ 2(s)ds− 2

∫

]0,T ]

eβs Ỹs−Z̃sdWs + 2

∫

]0,τ ]

eβs Ỹs−Z̃sdWs a.s.

By taking first the essential supremum over τ ∈ T0,T and then the expectation on both sides of the

above inequality, we obtain

E[ess sup
τ∈T0,T

eβτ Ỹ 2
τ ] ≤ ε2‖f̃‖2β + 2E[ess sup

τ∈T0,T

|

∫ τ

0

eβs Ỹs−Z̃sdWs|]. (3.13)

By using the continuity of a.e. trajectory of the process (
∫ t

0
eβs Ỹs−Z̃sdWs)t∈[0,T ] (cf. Prop. A.3) and

Burkholder-Davis-Gundy inequalities (applied with p = 1), we get

2E[ess sup
τ∈T0,T

|

∫ τ

0

eβs Ỹs−Z̃sdWs|] = 2E[ sup
t∈[0,T ]

|

∫ t

0

eβs Ỹs−Z̃sdWs|] ≤ 2cE





√

∫ T

0

e2βs Ỹ 2
s−Z̃

2
sds



 , (3.14)

where c is a positive "universal" constant (which does not depend on the other parameters). The

same reasoning as that used to obtain equation (3.11) leads to

√

∫ T

0

e2βs Ỹ 2
s−Z̃

2
sds ≤

√

ess sup
τ∈T0,T

eβτ (Ỹτ )2
∫ T

0

eβs Z̃2
sds a.s.

Combining the two previous inequalities with the inequality ab ≤ 1
2
a2 + 1

2
b2 gives

2E[ess sup
τ∈T0,T

∫ τ

0

eβs Ỹs−Z̃sdWs] ≤
1

2
E[ess sup

τ∈T0,T

eβτ (Ỹτ )
2] +

1

2
4c2E[

∫ T

0

eβs Z̃2
sds].

From this, together with (3.13), we get

1

2
|||Ỹ |||

2

β ≤ ε2‖f̃‖2β + 2c2‖Z̃‖2β.

This inequality, combined with the estimate (3.12) on ‖Z̃‖2β, gives

|||Ỹ |||
2

β ≤ 2ε2(1 + 2c2)‖f̃‖2β.

�

In the following lemma, we prove existence and uniqueness of the solution to the RBSDE from

Definition 3.1 (in the case where the driver f does not depend on y and z) and we characterize the

first component of the solution as the "value process" of an optimal stopping problem.
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Lemma 3.3 Suppose that f does not depend on y, z, that is f(ω, t, y, z) = f(ω, t), where f is a

process in IH2. Let (ξt) be an obstacle. Then, the RBSDE from Definition 3.1 admits a unique

solution (Y, Z,A, C) ∈ S2 × IH2 × S2 × S2, and for each S ∈ T0,T , we have

YS = ess sup
τ∈TS,T

E[ξτ +

∫ τ

S

f(t)dt | FS] a.s. (3.15)

Remark 3.6 If the obstacle (ξt) is left upper-semicontinuous (l.u.s.c. for short) along stopping times,

then (At) is continuous (cf., for instance, the last statement in Thm. 20 of [7, page 429], or [19]).

The proof of the lemma is divided in several steps. First, we exhibit a "natural candidate" Y to be

the first component of the solution to the RBSDE with parameters (f, ξ); we prove that Y belongs

to the space S2 and we give an estimate of
∣

∣

∣

∣

∣

∣Y
∣

∣

∣

∣

∣

∣

2

S2 in terms of |||ξ|||2S2 and ‖f‖2
IH2. In the second step,

we exhibit processes Z, A and C such that (Y , Z,A, C) is a solution to the RBSDE with parameters

(f, ξ). In the third step, we prove that the processes A and C belong to S2 and we give an estimate

of |||A|||2S2 and |||C|||2S2. In the fourth step, we show that Z ∈ IH2. In the final step, we show the

uniqueness of the solution.

Proof:

For S ∈ T0,T , we define Y (S) by

Y (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S

f(u)du | FS], (3.16)

and Y (S) by

Y (S) := Y (S) +

∫ S

0

f(u)du = ess sup
τ∈TS,T

E[ξτ +

∫ τ

0

f(u)du | FS].

We note that the process (ξt +
∫ t

0
f(u)du)t∈[0,T ] is progressive. Therefore, the family (Y (S))S∈T0,T is

a supermartingale family (cf. [19, Remark 1.2 with Prop. 1.5]). This observation, combined with

[7, Remark (b), page 435], gives the existence of a strong optional supermartingale (which we denote

again by Y ) such that Y S = Y (S) a.s. for all S ∈ T0,T . Thus, we have Y (S) = Y (S)−
∫ S

0
f(u)du =

Y S −
∫ S

0
f(u)du a.s. for all S ∈ T0,T . On the other hand, we know that almost all trajectories of the

strong optional supermartingale Y are ladlag (cf. [7]). Thus, we get that the ladlag optional process

(Y t)t∈[0,T ] = (Y t −
∫ t

0
f(u)du)t∈[0,T ] aggregates the family (Y (S))S∈T0,T .

Step 1. By using the definition of Y (cf. (3.16)), Jensen’s inequality and the triangular inequality,

we get

|Y S| ≤ ess sup
τ∈TS,T

E[|ξτ |+ |

∫ τ

S

f(u)du| | FS] ≤ E[ess sup
τ∈TS,T

|ξτ |+

∫ T

0

|f(u)|du | FS].

Thus, we obtain

|Y S| ≤ E[X|FS], (3.17)

9



where we have set

X :=

∫ T

0

|f(u)|du+ ess sup
τ∈T0,T

|ξτ |. (3.18)

Applying Cauchy-Schwarz inequality gives

E[X2] ≤ cT‖f‖2IH2 + c|||ξ|||2S2 < +∞, (3.19)

where c is a positive constant. Now, inequality (3.17) leads to |Y S|
2 ≤ |E[X|FS]|

2. By taking the

essential supremum over S ∈ T0,T , we get ess supS∈T0,T
|Y S|

2 ≤ ess supS∈T0,T
|E[X|FS]|

2. By using

Proposition A.3 of the Appendix and Remark 2.1, we get ess supS∈T0,T
|Y S|

2 ≤ supt∈[0,T ] |E[X|Ft]|
2.

By using this inequality and Doob’s martingale inequalities in L2, we obtain

E[ess sup
S∈T0,T

|Y S|
2] ≤ E[ sup

t∈[0,T ]

|E[X|Ft]|
2] ≤ cE[X2], (3.20)

where c > 0 is a constant different from the above one. Finally, combining inequalities (3.20) and

(3.19) gives

E[ess sup
S∈T0,T

|Y S|
2] ≤ cT‖f‖2IHp + c|||ξ|||2S2, (3.21)

where we have again allowed the positive constant c to differ from the above ones.

