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Confluence Algebras and Acyclicity of the Koszul Complex

Koszul algebras. Koszul algebras were defined by Priddy in [START_REF] Stewart | Koszul resolutions[END_REF] as quadratic algebras which satisfy a homological property. A quadratic algebra is a graded associative algebra over a field K which admits a quadratic presentation X | R , that is, X is a set of generators and R is a set of quadratic relations. If A is a quadratic algebra, the field K admits a left and right A-module structure induced by the K-linear projection ε : A -→ K which maps any generator of A to 0. A quadratic algebra A is said to be Koszul if the Tor groups Tor A n,(m) (K, K) (n is the homological degree and m is graduation induced by the natural graduation over A) vanish for m = n.

A property of Koszul algebras is that the ground field K admits a Koszul resolution. The name of this resolution is due to the fact that it is inspired by ideas of Koszul (see [START_REF] Koszul | Homologie et cohomologie des algèbres de Lie[END_REF]). Let A be a quadratic algebra and let X | R be a quadratic presentation of A. We denote by KX and R the vector space spanned by X and the sub-vector space of KX ⊗2 spanned by R, respectively. The Koszul complex of a A is the complex of free left A-modules:

• • • ∂n+1 -→ A ⊗ J n ∂n -→ A ⊗ J n-1 -→ • • • ∂4 -→ A ⊗ J 3 ∂3 -→ A ⊗ R ∂2 -→ A ⊗ KX ∂1 -→ A ε -→ K -→ 0,
where, for every integer n such that n ≥ 2, we have:

J n = n-2 i=0 KX ⊗i ⊗ R ⊗ KX ⊗n-2-i .
The differentials of the Koszul complex are defined by the inclusions of R in A ⊗ KX, of J 3 in A ⊗ R and of J n in A ⊗ J n-1 for every integer n such that n ≥ 4. Then, a quadratic algebra is Koszul if and only if its Koszul complex is acyclic, that is, if and only if the Koszul complex of A is a resolution of K.

Another characterisation of Koszulness was given by Backelin in [START_REF] Backelin | Koszul algebras, Veronese subrings and rings with linear resolutions[END_REF] (see also Theorem 4.1 in [PP05, chapter 2]): a quadratic algebra is Koszul if and only if it is distributive (that means that some lattices defined with X and R are distributive). Moreover, Koszul algebras have been studied through computational approaches based on a monomial order, that is, a well founded total order on the set of monomials. In [START_REF] Anick | On the homology of associative algebras[END_REF], Anick used Gröbner basis to construct a free resolution of K (see also [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF]Section 3.8]). This resolution enables us to conclude that an algebra which admits a quadratic Gröbner basis is Koszul. In [START_REF] Berger | Confluence and Koszulity[END_REF], Berger studied quadratic algebras with a side-confluent presentation1 . The latter is a transcription of the notion of quadratic Gröbner basis using some linear operators. More precisely, we can associate with any quadratic presentation X | R of A a unique linear projector S of KX ⊗2 . This projector maps any element of KX ⊗2 to a better one with respect to the monomial order. The presentation X | R is said to be side-confluent if there exists an integer k such that:

S ⊗ Id KX , Id KX ⊗ S k = Id KX ⊗ S, S ⊗ Id KX k ,
where t, s k denotes the product • • • sts with k factors. The algebra A k presented by:

s 1 , s 2 | s 1 , s 2 k = s 2 , s 1 k , s 2 i = s i , i = 1, 2 ,
is naturally associated with a side-confluent presentation. This algebra is the confluence algebra of degree k. In [Ber98, Section 5], Berger used specific representations of these algebras to construct a contracting homotopy for the Koszul complex of a quadratic algebra admitting a side-confluent presentation. This construction enables us to conclude that such an algebra is Koszul.

N -Koszul algebras. Let N be an integer such that N ≥ 2. An N-homogeneous algebra is a graded associative algebra over a field K which admits an N-homogeneous presentation X | R , that is, X is a set of generators and R is a set of N -homogeneous relations. In [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF] the notion of Koszul algebra is extended to the notion of N-Koszul algebra. An N -homogeneous algebra A is said to be N -Koszul if the Tor groups Tor A n,(m) (K, K) vanish for m = l N (n), where l N is the function defined by:

l N (n) = kN, if n = 2k, kN + 1, if n = 2k + 1.
We remark that a 2-Koszul algebra is precisely a Koszul algebra. Thus, the notion of N -Koszul algebra generalises the one of Koszul algebra.

