
HAL Id: hal-01141800
https://hal.science/hal-01141800

Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey on Reverse Inheritance Class Relationship
Ciprian-Bogdan Chirilă, Pierre Crescenzo, Philippe Lahire, Dan Alexandru

Pescaru, Emanuel Ţundrea

To cite this version:
Ciprian-Bogdan Chirilă, Pierre Crescenzo, Philippe Lahire, Dan Alexandru Pescaru, Emanuel Ţun-
drea. A Survey on Reverse Inheritance Class Relationship. Scientific Bulletin of the ”Politehnica”
University of Timisoara, Transaction on Automatic Control and Computer Science, 2005, 50 (64),
pp.45-49. �hal-01141800�

https://hal.science/hal-01141800
https://hal.archives-ouvertes.fr

BULETINUL STIINTIFIC al Universitatii “Politehnica” din Timisoara, ROMANIA,
Seria AUTOMATICA si CALCULATOARE

SCIENTIFIC BULLETIN of “Politehnica” University of Timisoara, ROMANIA,
Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE, Vol. 50 (64), 2005, ISSN 1224-600X

A Survey on Reverse Inheritance Class Relationship

Ciprian-Bogdan Chirila* Pierre Crescenzo** Philippe Lahire**
Dan Pescaru* and Emanuel Ţundrea*

* Department of Computer Science and Software,
University of Timisoara, Faculty of Automatics and, V. Parvan 2, Timisoara Romania

Phone: (+40) 256-404061, Fax: (+40) 256-403214, E-mail: chirila@cs.utt.ro, WWW: http://www.cs.utt.ro/~chirila

** I3S Laboratory (UNSA/CNRS), University “Sophia Antipolis” Nice, Les Algoritmes,
bat. Euclide B 2000, Route des Lucioles BP121,F-06903 Sophia Antipolis CEDEX, France

Philippe.Lahire@unice.fr, Pierre.Crescenzo@nom.fr

Abstract – The reverse inheritance class relationship
viewed as the symmetrical of the inheritance class
relationship has great potential in class hierarchy
reorganization. Classes from different hierarchies can be
reorganized getting a new common superclass, factoring
common features, thus avoiding data and code
duplication.

Keywords: inheritance, specialization, reverse

inheritance, generalization, exheritance,
upward inheritance.

I. INTRODUCTION

This paper does not intend to bring any contribution but to
analyze several reverse inheritance approaches. The
development of object-oriented technology, widespread in
the software industry, gave birth to a lot of class hierarchy
based libraries. The concept of reverse inheritance can help
in reusing those classes. In this survey we present the main
ideas behind this concept and we analyze the existing
solutions to the encountered conflicts and problems. This
survey is organized as follows: in the second section are
discussed generalities about the concept, the third section is
dedicated to definition, sections IV and V deal with
interface and implementation exheritance, section VI
presents other related works and finally in section VII
conclusions are drawn and future works are set.

II. THE CONCEPT

A. History
Reverse inheritance is a class relationship, which seems to
have been appeared in the world of object-oriented
databases [8]. Pedersen [6] analyzed the concept in the
context of object-oriented programming. Later on in [2]
ideas about integrating reverse inheritance concept in Eiffel
are discussed. In 2002 the concept is revisited and some
flaws and also possible solutions are presented [7]. Even if

there are a few works dealing with this concept, its
semantics was never fully defined nor implemented in a
programming language [Ped89,Sak02].

B. Alternative Names
Initially the concept of reverse inheritance was named as
upward inheritance in the works of [8] and it was used in
homogenizing database schema. It is also known as
generalization in the work of [6] where an experimental
language was built to define generalization and
specialization as symmetrical concepts. The name of
reverse inheritance appeared in the paper of [2] where it
was proposed as the notion of reverse type inheritance. A
very important notion can be considered the superclass of
the reverse inheritance class relationship. The superclass
practically contains all information related to reverse
inheritance semantics in a class hierarchy. It is known also
as generalizing class [6], foster class [2] or exheriting class
[7].

C. Principle of Reverse Inheritance
With ordinary inheritance, the superclass exists first and
then the subclasses are created by refinement. Conversely,
with reverse inheritance the process is backward: starting
from several subclasses there can be designed a common
superclass. In any class hierarchy there should be no
difference whether it was created by ordinary or reverse
inheritance. It is argued in [6] that it is more natural to
design concrete specialized classes and after that to notice
commonalities and to create a more abstract class. So
ordinary inheritance implies a top-down design, while
reverse inheritance a bottom-up one.