Step 2. Due to the previous step and to the assumption f ∈ IH2, the strong optional supermartin-

gale Y is of class (D). Applying Mertens decomposition (cf. Theorem A.1) and a result from optimal

stopping theory (cf. [8, Prop. 2.34] or [19]) gives the following

Y τ = −

∫ τ

0

f(u)du+Mτ − Aτ − Cτ− a.s. for all τ ∈ T0,T , (3.22)

where M is a (cadlag) uniformly integrable martingale, A is a nondecreasing right-continuous pre-

dictable process such that A0 = 0, E(AT ) < ∞ and satisfying (3.3), and C is a nondecreasing

right-continuous adapted purely discontinuous process such that C0− = 0, E(CT ) <∞ and satisfying

(3.4). By the martingale representation theorem there exists a unique predictable process Z such that

dMt = ZtdWt. Moreover, we have Y T = ξT a.s. by definition of Y (cf. (3.16)). Combining this with

equation (3.22) gives equation (3.1). Also by definition of Y , we have Y S ≥ ξS a.s. for all S ∈ T0,T ,

which, along with Proposition A.4, shows that Y satisfies inequality (3.2). In order to conclude that

the process (Y , Z,A, C) is a solution to the RBSDE with parameters (f, ξ), it remains to show that

(Z,A, C) belongs to the space IH2 × S2 × S2, which we do in the following steps.

Step 3. Let us define the process A as the sum of the two non-decreasing processes of the Mertens

decomposition of Y . More precisely, we set At := At + Ct−, where the processes (At) and (Ct−) are

given by (3.22). By arguments similar to those used in the proof of inequality (3.17), we see that

|Y S| ≤ E[X|FS], where X is the random variable defined in (3.18). This observation, together with

Corollary A.1, gives E

[

(

AT

)2
]

≤ cE[X2], where c > 0. By combining this inequality with inequality

(3.19) , we obtain

E

[

(

AT

)2
]

≤ cT‖f‖2IH2 + c|||ξ|||2S2, (3.23)
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where we have again allowed the positive constant c to vary from line to line. We conlude that

AT ∈ L2, which, due to the nondecreasingness of A, is equivalent to A ∈ S2.

Step 4. In this step we show that the process Z is in IH2. We have

∫ T

0

ZsdWs = Y T +

∫ T

0

f(s)ds+ AT − Y 0,

where A is the process from Step 3. Since AT ∈ L2, Y T ∈ L2, Y 0 ∈ L2 and f ∈ IH2, it follows that
∫ T

0
ZsdWs ∈ L2. Hence, Z ∈ IH2.

Step 5. Let us now prove the uniqueness of the solution. Let (Y, Z,A, C) be a solution of the

RBSDE with driver f and obstacle ξ. Then, by the previous Lemma 3.2 (applied with f 1 = f 2 = f)

we obtain Y = Y in S2, where Y is given by (3.16). The uniqueness of Z,A, C follows from the

uniqueness of Mertens decomposition of strong optional supermartingales and from the uniqueness of

the martingale representation. (We note that the uniqueness of Z can be obtained also by applying

the previous Lemma 3.2.) �

In the following theorem we prove existence and uniqueness of the solution to the RBSDE from

Definition 3.1 in the case of a general Lipschitz driver f by using a fixed-point theorem. The following

remark will be used in the proof.

Remark 3.7 Let β > 0. For φ ∈ S2, we have E[
∫ T

0
eβt |φt|

2dt] ≤ TE[ess supτ∈T0,T
eβτ |φτ |

2]. Indeed,

by applying Fubini’s theorem, we get

E[

∫ T

0

eβt |φt|
2dt] =

∫ T

0

E[eβt |φt|
2]dt ≤

∫ T

0

E[ess sup
τ∈T0,T

eβτ |φτ |
2]dt = TE[ess sup

τ∈T0,T

eβτ |φτ |
2]. (3.24)

Theorem 3.4 Let ξ be a left-limited and r.u.s.c. process in S2 and let f be a Lipschitz driver.

The RBSDE with parameters (f, ξ) from Definition 3.1 admits a unique solution (Y, Z,A, C) ∈ S2 ×

IH2 × S2 × S2.

Moreover, if (ξt) is assumed l.u.s.c. along stopping times, then (At) is continuous.

Proof:

We denote by B2
β the space S2×IH2 which we equip with the norm ‖(·, ·)‖B2

β
defined by ‖(Y, Z)‖2

B2
β

:=

|||Y |||2β + ‖Z‖2β, for all (Y, Z) ∈ S2 × IH2. We define a mapping Φ from B2
β into itself as follows: for a

given (y, z) ∈ B2
β , we let (Y, Z) = Φ(y, z) be the first two components of the solution to the RBSDE

associated with driver f(s) := f(s, ys, zs) and with obstacle ξ. Let (A,C) be the associated Mertens

process, constructed as in Lemma 3.3. The mapping Φ is well-defined by Lemma 3.3.

Let (y, z) and (y′, z′) be two elements of B2
β . We set (Y, Z) = Φ(y, z) and (Y ′, Z ′) = Φ(y′, z′). We

also set Ỹ := Y − Y ′, Z̃ := Z − Z ′, ỹ := y − y′ and z̃ := z − z′.

Let us prove that for a suitable choice of the parameter β > 0 the mapping Φ is a contraction

from the Banach space B2
β into itself.
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By applying Lemma 3.2, we get

|||Ỹ |||
2

β + ‖Z̃‖2β ≤ ε2(3 + 4c2)‖f(y, z)− f(y′, z′)‖2β,

for all ε > 0, for all β ≥ 1
ε2

. By using the Lipschitz property of f and the fact that (a+b)2 ≤ 2a2+2b2,

for all a ∈ R, for all b ∈ R, we obtain ‖f(y, z)−f(y′, z′)‖2β ≤ CK(‖ỹ‖
2
β+‖z̃‖2β), where CK is a positive

constant depending on the Lipschitz constant K only. Thus, for all ε > 0, for all β ≥ 1
ε2

, we have

|||Ỹ |||
2

β + ‖Z̃‖2β ≤ ε2CK(3 + 4c2)(‖ỹ‖2β + ‖z̃‖2β).

The previous inequality, combined with Remark 3.7, gives

|||Ỹ |||
2

β + ‖Z̃‖2β ≤ ε2CK(3 + 4c2)(T + 1)(|||ỹ|||2β + ‖z̃‖2β).