In the same paper, Berger defined the Koszul complex of an N -homogeneous algebra. Let X | R be an N -homogeneous presentation of A. The Koszul complex of A is the complex of left A-modules:

• • • ∂n+1 -→ A ⊗ J N n ∂n -→ A ⊗ J N n-1 -→ • • • ∂4 -→ A ⊗ J N 3 ∂3 -→ A ⊗ R ∂2 -→ A ⊗ KX ∂1 -→ A ε -→ K -→ 0,
where the vector spaces J N n are defined by:

J N n = l N (n)-N i=0 KX ⊗i ⊗ R ⊗ KX ⊗l N (n)-N -i .
As in the quadratic case, this complex characterises the property of N -Koszulness: an N -homogeneous algebra is N -Koszul if and only if its Koszul complex is acyclic (see [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF]Proposition 2.12]). This complex also find applications in the study of higher Koszul duality (see [START_REF] Dotsenko | Higher Koszul duality for associative algebras[END_REF]).

Berger studied the property of N -Koszulness using monomial orders. As in the quadratic case, there exists a unique linear projector S of KX ⊗N associated with an N -homogeneous presentation of A which maps any element to a better one with respect to the monomial order. Then, a presentation is side-confluent if for every integer m such that N + 1 ≤ m ≤ 2N -1, there exists an integer k which satisfies: S ⊗ Id KX ⊗m-N , Id KX ⊗m-N ⊗ S k = Id KX ⊗m-N ⊗ S, S ⊗ Id KX ⊗m-N k .

Contrary to the quadratic case, an algebra admitting a side-confluent presentation is not necessarily N -Koszul. Indeed, when the set X is finite, such an algebra is N -Koszul if and only if the extra-condition holds (see [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF]Proposition 3.4]). The extra-condition is stated as follows:

(ec) :

KX ⊗m ⊗ R ∩ R ⊗ KX ⊗m ⊂ KX ⊗m-1 ⊗ R ⊗ KX, for every 2 ≤ m ≤ N -1.
We group these hypothesis in the following definition:

Definition.

Let A be an N -homogeneous algebra. A side-confluent presentation X | R such that X is finite and the extra-condition holds is said to be extra-confluent.

Our problematic. We deduce of the works from [Ber01] that the Koszul complex of an algebra A admitting an extra-confluent presentation is acyclic. However, there does not exist an explicit contracting homotopy for the Koszul complex of A. The purpose of this paper is to construct such a contracting homotopy. For the quadratic case, our contracting homotopy is the one constructed in [Ber98, Section 5].

Our results

We present the different steps of our construction. Recall that an extra-confluent presentation needs a monomial order. Thus, in what follows, we fix a monomial order. For every integer m, we denote by X (m) the set of words of length m.

Reduction pairs associated with a presentation. In the way to construct our contracting homotopy, we will associate with any N -homogeneous presentation X | R such that X is finite, a family

P n,m = (F n,m 1 , F n,m 2 
), where F n,m 1 and F n,m 2 are linear projectors of KX (m) . The pair P n,m is called the reduction pair of bi-degree (n, m) associated with X | R . We point the fact that the finiteness condition over X will be necessary to define the operators F n,m i . Moreover, these operators satisfy the following condition: for any w ∈ X (m) , F n,m i (w) is either equal to w or is a sum of monomials which are strictly smaller than w with respect to the monomial order. The linear projectors of KX (m) satisfying the previous condition are called reduction operators relatively to X (m) . The set of reduction operators relatively to X (m) admits a lattice structure (we will recall it in Section 3.2). This structure plays an essential role in our constructions. A pair (T 1 , T 2 ) of reduction operators relatively to X (m) is said to be confluent if there exists an integer k such that we have the following equality in End KX (m) :

T 1 , T 2 k = T 2 , T 1 k .
Then, our first result is:

4.1.4 Theorem. Let A be an N -homogeneous algebra admitting a side-confluent presentation X | R , where X is a finite set. The reduction pairs associated with X | R are confluent.