III. DEFINITION

D. The Intension and Extension of a Class
In [6] is presented a simplification of the object concept.
The intension of a class is the set of properties through
which it is defined. An example is given in this sense: the

1

2

"mammal" concept is analyzed. The intension of this
concept refers to real-world properties like: these animals
have mammae which secrets milk as nourishment for their
young. By extension of a class we mean all the phenomena
that include those properties. Back to the analyzed example
it can be considered that the neighbor's dog belongs to the
extension of the mammal concept.

E. Specialization and Generalization
Specialization can be defined in terms of intension and
extension of a concept. A concept is a
specialization of a concept C, if all phenomena of

 belong to [6]. Concept worker is a
single specialization of concept employee, since all
workers have all properties of employees and eventually
some extra. A worker can take the place of an employee
but not necessarily the other way around. Formally this can
be expressed like: a concept is a single
specialization of a concept C iff

. There can de defined also
the notion of multiple specialization in the same way: a
concept is a multiple specialization of a set of other
concepts if it is a single specialization of each concept in
the set [6]. Concept calculator-watch is a specialization of
both concepts calculator and watch. Calculator-watch
fulfils the properties of calculator and watch. Formally, a
concept is a multiple specialization of

iff

[6].

specialC

extension
specialC

specialCx∈

nCC ,...,1

specialCx∈

extensionC

extensionC

xn∈ :...1

specialC

extension
i

extension x∈⇒

specialC

extension i∀⇒ C∈

Generalization can be defined also in terms of intension
and extension of a concept [6]: a concept is a
single generalization of a concept C if all members of

 are members also in . This means that

all phenomena belonging to will belong also to
. Concept employee is a generalization of concept

worker since every worker is an employee. Formally
is a generalization of concept C iff

. As in the case of
specialization there is multiple generalization. A concept is
a multiple generalization of a set of other concepts if it is a
single generalization of every concept in the set. For
example the concept of employee is a generalization of
worker, manager, security guard, secretary, because all are
employees. In formal notation is a generalization

of iff

.

generalC

CC ,...,1

extensionC

extension
generalC

generalC

Cx∈

i∈∀ ...1

extension
generalC

extension

generalC

extension
generalC∈

C

x

extension
general

extension Cx∈⇒

extension
iCxn ⇒∈,

n

F. Cardinality

Ordinary inheritance can be single or multiple, so it is the
case for reverse inheritance, as it was defined in the
previous section. Single reverse inheritance supposes that
there is a single subclass and a foster class. In figure 1 we
have the example of a Dequeue [6], which shows that
single reverse inheritance can be useful.

Fig. 1. Dequeue Sample

The DEQUEUE class models a double ended queue having
the classical stack operations at both ends (push, pop, top,
push2, pop2, top2, empty).

Fig. 2. Dequeue Class Diagram

Later a new class is needed in order to model the behavior
of a simple stack. So class STACK is designed exheriting
only the operations push, pop, top, empty. In this sample
single reverse inheritance was used to create a new type
from an existing one.

IV. INTERFACE EXHERITANCE

G. Common Features
By common features we mean those features from the
subclasses, which have the same semantics and are subject
of factorization in the foster class. Thus code and data can
be reused without duplication. On the other hand the
possibility of common features specialization is available
by subclassing. Still there are problems related to name,
type, signature, assertion conflicts. These common features
in a normal inheritance top-down equivalent design would
be the ones inherited in each subclass.

H. Concrete vs. Abstract Generalizing Classes
In [6] it is emphasized that interface exheritance is the most
simple. As mentioned in [7], the integration of interface
exheritance in Java can be done with minimum of effort
because of the notion of "interface" they introduced in the

3

language. A Java interface consists in a set of abstract
methods [1]. It can be considered as a pure abstract class.
An abstract class in Java may contain abstract methods
having no implementation, just signature and also concrete
methods with implementation. We note also that interfaces
can be created by specialization of several multiple
interfaces, they can be implemented by several subclasses
and their methods are all public. It is suggested that
interfaces could be defined by generalization of classes and
other interfaces. Not all languages possess such an
interface concept like Java does, so we have to use the class
concept as generalization classifier. For those languages is
proposed [7] the idea of generalization into fully abstract
classes (e.g. Eiffel [4], C++ [9], Java [1]).