Thus, for ε > 0 such that ε2CK(3 + 4c2)(T + 1) < 1 and β > 0 such that β ≥ 1
ε2

the mapping Φ is a

contraction. By the Banach fixed-point theorem, we get that Φ has a unique fixed point in B2
β . We

thus have the existence and uniqueness of the solution to the RBSDE. �

4 Optimal stopping with f-conditional expectations

4.1 Formulation of the problem

Let T > 0 be the terminal time and f be a Lipschitz driver (as before). Let (ξt, 0 ≤ t ≤ T ) be a

left-limited r.u.s.c. process in S2 modelling a dynamic financial position. The risk of ξ is assessed

by a dynamic risk measure equal, up to a minus sign, to the f -conditional expectation of ξ. More

precisely: let T ′ ∈ [0, T ] be a fixed (for the present) instant before the terminal time T ; the gain of

the position at T ′ is equal to ξT ′ and the risk at time t, where t runs through the interval [0, T ′],

is assessed by −Ef
t,T ′(ξT ′). The modelling is similar when T ′ ∈ [0, T ] is replaced by a more general

stopping time τ ∈ T0,T . We are interested in stopping the process ξ in such a way that the risk be

minimal. We are thus led to formulating the following optimal stopping problem (at the initial time

0):

v(0) = −ess sup
τ∈T0,T

Ef
0,τ(ξτ ). (4.25)

As is usual in optimal control, we embed the above problem in a larger class of problems. We thus

consider

v(S) = −ess sup
τ∈TS,T

Ef
S,τ(ξτ), (4.26)

where S ∈ T0,T . The random variable v(S) corresponds to the minimal risk measure at time S. Our

aim is to characterize v(S) for each S ∈ T0,T , and to study the existence of an S-optimal stopping

time τ ∗ ∈ TS,T , i.e. a stopping time τ ∗ ∈ TS,T such that v(S) = −Ef
S,τ∗(ξτ∗) a.s.
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4.2 Characterization of the value function as the solution of an RBSDE

In this section, we show that the minimal risk measure v defined by (4.26) coincides with −Y , where

Y is (the first component of) the solution to the reflected BSDE associated with driver f and obstacle

ξ. We also investigate the question of the existence of an ε-optimal stopping time, and that of the

existence of an optimal stopping time (under suitable assumptions on the process ξ).

The following terminology will be used in the sequel.

Let Y be a process in S2. Let f be a Lipschitz driver.

• The process (Yt) is said to be a strong Ef -supermartingale (resp Ef -submartingale), if Ef
S,τ(Yτ ) ≤

YS (resp. Ef
S,τ(Yτ ) ≥ YS) a.s. on S ≤ τ , for all S, τ ∈ T0,T .

The process (Yt) is said to be a strong Ef -martingale if it is both a strong Ef -super and sub-

martingale.

• Let S, τ ∈ T0,T be such that S ≤ τ a.s. The process Y is said to be a strong Ef -supermartingale

(resp. a strong Ef -submartingale) on [S, τ ] if for all σ, µ ∈ T0,T such that S ≤ σ ≤ µ ≤ τ a.s.,

we have Yσ ≥ Ef
σ,µ(Yµ) a.s. (resp. Yσ ≤ Ef

σ,µ(Yµ) a.s.) We say that Y is a strong Ef -martingale

on [S, τ ] if it is both a strong Ef -super and submartingale on [S, τ ].

Remark 4.8 We note that a process Y ∈ S2 is a strong Ef -martingale on [S, τ ] (where S, τ ∈ T0,T

are such that S ≤ τ a.s.) if and only if Y is the solution on [S, τ ] to the BSDE associated with driver

f , terminal time τ and terminal condition Yτ
1.

It follows that for a process Y ∈ S2 to be a strong Ef -martingale on [S, τ ], it is sufficient to have:

Yσ = Ef
σ,τ (Yτ) a.s., for all σ ∈ T0,T such that S ≤ σ ≤ τ a.s.

Property 4.1 Let f be a Lipschitz driver. Let S, τ ∈ T0,T with S ≤ τ a.s. Let Y be a strong

Ef -supermartingale on [S, τ ]. The following two assertions are equivalent:

(i) The process Y is a strong Ef -martingale on [S, τ ].

(ii) YS = Ef
S,τ(Yτ) a.s.

Proof: The implication (i) ⇒ (ii) is due to the definition. Let us show the converse implication. Let

σ ∈ T0,T be such that S ≤ σ ≤ τ a.s. By using (ii) and the consistency property of f -expectations,

we obtain

YS = Ef
S,σ

(

Ef
σ,τ (Yτ)

)

a.s.

By using the strong Ef -supermartingale property of Y and the monotonicity of f -expectations,

we obtain

Ef
S,σ

(

Ef
σ,τ

(

Yτ
))

≤ Ef
S,σ

(

Yσ
)

≤ YS a.s.

1We say that the process Y is the solution on [S, τ ] to the BSDE associated with driver f , terminal time τ and
terminal condition ζ (where ζ is an Fτ -measurable square-integrable random variable) if for almost all ω ∈ Ω, for all
t ∈ [0, T ] such that S(ω) ≤ t ≤ τ(ω), Yt(ω) = Ȳt(ω), where Ȳ denotes the solution to the BSDE associated with driver
f , terminal time τ and terminal condition ζ.
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From the previous two equations we get

YS = Ef
S,σ

(

Ef
σ,τ

(

Yτ
))

= Ef
S,σ

(

Yσ
)

a.s.

In particular, Ef
S,σ

(

Yσ
)

= Ef
S,σ

(

Ef
σ,τ

(

Yτ
))

a.s. We combine this equality with the inequality Yσ ≥

Ef
σ,τ

(

Yτ
)

a.s., and we apply the strict comparison theorem for BSDEs to get Yσ = Ef
σ,τ

(

Yτ
)

a.s.

Hence, the process Y is a strong Ef -martingale on [S, τ ]. �

We next show a lemma which will be used in the proof of the main result of this section.

Lemma 4.1 Let f be a Lipschitz driver and ξ be a left-limited r.u.s.c. process in S2. Let (Y, Z,A, C)

be the solution to the reflected BSDE with parameters (f, ξ) as in Definition 3.1. Let ε > 0 and

S ∈ T0,T . Let τ εS be defined by

τ εS := inf{t ≥ S : Yt ≤ ξt + ε}. (4.27)

The following two statements hold:

(i) Yτε
S
≤ ξτε

S
+ ε a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ εS ].

We note that τ εS defined in (4.27) is a stopping time as the début after S of a progressive set.

Proof: We first prove statement (i). By way of contradiction, we suppose P (Yτε
S
> ξτε

S
+ ε) > 0. We

have ∆Cτε
S
= Cτε

S
− C(τε

S
)− = 0 on the set {Yτε

S
> ξτε

S
+ ε}. On the other hand, due to Remark 3.4,

∆Cτε
S
= Yτε

S
− Y(τε

S
)+. Thus, Yτε

S
= Y(τε

S
)+ on the set {Yτε

S
> ξτε

S
+ ε}. Hence,

Y(τε
S
)+ > ξτε

S
+ ε on the set {Yτε

S
> ξτε

S
+ ε}. (4.28)

We will obtain a contradiction with this statement. Let us fix ω ∈ Ω. By definition of τ εS(ω),

there exists a non-increasing sequence (tn) = (tn(ω)) ↓ τ εS(ω) such that Ytn(ω) ≤ ξtn(ω) + ε, for

all n ∈ IN . Hence, lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω) + ε. As the process ξ is r.u.s.c. by

assumption, we have lim supn→∞ ξtn(ω) ≤ ξτε
S
(ω). On the other hand, as (tn(ω)) ↓ τ εS(ω), we have

lim supn→∞ Ytn(ω) = Y(τε
S
)+(ω). Thus, Y(τε

S
)+(ω) ≤ ξτε

S
(ω) + ε, which is in contradiction with (4.28).