The left bound of a side-confluent presentation. The reduction pairs associated with a sideconfluent presentation X | R enable us to define a family of representations of confluence algebras in the following way:

ϕ Pn,m : s 1 , s 2 | s 1 , s 2 kn,m = s 2 , s 1 kn,m , s 2 i = s i , i = 1, 2 -→ End KX (m) , s i -→ F n,m i
where the integer k n,m satisfies:

F n,m 1 , F n,m 2 kn,m = F n,m 2 , F n,m 1 kn,m .
For every integers n and m we will consider a specific element in A kn,m :

γ 1 = (1 -s 2 ) s 1 + s 1 s 2 s 1 + • • • + s 2 , s 1 2i+1 ,
where the integer i depends on k n,m . The shape of this element will be motivated in Section 3.1. In Section 4.2 we will use the elements ϕ Pn,m (γ 1 ) to construct a family of K-linear maps

h 0 : A -→ A ⊗ KX, h 1 : A ⊗ KX -→ A ⊗ R, h 2 : A ⊗ R -→ A ⊗ J N 3 , h n : A ⊗ J N n -→ A ⊗ J N n+1 , for n ≥ 3,
where A is the N -homogeneous algebra presented by X | R . The family (h n ) n is called the left bound of X | R . In Proposition 4.2.5, we will show that the left bound of X | R is a contracting homotopy for the Koszul complex of A if and only if X | R satisfies some identities. These identities are called the reduction relations.

Extra-confluent presentations and reduction relations. Finally, we will show that the extracondition implies that the reduction relations hold. Then, our main result is stated as follows:

4.3.5 Theorem. Let A be an N -homogeneous algebra admitting an extra-confluent presentation X | R . The left bound of X | R is a contracting homotopy for the Koszul complex of A.

Organisation

In Section 2, we recall how we can construct the Koszul complex of an N -homogeneous algebra. We also recall the definition of an extra-confluent presentation. In Section 3.1, we make explicit our construction in small homological degree. In Section 3.2, we recall the definitions of confluence algebras and reduction operators. We also recall the link between reduction operators and representations of confluence algebras. In Section 4, we construct the contracting homotopy in terms of confluence. As an illustration of our construction, we provide in Section 5 three examples: the symmetric algebra, monomial algebras which satisfy the overlap properties and the enveloping algebra of the Heisenberg Lie algebra.
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Preliminaries

The Koszul complex

2.1.1. Conventions and notations. We denote by K a field. We say vector space and algebra instead of K-vector space and K-algebra, respectively. We consider only associative algebras. Given a set X, we denote by X and KX the free monoid and the vector space spanned by X, respectively. For every integer m, we denote by X (m) the subset of X of words of length m.

We write V = KX. We identify KX (m) and the free algebra K X spanned by X to V ⊗m and to the tensor algebra T (V ) over V , respectively.

Let A be an algebra. A presentation of A is a pair X | R , where X is a set and R is a subset of K X such that A is isomorphic to the quotient of K X by the two-sided ideal spanned by R. The latter is denoted by I(R), and the isomorphism from A to K X /I(R) is denoted by ψ X|R . For every f ∈ K X , we denote by f the image of f through the natural projection of K X over A.

Let N be an integer such that N ≥ 2. An N -homogeneous presentation of A is a presentation X | R of A such that R is included in V ⊗N . In this case, the two-sided ideal I(R) is the direct sum of vector spaces I(R) m defined by I(R) m = 0 if m < N , and

I(R) m = m-N i=0 V ⊗i ⊗ R ⊗ V ⊗m-N -i if m ≥ N,
where R denotes the sub-vector space of V ⊗N spanned by R. An N -homogeneous algebra is a graded algebra A = m∈N A m which admits an N -homogeneous presentation X | R such that for every integer m, ψ X|R induces a K-linear isomorphism from A m to V ⊗m /I(R) m :

A = m∈N A m K ⊕ V ⊕ • • • ⊕ V ⊗N -1 ⊕ V ⊗N R ⊕ V ⊗N +1 V ⊗ R + R ⊗ V ⊕ • • •
We denote by ε : A -→ K the projection which maps 1 A to 1 K and A m to 0 for every integer m such that m ≥ 1.