I. Type Conformance Between Subclass / Superclass
Related to interface exheritance issue, in [6] it is
demonstrated using an experimental language that from the
point of view of type conformance, there are no conflicts
introduced in a class hierarchy having subclasses /
superclasses introduced by inheritance / reverse
inheritance. The main idea of the demonstration is to prove
using formalisms that the feature set of the generalizing
class contains at most the intersection of the feature
subclasses sets. Before proving, some notations are
necessary:

},...,{ 1 n
methods mmA =

denotes the set of methods of class A. Class A is defined as
generalization of classes removing methods

. To prove that Bi (i∈1..k) conforms to A,
means that class A method set is a subset of those of any
instance of class Bi(i∈1..k). We use the following
formalism:

kBBB ,...,, 21

nmmm ,...,, 21

},...,{\ 1
1

n
methods
i

k

i

methods mmBA
=

= I

So it is demonstrated that A is a superclass of Bi (i∈1...k),
so the conformance rule is valid. In the [2] definition of
semantics a type conformance rule is set. The type of
subclasses has to conform to the type of superclass. From
their point of view the superclass type is a generalization of
the subclasses types. It can imply type intersection or type
union, depending on the type definition. In [6] is discussed
about the intension and the extension of an object.
Referring to these two conceptual aspects of an object they
consider that if a type is a set of features than the type of
the superclass should be their intersection. If the type is
considered as a set of objects, then the superclass type of
the generalizing class will be a least the union of the
subclass types.

V. IMPLEMENTATION EXHERITANCE

It is mentioned in [7] that implementation exheritance
refers mostly to attributes and methods. In the case of
attributes some type and visibility conflicts are foreseen.

J. With No Virtual Methods

Regarding implementation exheritance in [6] first it is
considered the case of languages which have non-virtual
methods. The idea proposed is to exherit in the foster class
the implementation of one of the subclasses (it is named in
[7] as principal subclass). Of course, the compiler will have
to take care of methods to be possible to execute in the
context of foster instances. If there is only one subclass the
choice is implicit. If there are multiple subclasses it is
proposed that the programmer should select the one from
which the foster class gets it’s implementation. It can not
be made automatically because the programmer knows
better the implementations from the subclasses and ha can
make an optimal decision. Also it is taken into account the
fact that the implementation selected for the foster class
can be used in creating new specializations. Also a new
implementation can be provided for the foster class and has
the advantage of avoiding dependencies on
implementations of other classes.
This approach is severely criticized in [7] since the
exherited implementations from the principal subclass will
be inherited in all the subclasses, thus changing their
original behavior. It is admitted that no other exherited
classes, except the principal subclass would be the subclass
of the foster class. In the case of adding new
implementation in the foster class it is mentioned that no
exherited class will be the subclass of the foster, except
some cases based on coincidence.

K. With Virtual Methods
In [6] the case of object-oriented programming languages
which support virtual methods the things are not so
problematic. Virtual methods are refined differently in the
subclasses and it is intended that the implementation of the
foster class to contain the common behavior among them.
There are three cases analyzed:
i) When there is no common behavior, there should be only
empty methods. All the eventual future subclasses of the
foster class will have to implement these methods.
ii) If all implementations exhibit the same behavior the
implementation for the foster class can be taken from the
principle subclass used in the non-virtual case.
iii) When there is some common behavior, the programmer
has to choose one implementation and it has to be the one
which contains the common behavior.
In [7] it is proposed that either exheritance should be
restricted to interfaces only or to use a feasible solution for
implementation exheritance. The solution proposed is to let
the programmer select for each exherited method the
suitable implementation from the different subclasses. With
this solution we have the problem of references, meaning
that such an exherited method needs it’s attributes and
methods that depends on.

L. Implementation Problems
In [7] it is noted that exherited methods may contain type
verifications which in the normal context of the subclasses
works normally, but in the context of the foster class it may
fail. A special problem pointed out is the one generated by
the invariants. They can be checked only at runtime and

4

they must be stronger in the foster class than its
correspondents in the subclasses. Preconditions and
postconditions

M. Name Conflicts
In [7] is presented the problem of name conflicts. It is
encountered when exheriting features (attributes or
methods) with the same semantics having different name or
when two different features have the same name. The first
is named “lost friends” in [7] and it can be resolved using
syntax extension. The second case is named “false friends”
[7] and such features have not to be exherited since they
are not the same [6]. Both conflicts can not be
automatically detected, so the programmer must declare
them explicitly. In [8] there is presented a different
approach to this problem. It is used a meta-class for the
foster class model, which integrates the renaming
mechanism.