We conclude that Yτε
S
≤ ξτε

S
+ ε a.s.

Let us now prove statement (ii). By definition of τ εS, we have: for a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[,

Yt(ω) > ξt(ω) + ε. Hence, for a.e. ω ∈ Ω, the function t 7→ Ac
t(ω) is constant on [S(ω), τ εS(ω)[;

by continuity of almost every trajectory of the process Ac, Ac
· (ω) is constant on the closed interval

[S(ω), τ εS(ω)], for a.e. ω. Furthermore, for a.e. ω ∈ Ω, the function t 7→ Ad
t (ω) is constant on

[S(ω), τ εS(ω)[. Moreover, Y(τε
S
)− ≥ ξ(τε

S
)− + ε a.s. , which implies that ∆Ad

τε
S
= 0 a.s. Finally, for

a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, ∆Ct(ω) = Ct(ω) − Ct−(ω) = 0; therefore, for a.e. ω ∈ Ω,

for all t ∈ [S(ω), τ εS(ω)[, ∆+Ct−(ω) = Ct(ω) − Ct−(ω) = 0, which implies that, for a.e. ω ∈ Ω, the

function t 7→ Ct−(ω) is constant on [S(ω), τ εS(ω)[. By left-continuity of almost every trajectory of the

process (Ct−), we get that for a.e. ω ∈ Ω, the function t 7→ Ct−(ω) is constant on the closed interval

[S(ω), τ εS(ω)]. Thus, for a.e. ω ∈ Ω, the map t 7→ At(ω)+Ct−(ω) is constant on [S(ω), τ εS(ω)]. Hence,
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Y is the solution on [S, τ εS] of the BSDE associated with driver f , terminal time τ εS and terminal

condition Yτε
S
. We conclude by using Remark 4.8. �

We now state the main result of this section.

Theorem 4.2 (Characterization theorem) Let T > 0 be the terminal time. Let (ξt, 0 ≤ t ≤ T )

be a left-limited r.u.s.c. process in S2 and let f be a Lipschitz driver. Let (Y, Z,A, C) be the solution

to the reflected BSDE with parameters (f, ξ) as in Definition 3.1.

(i) For each stopping time S ∈ T0, we have

YS = ess sup
τ∈TS,T

Ef
S,τ(ξτ ) a.s. (4.29)

(ii) For each S ∈ T0,T and each ε > 0, the stopping time τ εS defined by (4.27) is (Lε)-optimal for

problem (4.29), that is

YS ≤ Ef
S,τε

S
(ξτε

S
) + Lε a.s. , (4.30)

where L is a constant which only depends on T and the Lipschitz constant K of f .

Remark 4.9 This result still holds when the assumption of existence of left limits for the process ξ

is relaxed (cf. also Remark 3.2).

Proof:

Let ε > 0 and let τ ∈ TS,T . By Proposition A.5 in the Appendix, the process (Yt) is a strong

Ef -supermartingale. Hence, for each τ ∈ TS,T , we have

YS ≥ Ef
S,τ(Yτ) ≥ Ef

S,τ(ξτ ) a.s. ,

where the second inequality follows from the inequality Y ≥ ξ and the monotonicity property of Ef(·)

(with respect to terminal condition). By taking the supremum over τ ∈ TS,T , we get

YS ≥ ess sup
τ∈TS,T

Ef
S,τ(ξτ ) a.s. (4.31)

It remains to show the converse inequality.

Due to part (ii) of the previous Lemma 4.1 we have YS = Ef
S,τε

S
(Yτε

S
) a.s. From this equality,

together with part (i) of Lemma 4.1 and the monotonicity property of Ef(·), we derive

YS = Ef
S,τε

S
(Yτε

S
) ≤ Ef

S,τε
S
(ξτε

S
+ ε) ≤ Ef

S,τε
S
(ξτε

S
) + Lε a.s., (4.32)

where the last inequality follows from the estimates on BSDEs (see Proposition A.4 [26]). Inequality

(4.30) thus holds. From (4.32) we also deduce

YS ≤ ess sup
τ∈TS,T

Ef
S,τ(ξτ ) + Lε a.s.
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As ε is an arbitrary positive number, we get YS ≤ ess supτ∈TS,T
Ef
S,τ(ξτ) a.s. By (4.31) this inequality

is an equality.

�

We now consider the question of the existence of optimal stopping times for the optimal stopping

problem (4.29). We first provide an optimality criterion for the problem (4.29).

Proposition 4.3 (Optimality criterion) Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in

S2 and let f be a Lipschitz driver. Let S ∈ T0,T and τ̂ ∈ TS,T . The stopping time τ̂ is S-optimal, i.e.

YS = Ef
S,τ̂(ξτ̂) a.s. , if and only if Y is a strong Ef -martingale on [S, τ̂ ] with Yτ̂ = ξτ̂ a.s.

Proof: Let us prove the "only if" part. Suppose that τ̂ is S-optimal, i.e. YS = Ef
S,τ̂(ξτ̂ ) a.s. Since by

Theorem 4.2 and by Proposition A.5 in the Appendix, Y is a strong Ef -supermartingale, we have

YS ≥ Ef
S,τ̂(Yτ̂) ≥ Ef

S,τ̂(ξτ̂ ) a.s. ,

where the last inequality holds because Y ≥ ξ. It follows that YS = Ef
S,τ̂(Yτ̂ ) a.s. By Property 4.1,

Y is a strong Ef -martingale on [S, τ̂ ]. Moreover, since Ef
S,τ̂(Yτ̂ ) = Ef

S,τ̂(ξτ̂) a.s. with Yτ̂ ≥ ξτ̂ a.s. , the

strict comparison theorem for BSDEs implies that Yτ̂ = ξτ̂ a.s.

The "if part" is immediate. �

Under an additional assumption of left upper-semicontinuity on the process ξ, we prove that the

first time when the value process Y "hits" ξ is optimal. To this purpose, we first give a lemma which

is to be compared with Lemma 4.1.

Lemma 4.2 Let f be a Lipschitz driver. Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. and l.u.s.c.

process in S2. Let (Y, Z,A, C) be the solution to the reflected BSDE with parameters (f, ξ). We define

τ ∗S by

τ ∗S := inf{u ≥ S : Yu = ξu}. (4.33)

The following assertions hold:

(i) Yτ∗
S
= ξτ∗

S
a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ ∗S ].

Proof: To prove the first statement we note that Yτ∗
S
≥ ξτ∗

S
a.s., since Y is (the first component of)

the solution to the RBSDE with barrier ξ. We show that Yτ∗
S
≤ ξτ∗

S
a.s. by using the assumption of

right-upper semicontinuity on the process ξ; the arguments are similar to those used in the proof of

part (i) of Lemma 4.1 and are left to the reader.