2.1.2. The construction of the Koszul complex. Let A be an N -homogeneous algebra and let X | R be an N -homogeneous presentation of A. We write V = KX. We consider the family of vector spaces (J N n ) n defined by J N 0 = K, J N 1 = V , J N 2 = R and for every integer n such that n ≥ 3

J N n = l N (n)-N i=0 V ⊗i ⊗ R ⊗ V ⊗l N (n)-N -i ,
where the function l N : N -→ N is defined by

l N (n) = kN, if n = 2k, kN + 1, if n = 2k + 1.
When there is no ambiguity, we write J n instead of J N n . Let n be an integer. For every w ∈ X (l N (n+1)) , let w 1 ∈ X (l N (n+1)-l N (n)) and w 2 ∈ X (l N (n)) such that w = w 1 w 2 . Let us consider the A-linear map

F n+1 : A ⊗ V ⊗l N (n+1) -→ A ⊗ V ⊗l N (n) . 1 A ⊗ w -→ w 1 ⊗ w 2
Recall from [Ber01, Section 3] that the Koszul complex of A is the complex (K • , ∂)

• • • ∂n+1 -→ A ⊗ J n ∂n -→ A ⊗ J n-1 -→ • • • ∂2 -→ A ⊗ J 1 ∂1 -→ A ε -→ K -→ 0, where ∂ n is the restriction of F n to A ⊗ J n . In particular, the map ∂ 1 is defined by ∂ 1 (1 A ⊗ x) = x for every x ∈ X.
2.1.3. Remark. The two following remarks show that the Koszul complex is well-defined:

1. Let n be an integer. The vector space J n+1 is included in V ⊗l N (n+1)-l N (n) ⊗ J n . Thus, the vector space

F n+1 (A ⊗ J n+1 ) is included in A ⊗ J n .
2. Let n be an integer such that n ≥ 1. The vector space J n+1 is included in R ⊗ J n-1 . Thus, the restriction of F n F n+1 to A ⊗ J n+1 vanishes.

2.1.4. Example. We consider the enveloping algebra of the Heisenberg Lie algebra introduced in [AS87]. This is the 3-homogeneous algebra presented by

x 1 , x 2 | x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 , x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 .
This algebra is the minimal (with respect to the number of generators) example of Yang-Mills algebra

introduced in [CDV02]. The map ∂ 2 : A ⊗ R -→ A ⊗ V is defined by ∂ 2 (1 A ⊗ x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 ) = x 2 x 1 ⊗ x 1 -2x 1 x 2 ⊗ x 1 + x 1 x 1 ⊗ x 2 , and 
∂ 2 (1 A ⊗ x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 ) = x 2 x 2 ⊗ x 1 -2x 2 x 1 ⊗ x 2 + x 1 x 2 ⊗ x 2 .
The vector space

J 3 = V ⊗ R ∩ R ⊗ V is the one-dimensional vector space spanned by v = x 2 (x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 ) + x 1 (x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 ) = (x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 )x 1 + (x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 )x 2 .
The map

∂ 3 : A ⊗ J 3 -→ A ⊗ R is defined by ∂ 3 (1 A ⊗ v) = x 2 ⊗ (x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 ) + x 1 ⊗ (x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 ) .

Side-confluent presentations

Through this section we fix an N -homogeneous algebra A and an N -homogeneous presentation X | R of A. We assume that X is a totally ordered set. We write V = KX.

2.2.1. Reductions. For every integer m, the set X (m) is totally ordered for the lexicographic order induced by the order over X. For every f ∈ V ⊗m \ {0}, the leading monomial of f, denoted by lm (f ), is the greatest element of X (m) occurring in the decomposition of f . We denote by lc(f ) the coefficient of lm (f ) in the decomposition of f . Let

R = 1 lc (f ) f, f ∈ R .
Then, X | R is an N -homogeneous presentation of A. Thus, we can assume that lc (f ) is equal to 1 for every f ∈ R.

For every w 1 , w 2 ∈ X and every f ∈ R, let r w1f w2 be the K-linear endomorphism of T (V ) defined on the basis X in the following way:

r w1f w2 (w) = w 1 (lm (f ) -f ) w 2 , if w = w 1 lm (f ) w 2 , w, otherwise.
Taking the terminology of [START_REF] Bergman | The diamond lemma for ring theory[END_REF], the morphisms r w1f w2 are called the reductions of

X | R . 2.2.2. Normal forms. An element f ∈ T (V ) is said to be a normal form for X | R if r(f ) = f for every reduction r of X | R . Given an element f of T (V ), a normal form of f is a normal form g such that there exist reductions r 1 , • • • , r n satisfying g = r 1 • • • r n (f ). In this case, we have f = g. The presentation X | R is said to be reduced if, for every f ∈ R, lm (f ) -f is a normal form for X | R and lm (f ) is a normal form for X | R \ {f } .
From this moment, all the presentations are assumed to be reduced.