VI. RELATED WORKS

Among other class reorganization techniques we can
mention multiple inheritance, like-type class relationship,
traits, mixins.
An alternative to reverse inheritance class relationship
would be to use class hierarchy transformations presented
in [5] like variant types or simulation with monitor class
and flags.
In UML [10] there is only one notation for both
generalization and specialization class relationships. There
can be used arrows originated from the most specialized
class towards the most general one.
In [OJ93] there is presented a systematical method in
building abstract superclasses using refactoring techniques.
The process involves adding function signatures to the
superclass, making the function bodies compatible, moving
variables, migrating common code to the superclass. It is
admitted that the drawback of such a methodology is that
arbitrary recfactorings may affect the original design of the
classes even the behavior is unchanged.

VII. CONCLUSIONS AND FUTURE WORK

Inheritance and reverse inheritance are complementary
class relationships. They are not redundant because of the
two top-down and bottom up design methods and because
of the class adaptation mechanisms of reverse inheritance.
Some adaptations presented are very particular solutions to
a very general problem. So adaptation mechanism could be
extended in more general sense. Exheritance
implementation seems to need local solutions relative to a
concrete programming language. The problem of name
conflicts of reverse inheritance is the same as in multiple
inheritance. Depending on the programming language in
which the concept is integrated into, it seems that there are
decent solutions in this sense.
We consider that reverse inheritance has a great potential.
It can be seen as a class relationship in the object-oriented
languages. Also it could be used as a class hierarchy

reorganization tool with restricted adaptation and limited
evolution purposes, in which case reverse inheritance is
volatile. It’s existence is resumed to only one phase of the
design. Reverse inheritance represents a great potential
composition mechanism for weaving concerns. However
the last two ideas were never approached in the literature.
As future work we propose the integration of the reverse
inheritance concept in the Eiffel programming language.
We consider that this concept can be integrated better in the
philosophy of Eiffel. We have the renaming facility already
existing in Eiffel, the presence of multiple inheritance and
future multiple reverse inheritance keeps the symmetry of
the language. Of course there are drawbacks like the
problem of assertions in interface exheritance.

ACKNOWLEDGMENTS

This paper is part of the PhD thesis on reverse inheritance
class relationship, developed in collaboration with the OCL
team from the I3S (Informatique Signaux Systèmes de
Sophia) Research Institute affiliated to University Sophia-
Antipolis of Nice, France. Also we want to thank professor
Markku Sakkinen from the University of Jyväskylä,
Finland for the valuable ideas and feedback he gave us.

REFERENCES

[1] K. Arnold and J. Gosling, The Java Programming Language, Sun
Microsystems, 3rd edition, USA, 2000.

[2] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The

potential for reverse type inheritance in Eiffel. In Technology of
Object-Oriented Languages and Systems (TOOLS'94), 1994.

[3] Bertrand Meyer. Object-Oriented Software Construction 2nd ed.

Prentice Hall, 1997.

[4] Bertrand Meyer. Eiffel: The language.
http://www.inf.ethz.ch/meyer/, September 2002.

[5] Yania Crespo and Jos Manuel Marques and Juan Jos Rodryguez,

On the Translation of Multiple Inheritance Hierarchies into Single
Inheritance Hierarchies, In European Conference on Object-
Oriented Programming, Malaga, Spain, 2002.

[6] C. H. Pedersen. Extending ordinary inheritance schemes to include

generalization. In Conference proceedings on Object-oriented
programming systems, languages and applications, pages 407--417.
ACM Press, 1989.

[7] Markku Sakkinen. Exheritance - Class generalization revived. In

Proceedings of the Inheritance Workshop at ECOOP 2002, Malaga,
Spain, June 2002.

[8] Michael Schrefl and Erich J. Neuhold. Object class definition by

generalization using upward inheritance. In IEEE Transactions,
1988.

[9] Bjarne Stroustrup, The C++ Programming Language Third Edition,

Addison-Wesley, 1997.

[10] UML Superstructure Version 2.0, www.omg.org/uml, October,

2004