Let us prove the second statement. By definition of τ ∗S, we have that for a.e. ω ∈ Ω, Yt(ω) > ξt(ω)

on [S(ω), τ ∗S(ω)[; hence, for a.e. ω, the trajectory Ac(ω) is constant on [S(ω), τ ∗S(ω)[ and even on

the closed interval [S(ω), τ ∗S(ω)] due to the continuity. On the other hand, due to the assumption of
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l.u.s.c. on the process ξ, we have A(ω) = Ac(ω) for a.e. ω (see Theorem 3.4). Thus, for a.e. ω, A(ω)

is constant on [S(ω), τ ∗S(ω)]. We show that Ct−(ω) is constant on [S(ω), τ ∗S(ω)] by the same arguments

as those of the proof of part (ii) of Lemma 4.1. We conclude by using Remark 4.8. �

Proposition 4.2 Let f be a Lipschitz driver. Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. and

l.u.s.c. process in S2. The stopping time τ ∗S defined in (4.33) is optimal for problem (4.29), that is

YS = Ef
S,τ∗

S
(ξτ∗

S
) a.s.

Proof: The result is a consequence of the previous Lemma 4.2 and the "if part" of the optimality

criterion from Proposition 4.3. �

Definition 4.4 Let (ξt, 0 ≤ t ≤ T ) be a process in S2 and let f be a Lipschitz driver. A process

(Yt, 0 ≤ t ≤ T ) in S2 is said to be the Ef - Snell envelope of ξ if it is the smallest strong Ef -

supermartingale greater than or equal to ξ.

We show the following property:

Proposition 4.5 Let T > 0 be the terminal time. Let (ξt, 0 ≤ t ≤ T ) be a left-limited r.u.s.c. process

in S2 and let f be a Lipschitz driver. Let (Y, Z,A, C) be the solution to the reflected BSDE with

parameters (ξ, f) as in Definition 3.1. The process Y is the Ef -Snell envelope of ξ.

Proof: By Proposition A.5 in the Appendix, the process Y is a strong Ef -supermartingale. Moreover,

since Y is (the first component of) the solution to the reflected BSDE with parameters (f, ξ), it is

greater than or equal to ξ (cf. Def. 3.1).

It thus remains to show the minimality property. Let Y ′ be another Ef -supermartingale greater than

or equal to ξ. Let S ∈ T0,T . For each τ ∈ TS,T , we have

Y ′
S ≥ Ef

S,τ(Y
′
τ ) ≥ Ef

S,τ(ξτ ) a.s. ,

where the second inequality follows from the inequality Y ′ ≥ ξ and the monotonicity property of Ef

with respect to the terminal condition. By taking the supremum over τ ∈ TS,T , we get

Y ′
S ≥ ess sup

τ∈TS,T

Ef
S,τ(ξτ) = YS a.s., (4.34)

where the last equality follows from the above characterization theorem (Theorem 4.2). The desired

result follows. �

5 Additional results

5.1 Ef -Mertens decomposition of Ef-strong supermartingales

We now show an Ef -Mertens decomposition for Ef -strong supermartingales, which generalizes Mertens

decomposition to the case of f -expectations.

We first show the following lemma.
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Lemma 5.1 Let (Yt) ∈ S2 be a strong Ef -supermartingale (resp. Ef -submartingale). Then, (Yt) is

right upper-semicontinuous (resp. right lower-semicontinuous).

Proof: Suppose that (Yt) is a strong Ef -supermartingale. Let τ ∈ T0,T and let (τn) be a nonincreasing

sequence of stopping times such that limn→+∞ τn = τ a.s. and for all n ∈ IN , τn > τ a.s. on {τ < T}.

Suppose that limn→+∞ Yτn exists a.s. We note that the random variable limn→+∞ Yτn is Fτ -measurable

(as the filtration is right-continuous). Let us show that

Yτ ≥ lim
n→+∞

Yτn a.s.

Since (Yt) is a strong Ef -supermartingale and the sequence (τn) is nonincreasing, we have, for all n ∈

IN , Ef
τ,τn

(Yτn) ≤ Ef
τ,τn+1

(Yτn+1
) ≤ Yτ . We deduce that the sequence of random variables (Ef

τ,τn
(Yτn))n∈IN

is nondecreasing (hence, converges a.s.) and its limit (in the a.s. sense) satisfies Yτ ≥ limn→+∞ ↑

Ef
τ,τn

(Yτn) a.s. This observation, combined with the continuity property of BSDEs with respect to

terminal time and terminal condition (cf. [26, Prop. A.6]) gives

Yτ ≥ lim
n→+∞

Ef
τ,τn

(Yτn) = Ef
τ,τ ( lim

n→+∞
Yτn) = lim

n→+∞
Yτn a.s.

This result, together with a result of the general theory of processes (cf. [5, Prop. 2, page 300]),

ensures that the optional process (Yt) is right-upper semicontinuous.

�

Theorem 5.2 (Ef-Mertens decomposition) Let (Yt) be a process in S2 . Let f be a Lipschitz

driver.

The process (Yt) is a strong Ef -supermartingale (resp. Ef -submartingale) if and only if there exists

a nondecreasing (resp. non increasing) right-continuous predictable process A in S2 with A0 = 0 and

a nondecreasing (resp. nonincreasing) right-continuous adapted purely discontinuous process C in S2

with C0− = 0, as well as a predictable process Z ∈ IH2, such that

−dYt = f(t, Yt, Zt)dt+ dAt + dCt− − ZtdWt.

Proof: The "if part" has been shown in Proposition A.5 of the Appendix. Let us show the "only

if" part. Suppose that (Yt) is a strong Ef -supermartingale. Let S ∈ T0,T . Since (Yt) is a strong

Ef -supermartingale, it follows that for each τ ∈ TS,T , we have YS ≥ Ef
S,τ(Yτ) a.s. We thus get

YS ≥ ess sup
τ∈TS,T

Ef
S,τ(Yτ ) a.s.

Now, by definition of the essential supremum, YS ≤ ess supτ∈TS,T
Ef
S,τ(Yτ) a.s. (since S ∈ TS,T ). The

previous two inequalities imply

YS = ess sup
τ∈TS,T

Ef
S,τ(Yτ) a.s.

By our characterization theorem (Theorem 4.2) combined with Remark 4.9, the process (Yt) coincides

with the solution of the reflected BSDE associated with the obstacle (Yt) (which is r.u.s.c. by Lemma

5.1). The result follows. �
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Remark 5.10 It follows from the previous theorem that strong Ef -supermartingales and strong Ef -

submartingales have left and right limits.

5.2 Comparison theorem for RBSDEs

Theorem 5.3 (Comparison) Let ξ1, ξ2 be square-integrable barriers. Let f 1and f 2 be Lipschitz

drivers. Suppose that

• ξ2t ≤ ξ1t , 0 ≤ t ≤ T a.s.