Critical branching.

A critical branching of X | R is a 5-tuple (w 1 , w 2 , w 3 , f, g) where f, g ∈ R and w 1 , w 2 , w 3 are non empty words such that:

w 1 w 2 = lm (f ) , and 
w 2 w 3 = lm (g) .
The word w 1 w 2 w 3 is the source of this critical branching.

2.2.4. The operator of a presentation. Let S be the endomorphism of V ⊗N defined on the basis X (N ) in the following way:

S (w) = lm (f ) -f, if there exists f ∈ R such that w = lm (f ) , w, otherwise.
The operator S is the operator of X | R . The presentation X | R is reduced. Thus, S is well-defined and is a projector. The kernel of S is equal to R. If w ∈ X (N ) is a normal form, then S(w) is equal to w. If w is not a normal form, then S(w) is a linear combination of words strictly smaller than w.

2.2.5. Definition. The presentation X | R is said to be side-confluent if for every integer m such that 1 ≤ m ≤ N -1, there exists an integer k such that:

Id V ⊗m ⊗ S, S ⊗ Id V ⊗m k = S ⊗ Id V ⊗m , Id V ⊗m ⊗ S k ,
where t, s k denotes the product • • • sts with k factors.

The Diamond Lemma ( [Ber78, Theorem 1.2]) implies the following:

2.2.6. Proposition. Let A be an N -homogeneous algebra. Assume that A admits a side-confluent presentation X | R . Then, the following hold:

1. Every element of T (V ) admits a unique normal form for X | R .

2. The set {w, w ∈ X is a normal form} is a basis of A.

3. An element of T (V ) belongs to I(R) if and only if its normal form is equal to 0.

Proof. Let S be the operator of

X | R . Let (w 1 , w 2 , w 3 , f, g) be a critical branching of X | R . Let m be the length of w = w 1 w 2 w 3 . The presentation X | R being N -homogeneous, we have N + 1 ≤ m ≤ 2N -1.
Thus, there exists an integer k such that:

Id V ⊗m-N ⊗ S, S ⊗ Id V ⊗m-N k (w) = S ⊗ Id V ⊗m-N , Id V ⊗m-N ⊗ S k (w).
Hence, there exist two sequences of reductions

r 1 , • • • , r n and r 1 , • • • , r l such that r 1 • • • r n ((lm (f ) -f ) w 3 ) is equal to r 1 • • • r l (w 1 (lm (g) -g)).
We deduce from [Ber78, Theorem 1.2] that every element f ∈ T (V ) admits a unique normal form for X | R and that {w, w ∈ X is a normal form} is a basis of A. Thus, the two first points hold.

Let us show the third point. Let f be an element of T (V ) and let f be its unique normal form. We write:

f = i∈I λ i w i ,
where w i ∈ X are normal forms. Then, f is equal to i∈I λ i w i . From the second point, f is equal to 0 if and only if λ i is equal to 0 for every i ∈ I.

2.2.7. Lemma. Assume that the presentation X | R is side-confluent. Let S be the operator of X | R . For every integer m such that N + 1 ≤ m ≤ 2N -1, there exists an integer k such that:

Id V ⊗m -Id V ⊗m-N ⊗ S, Id V ⊗m -S ⊗ Id V ⊗m-N k = Id V ⊗m -S ⊗ Id V ⊗m-N , Id V ⊗m -Id V ⊗m-N ⊗ S k .
Moreover, for every w ∈ X (m) such that Id V ⊗m-N ⊗ S(w) and S ⊗ Id V ⊗m-N (w) are different from w, we have:

lm ( Id V ⊗m -Id V ⊗m-N ⊗ S, Id V ⊗m -S ⊗ Id V ⊗m-N ) k (w) = w.
Proof. We write

S 1 = Id V ⊗m-N ⊗ S and S 2 = S ⊗ Id V ⊗m-N . The presentation X | R is side-confluent. Thus, there exists k ∈ N such that S 2 , S 1 k is equal to S 1 , S 2 k .
The morphisms S 1 and S 2 being projectors, we show by induction that for every integer j we have:

Id V ⊗m -S 1 , Id V ⊗m -S 2 j = Id V ⊗m + j-1 i=1 (-1) i S 1 , S 2 i + S 2 , S 1 i + (-1) j S 1 , S 2 j , Id V ⊗m -S 2 , Id V ⊗m -S 1 j = Id V ⊗m + j-1 i=1 (-1) i S 1 , S 2 i + S 2 , S 1 i + (-1) j S 2 , S 1 j .
In particular we have:

Id V ⊗m -S 2 , Id V ⊗m -S 1 k = Id V ⊗m -S 1 , Id V ⊗m -S 2 k .
Moreover, if w ∈ X (m) is such that S 1 (w) and S 2 (w) are different from w, then S 1 (w) and S 2 (w) are strictly smaller than w. We deduce from the relation

Id V ⊗m -S 1 , Id V ⊗m -S 2 k (w) = w + k-1 i=1 (-1) i S 1 , S 2 i + S 2 , S 1 i (w) + (-1) k S 1 , S 2 k (w), that lm Id V ⊗m -S 1 , Id V ⊗m -S 2 k (w) is equal to w.
2.2.8. Example. We consider the presentation from Example 2.1.4 of the enveloping algebra of the Heisenberg Lie algebra with the order x 1 < x 2 . It was proven in [KVdB15, Theorem 6.3.2] that this presentation is side-confluent (in fact, B.Kriegk and M.Van den Bergh have proven that any Yang-Mills algebra admits a side-confluent presentation). We propose there an other proof of this result.

The operator S ∈ End V ⊗3 of this presentation is defined on the basis X (3) by

S(w) =      2x 1 x 2 x 1 -x 1 x 1 x 2 , if w = x 2 x 1 x 1 , 2x 2 x 1 x 2 -x 1 x 2 x 2 , if w = x 2 x 2 x 1 , w, otherwise.
This presentation admits exactly one critical branching:

(x 2 , x 2 x 1 , x 1 , x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 , x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 ) .
We have:

S ⊗ Id V , Id V ⊗ S 2 (x 2 x 2 x 1 x 1 ) = Id V ⊗ S, S ⊗ Id V 2 (x 2 x 2 x 1 x 1 ) = x 2 x 1 x 2 x 1 -2x 1 x 2 x 1 x 2 + x 1 x 1 x 2 x 2 .
Moreover, for every w ∈ X (4) which is different from

x 2 x 2 x 1 x 1 , we check that S ⊗ Id V , Id V ⊗ S 2 (w)
is equal to Id V ⊗ S, S ⊗ Id V 2 (w). Thus, we have:

S ⊗ Id V , Id V ⊗ S 2 = Id V ⊗ S, S ⊗ Id V 2 .
For every w ∈ X (5) we check that S ⊗ Id V ⊗2 , Id V ⊗2 ⊗ S 2 (w) and Id V ⊗2 ⊗ S, S ⊗ Id V ⊗2 2 (w) are equal. Thus, we have:

S ⊗ Id V ⊗2 , Id V ⊗2 ⊗ S 2 = Id V ⊗2 ⊗ S, S ⊗ Id V ⊗2 2 .
We conclude that the presentation from Example 2.1.4 with the order x 1 < x 2 is side-confluent.

Extra-confluent presentations

The extra-condition.

Let A be an N -homogeneous algebra. Assume that A admits a sideconfluent presentation X | R where X is a totally ordered finite set. Recall from [Ber01, Section 3] that the Koszul complex of A is acyclic if and only if the extra-condition holds. The extra-condition is stated as follows:

KX (n) ⊗ R ∩ R ⊗ KX (n) ⊂ KX (n-1) ⊗ R ⊗ KX, for every 2 ≤ n ≤ N -1.

Definition.

Let A be an N -homogeneous algebra. A side-confluent presentation X | R such that X is finite and the extra-condition holds is said to be extra-confluent. An extra-confluent presentation has the following interpretation in terms of critical branching:

2.3.4. Proposition. Let A be an N -homogeneous algebra. Assume that A admits an extra-confluent presentation X | R . Let w = x 1 • • • x m be the source of a critical branching of X | R . The word x m-N • • • x m-1 is not a normal form for X | R . Proof. The presentation X | R is N -homogeneous. In particular, we have N + 1 ≤ m ≤ 2N -1. If m = N + 1
, there is nothing to prove. Thus, we assume that m is greater than N + 2.