• f 2(t, y, z) ≤ f 1(t, y, z), for all (y, z) ∈ R
2 dP ⊗ dt− a.s.

Let (Y i, Z i, Ai, C i) be the solution of the RBSDE associated with (ξi, f i) , i = 1, 2. Then,

Y 2
t ≤ Y 1

t , ∀t ∈ [0, T ] a.s.

Proof: Let S ∈ T0,T . For i = 1, 2 and for each τ ∈ TS,T , let us denote by Ef i

the conditional (non-

linear) expectation associated with driver f i. By the comparison theorem for BSDEs, for each τ in

TS,T we have

Ef2

S,τ(ξ
2
τ ) ≤ Ef1

S,τ(ξ
1
τ ) a.s.

By taking the essential supremum over τ in TS,T and by using Theorem 4.2, we get

Y 2
S = ess sup

τ∈TS,T

Ef2

S,τ(ξ
2
τ ) ≤ ess sup

τ∈TS,T

Ef1

S,τ(ξ
1
τ ) = Y 1

S a.s.

Since this inequality holds for each S ∈ T0,T , the result follows. �

6 Further extensions

The previous results can be extended to a framework where, in addition to the Brownian motion

W , there is also an independent Poisson random measure. More precisely, we place ourselves in the

following framework: Let (U,U) be a measurable space equipped with a σ-finite positive measure

ν. Let N(dt, du) be a Poisson random measure with compensator dt ⊗ ν(du). Let Ñ(dt, du) be its

compensated process. The filtration IF = {Ft : t ∈ [0, T ]} corresponds here to the (complete) natural

filtration associated with W and N .

We denote by L2
ν the set of measurable functions ℓ : U → R such that ‖ℓ‖2ν :=

∫

U
|ℓ(u)|2ν(du) < +∞.

Let IH2
ν be the set of processes l which are predictable, that is, measurable

l : (Ω× [0, T ]× U, P ⊗ U) → (R ,B(R)); (ω, t, u) 7→ lt(ω, u) with

‖l‖2IH2
ν
:= E

[
∫ T

0

‖lt‖
2
ν dt

]

<∞.

In this framework the notions of driver and Lipschitz driver are defined as follows.

Definition 6.1 (Driver, Lipschitz driver) A function f is said to be a driver if
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• f : [0, T ]× Ω×R
2 × L2

ν → R

(ω, t, y, z, k) 7→ f(ω, t, y, z, k) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• f(·, 0, 0, 0) ∈ IH2.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that dP⊗dt-a.s. ,

for each (y1, z1, k1), (y2, z2, k2),

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

The notion of a solution to the reflected BSDE associated with driver f and obstacle ξ is now

defined as follows.

Definition 6.2 A process (Y, Z, k, A, C) is said to be a solution to the reflected BSDE associated with

driver f and obstacle ξ if

(Y, Z, k(·), A, C) ∈ S2 × IH2 × IH2
ν × S2 × S2

Yt = ξT +

∫ T

t

f(s, Ys, Zs, ks)ds+ AT − At + CT− − Ct− −

∫ T

t

ZsdWs −

∫ T

t

∫

U

ks(u)Ñ(ds, du),

where the equality holds (as before) for all t ∈ [0, T ] a.s.,

with Y ≥ ξ (up to an evanescent set) and where A and C satisfy the same conditions as in the

Brownian case.

It can be shown that the results of Section 3 still hold in this setting.

We recall that in this extended framework the monotonicity property of f -conditional expectations

is not automatically satisfied. We are thus led to making the following assumption on the driver f ,

which ensures the nondecreasing property of Ef(·) by the comparison theorem for BSDEs with jumps

(cf. [26, Thm. 4.2]).

Assumption 6.1 Assume that dP ⊗ dt-a.s for each (y, z, k1, k2) ∈ R2 × (L2
ν)

2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈θy,z,k1,k2t , k1 − k2〉ν ,

with

θ : [0, T ]× Ω× R2 × (L2
ν)

2 → L2
ν ; (ω, t, y, z, k1, k2) 7→ θ

y,z,k1,k2
t (ω, ·)

P ⊗B(R2)⊗B((L2
ν)

2)-measurable, bounded, and satisfying dP ⊗dt⊗dν(u)-a.s. , for each (y, z, k1, k2)

∈ R2 × (L2
ν)

2,

θ
y,z,k1,k2
t (u) ≥ −1 and |θy,z,k1,k2t (u)| ≤ ψ(u), (6.35)

where ψ ∈ L2
ν .

This framework is appropriate for generalizing the results of Section 4.
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A Appendix

The following observation is given for the convenience of the reader.

Proposition A.3 Let Y be a cadlag process. Then, supt∈[0,T ] Yt is a random variable and we have

sup
t∈[0,T ]

Yt = ess sup
t∈[0,T ]

Yt = ess sup
τ∈T0,T

Yτ .

The following definition can be found in [7, Appendix 1, Def.1].

Definition A.1 Let (Y )t∈[0,T ] be an optional process. We say that Y is a strong (optional) super-

martingale if

• Yτ is integrable for all τ ∈ T0,T and

• YS ≥ E[Yτ | FS] a.s., for all S, τ ∈ T0,T such that S ≤ τ a.s.

We recall a decomposition of strong optional supermartingales, known as Mertens decomposition

(cf. [7, Theorem 20, page 429, combined with Remark 3(b), page 205], or [8, Prop. 2.26], or [20,

Theorem 4, page 527]).

Theorem A.1 (Mertens decomposition) Let Y be a strong optional supermartingale of class (D).

There exists a unique uniformly integrable martingale (Mt), a unique predictable right-continuous

nondecreasing process (At) with A0 = 0 and E[AT ] < ∞, and a unique right-continuous adapted

nondecreasing process (Ct), which is purely discontinuous, with C0− = 0 and E[CT ] <∞, such that

Yt =Mt − At − Ct−, 0 ≤ t ≤ T a.s. (A.36)

Moreover, the process A is continuous if and only if Y is left-continuous along stopping times in

expectation (i.e. for any non-decreasing sequence of stopping times (Sn), we have limn→∞E[Y Sn
] =

E[Y S], where S := limn→∞ Sn).

The following remark can be found in [7, Appendix 1, Thm.20, equalities (20.2)].

Remark A.11 We have ∆Ct = Yt − Yt+ and ∆AS = YS− − pYS for all predictable stopping times

S ∈ T0,T , where pY is the predictable projection of Y .

The following result can be found in [7].

Theorem A.2 (Dellacherie-Meyer) Let A be a non-decreasing predictable process. Let U be the

potential of the process A, i.e. Ut := E[AT |Ft] − At for all t ∈ [0, T ]. Assume that there exists a

non-negative FT -measurable random variable X such that US ≤ E[X|FS] a.s. for all S ∈ T0,T . Then,

E[A2
T ] ≤ cE[X2], (A.37)

where c > 0 is a positive constant.

21



Proof: For the proof of the result the reader is referred to Paragraph 18 in [7, Appendix 1] generalizing

Theorem VI.99 of the same reference to the case of a non-decreasing process which is not necessarily

right-continuous nor left-continuous. �

For a given strong optional supermartingale Y , we define A by At := At + Ct−, where A and C are

the two nondecreasing processes of Mertens decomposition of Y from equation (A.36). The process

A is sometimes referred to as the Mertens process associated with Y .

By using the previous theorem, we obtain the following integrability property for the Mertens process.

Corollary A.1 Let Y be a strong optional supermartingale of class (D) such that: for all S ∈ T0,T ,

|YS| ≤ E[X|FS] a.s., where X is a non-negative FT -measurable random variable. Let A be the Mertens

process associated with Y . There exists a positive constant c such that

E

[

(

AT

)2
]

≤ cE[X2], (A.38)

Proof: Let S ∈ T0,T . From Mertens decomposition, we have YS = MS − AS a.s. and YT =

MT −AT a.s. Taking conditional expectations in the second equation gives E[YT |FS] = E[MT |FS]−

E[AT |FS] a.s. By substracting this equation from the first, we obtain YS − E[YT |FS] = MS −

E[MT |FS] + E[AT |FS] − AS a.s. Thus, YS − E[YT |FS] = E[AT |FS] − AS a.s., where we have used

the fact that M is a martingale, together with the optional sampling theorem. From this equality we

easily get

|E[AT |FS]−AS| = |YS − E[YT |FS]| ≤ |YS|+ E[|YT ||FS] a.s. (A.39)

By using this observation and the assumption, we get the following upper bound for the potential at

time S of the process A:

|E[AT |FS]− AS| ≤ E[X|FS] + E[E[X|FT ]|FS] = E[2X|FS] a.s.

By applying Theorem A.2, we obtain the desired conclusion. �

The following proposition is recalled for the convenience of the reader.

Proposition A.4 Let X and Y be two optional processes such that XS ≥ YS a.s. for all S ∈ T0,T .

Then, X ≥ Y up to an evanescent set.

Proof: The result is a direct consequence of the optional section theorem (cf. [6, Theorem IV.84]).

The details of the proof are analogous to those of the proof of Theorem IV.86 of [6] and are left to

the reader. �

Let us recall the change of variables formula for optional semimartingales which are not necessarily

cad. The result can be seen as a generalization of the classical Itô formula and can be found in [15,

Theorem 8.2] (cf. also [20, Chapter VI, Section 3, page 538]). We recall the result in our framework

in which the underlying filtered probability space satisfies the usual conditions.
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Theorem A.3 (Gal’chouk-Lenglart) Let n ∈ IN . Let X be an n-dimensional optional semi-

martingale, i.e. X = (X1, . . . , Xn) is an n-dimensional optional process with decomposition Xk =

Xk
0 + Mk + Ak + Bk, for all k ∈ {1, . . . , n}, where Mk is a (cadlag) local martingale, Ak is a

right-continuous process of finite variation such that A0 = 0, and Bk is a left-continuous process of

finite variation which is purely discontinuous and such that B0 = 0. Let F be a twice continuously

differentiable function on R
n. Then, almost surely, for all t ≥ 0,

F (Xt) = F (X0) +
n

∑

k=1

∫

]0,t]

DkF (Xs−)d(A
k +Mk)s

+
1

2

n
∑

k,l=1

∫

]0,t]

DkDlF (Xs−)d < Mkc,M lc >s

+
∑

0<s≤t

[

F (Xs)− F (Xs−)−

n
∑

k=1

DkF (Xs−)∆X
k
s

]

+
n

∑

k=1

∫

[0,t[

DkF (Xs)d(B
k)s+

+
∑

0≤s<t

[

F (Xs+)− F (Xs)−
n

∑

k=1

DkF (Xs)∆+X
k
s

]

,

where Dk denotes the differentiation operator with respect to the k-th coordinate, and Mkc denotes

the continuous part of Mk.

Corollary A.2 Let Y be a one-dimensional optional semimartingale with decomposition Y = Y0 +

M +A+B, where M , A, and B are as in the above theorem. Let β > 0. Then, almost surely, for all

t ≥ 0,

eβt Y 2
t = Y 2

0 +

∫

]0,t]

β eβs Y 2
s ds+ 2

∫

]0,t]

eβs Ys−d(A+M)s

+

∫

]0,t]

eβs d < M c,M c >s

+
∑

0<s≤t

eβs(Ys − Ys−)
2 +

∫

[0,t[

2 eβs Ysd(B)s+ +
∑

0≤s<t

eβs(Ys+ − Ys)
2.

Proof: It suffices to apply the change of variables formula from Theorem A.3 with n = 2, F (x, y) =

xy2, X1
t = eβt, andX2

t = Yt. Indeed, by applying Theorem A.3 and by noting that the local martingale
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part and the purely discontinuous part of X1 are both equal to 0, we obtain

eβt Y 2
t = Y 2

0 +

∫

]0,t]

β eβs Y 2
s ds+ 2

∫

]0,t]

eβs Ys−d(A+M)s

+
1

2

∫

]0,t]

2 eβs d < M c,M c >s

+
∑

0<s≤t

eβs
(

Y 2
s − (Ys−)

2 − 2Ys−(Ys − Ys−)
)

+

∫

[0,t[

2 eβs Ysd(B)s+ +
∑

0≤s<t

eβs
(

(Ys+)
2 − (Ys)

2 − 2Ys(Ys+ − Ys)
)

.

The desired expression follows as Y 2
s − (Ys−)

2 − 2Ys−(Ys − Ys−) = (Ys − Ys−)
2 and (Ys+)

2 − (Ys)
2 −

2Ys(Ys+ − Ys) = (Ys+ − Ys)
2. �

Proposition A.5 Let f be a Lipschitz driver. Let A be a nondecreasing (resp. nonincreasing) right-

continuous predictable process in S2 with A0 = 0 and let C be a nondecreasing (resp. nonincreasing)

right-continuous adapted purely discontinuous process in S2 with C0− = 0.

Let (Y, Z) ∈ S2 ×H2 satisfy

−dYt = f(t, Yt, Zt)dt+ dAt + dCt− − ZtdWt, (A.40)

in the sense that, for each τ ∈ T0,T , the equality

Yτ = YT +

∫ T

τ

f(s, Ys, Zs)ds+ AT − Aτ + CT− − Cτ− −

∫ T

τ

ZsdWs

holds almost-surely. Then the process (Yt) is a strong Ef -supermartingale (resp Ef -submartingale).

Proof: We address the case where A and C are nondecreasing. Let τ, θ ∈ T0 be such that τ ≤ θ a.s.

Let us show that Yτ ≥ Ef
τ,θ(Yθ) a.s.

We denote by (X, π) the solution to the BSDE associated with driver f , terminal time θ, and terminal

condition Yθ; then Ef
τ,θ(Yθ) = Xτ a.s. (by definition of Ef).

Set Ȳt = Yt −Xt and Z̄t = Zt − πt. Then

−dȲt = htdt+ dAt + dCt− − Z̄tdWt, Ȳθ = 0,

where ht := f(t, Yt−, Zt)−f(t, Xt−, πt). By the same arguments as those of the proof of the comparison

theorem for BSDEs (cf. Theorem 2.2 in [11]), we have

ht = δtȲt− + βtZ̄t, 0 < t ≤ T, dP ⊗ dt− a.e., (A.41)

where δ and β are predictable bounded processes (which can be expressed as increment rates of f

with respect to y and z).
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Let Γ be the unique solution to the following forward SDE

dΓs = Γs [δsds+ βsdWs] , Γ0 = 1. (A.42)

Suppose for a while that we have shown

ȲτΓτ = E

[
∫ θ

τ

Γs (dAs + dCs) | Fτ

]

, a.s. (A.43)

Then, since Γs ≥ 0, we have ȲτΓτ ≥ 0 a.s. Since Γτ > 0 a.s., we have Ȳτ ≥ 0, that is Yτ ≥ Xτ = Eτ,θ(Yθ)

a.s. , which is the desired result.

It remains to show (A.43). We use that Ȳ is a strong optional semimartingale with decomposition

Ȳ = M1 + A1 + B1, where M1
t =

∫ t

0
Z̄sdWs, A

1
t := −

∫ t

0
hsds − As, and B1

t := −Ct−, and we apply

the generalized change of variables formula from Theorem A.3 with n := 2, X1 := Ȳ , X2 := Γ, and

F (x1, x2) := x1x2. We obtain

d(Y sΓs) = Γs(Z̄s + Ȳs−βs)dWs + Γs(Ȳs−δs + βsZ̄s − hs)ds− ΓsdAs − ΓsdCs.

By using the equality (A.41), we obtain

d(ȲsΓs) = Γs(Z̄s + Ȳs−βs)dWs − Γs(dAs + dCs).

Now, the stochastic integral in the above equation is a martingale (since Γ ∈ S2, Z̄ ∈ IH2, Ȳ ∈ S2,

and (βt) is bounded). By integrating between τ and θ and by taking the conditional expectation, we

derive (A.43). The proof is thus complete. �

We end this Appendix with the proof of Proposition 2.1. We make a remark which will be used

in the proof.

Remark A.12 Let (φn) be a non-negative sequence of optional processes. We assume that the se-

quence (φn
t (ω)) is non-decreasing for all t ∈ [0, T ], for all ω ∈ Ω. We set φt(ω) := limn φ

n
t (ω) =

supn φ
n
t (ω). Then, we have limn↑E(ess supτ∈T0,T

|φn
τ |

2) = E(ess supτ∈T0,T
|φτ |

2). The result is a conse-

quence of the monotone convergence theorem, combined with the following observation:

ess supτ∈T0,T
supn |φ

n
τ |

2 = supn ess supτ∈T0,T
|φn

τ |
2 a.s.

Proof of Proposition 2.1:

We first note that |||·|||S2 is a norm on the space of optional processes. The positive homogeneity and

the triangular inequality are easy to check. Suppose now that φ ∈ S2 is such that |||φ|||S2 = 0. Then,

ess supS∈T0,T
|φS|

2 = 0 a.s., which implies that |φS|
2 = 0 a.s. for all S ∈ T0,T . By applying the optional

section theorem (cf. also Prop. A.4), we obtain that φ = 0 up to an evanescent set. We conclude

that |||·|||S2 is a norm on S2.

Let us prove that the space (S2, |||·|||S2) is complete. The main steps of the proof are similar to those

of the proof of the completeness of the space (L2, ‖ · ‖L2). Let (φn) be a Cauchy sequence in S2 for

the norm |||·|||S2 . By standard arguments, we extract a subsequence (φnk)k∈IN such that

|||φnk+1 − φnk |||S2 ≤
1

2k
, for all k ∈ IN. (A.44)

25



For n ∈ IN , for t ∈ [0, T ], for ω ∈ Ω, we set gnt (ω) :=
∑n

k=1 |φ
nk+1

t (ω)− φnk(ω)|. We note that gn ∈ S2

for all n ∈ IN. Moreover, the sequence (|||gn|||S2) is bounded. Indeed, by the triangular inequality

and property (A.44), we have |||gn|||S2 ≤
∑n

k=1

∣

∣

∣

∣

∣

∣φ
nk+1

t − φnk

∣

∣

∣

∣

∣

∣

S2
≤

∑n

k=1
1
2k

≤
∑∞

k=1
1
2k

= 1. We set

gt(ω) := limn↑g
n
t (ω), for all t ∈ [0, T ], for all ω ∈ Ω (the limit exists in [0,+∞] as the sequence

(gnt (ω))n is non-negative non-decreasing). Being the limit of optional processes, the process g is op-

tional. Moreover, g ∈ S2. Indeed, by using Remark A.12, we have |||g|||S2 = limn↑|||g
n|||S2; as the

sequence (|||gn|||S2) is bounded by 1, we get |||g|||S2 ≤ 1.

Let us now show that limn |||g − gn|||S2 = 0. For all n ≥ 1, we have g−gn = limp→∞

(
∑n+p

k=n+1 |φ
nk+1

t − φnk |
)

.

By using this and Remark A.12, we get

|||g − gn|||S2 = ||| lim
p→∞

(

n+p
∑

k=n+1

|φnk+1 − φnk |
)

|||S2 = lim
p→∞

|||

n+p
∑

k=n+1

|φnk+1 − φnk ||||S2.

Now, for all p ≥ 1, for all n ≥ 1, we have

|||

n+p
∑

k=n+1

|φnk+1 − φnk ||||S2 ≤

n+p
∑

k=n+1

|||φnk+1 − φnk |||S2 ≤

n+p
∑

k=n+1

1

2k
≤

∞
∑

k=n+1

1

2k
.

Therefore, for all n ≥ 1, |||g − gn|||S2 ≤
∑∞

k=n+1
1
2k
. By letting n go to ∞, we obtain limn |||g − gn|||S2 =

0. On the other hand, for all m ≥ l ≥ 2,

|φnm

t (ω)− φnl

t (ω)| ≤ gt(ω)− gl−1
t (ω). (A.45)

Hence, (φnm

t (ω)) is a Cauchy sequence in R; we set φt(ω) := limm→∞ φnm

t (ω). By letting m go to

∞ in (A.45), we obtain |φt(ω)− φnl

t (ω)| ≤ gt(ω) − gl−1
t (ω). From this inequality we get φ ∈ S2 and

|||φ− φnl|||S2 ≤
∣

∣

∣

∣

∣

∣g − gl−1
∣

∣

∣

∣

∣

∣

S2. Letting now l go to ∞ gives |||φ− φnl|||S2 −→
l→∞

0, which concludes the

proof.

�
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