Let S be the operator of X | R . We write

S 1 = S ⊗ Id ⊗m-N and S 2 = Id ⊗m-N ⊗ S.
The presentation X | R is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k such that

Id V ⊗m -S 2 , Id V ⊗m -S 1 k = Id V ⊗m -S 1 , Id V ⊗m -S 2 k .
We denote by Λ this common morphism. By hypothesis, S 1 (w) and S 2 (w) are different from w. From Lemma 2.2.7, lm

(Λ(w)) is equal to w. The image of Λ is included in im (Id KX (m) -S 1 ) ∩ im (Id KX (m) -S 2 ) that is, ker (S 1 ) ∩ ker (S 2 ). The latter is equal to R ⊗ KX (m-N ) ∩ KX (m-N ) ⊗ R. The presentation X | R satisfies the extra- condition. Thus, the image of Λ is included in KX (m-N -1) ⊗ R ⊗ KX. In particular, there exist w 1 , • • • , w l ∈ X (m-N -1) , f 1 , • • • , f l ∈ R, x 1 , • • • , x l ∈ X and λ 1 , • • • λ l ∈ K which satisfy Λ(w) = l i=1 λ i w i f i x i . Thus, lm (Λ(w)) = w is equal to w i lm (f i ) x i for some 1 ≤ i ≤ l. We conclude that x n-N • • • x m-1 is equal to lm (f i ).
In particular, it is not a normal form.

Remark.

Let A be the algebra presented by x < y | xyx . This presentation is side-confluent. There is only one critical branching: (xy, x, yx, xyx, xyx). The source xyxyx of this critical has length 5. We deduce from Proposition 2.3.4 that the extra-condition does not hold.

Let us check that the Koszul complex of A is not acyclic: the vector space J 3 is reduced to {0} and the map

∂ 2 : A ⊗ R -→ A ⊗ V is defined by ∂ 2 (1 A ⊗ xyx) = xy ⊗ x.
In particular, xy ⊗ xyx belongs to the kernel of ∂ 2 . Thus, we have a strict inclusion im (∂ 3 ) ker (∂ 2 ).

2.3.6. Example. We consider the presentation from Example 2.2.8. The vector space

V ⊗2 ⊗ R ∩ R ⊗ V ⊗2 is reduced to {0}.
Then, the extra-condition holds. We conclude that the presentation from Example 2.2.8 is extra-confluent.

3 Confluence algebras and reduction operators

The contracting homotopy in small degree

Through this section we fix an N -homogeneous algebra A. We assume that A admits an extra-confluent presentation X | R . This presentation is also fixed. We write V = KX. The aim of this section is to make explicit our contracting homotopy in small homological degree. The formal construction will be done in Section 4.

We have to construct a family of K-linear maps

h -1 : K -→ A, and h n : A ⊗ J n -→ A ⊗ J n+1 , for 0 ≤ n ≤ 2,
satisfying the following relations:

∂ 1 h 0 + h -1 ε = Id A and ∂ n+1 h n + h n-1 ∂ n = Id A⊗Jn , for 0 ≤ n ≤ 2.
By assumption, the set X is finite. However, we will see that for the constructions of h -1 , h 0 and h 1 this hypothesis is not necessary. From Proposition 2.2.6, every element f of T (V ) admits a unique normal form for X | R . This normal form is denoted by f .

For every w ∈ X , we define [w] ∈ A ⊗ V as follows:

[w] = 0, if w is the empty word, w ⊗ x, where w ∈ X and x ∈ X are such that w = w x.

The map [ ] :

X -→ A ⊗ V is extended into a K-linear map from T (V ) to A ⊗ V . Let w ∈ X be a
non empty word. For every a ∈ A, the action of A on [w] is given by a.

[w] = [f w], where f ∈ T (V ) is such that a = f . In small homological degree, the Koszul complex of A is

A ⊗ V ⊗ R ∩ R ⊗ V ∂3 -→ A ⊗ R ∂2 -→ A ⊗ V ∂1 -→ A ε -→ K -→ 0,
where

∂ 1 is defined by ∂ 1 (1 A ⊗ v) = v for every v ∈ V , ∂ 2 is defined by ∂ 2 (1 A ⊗ f ) = [f ] for every f ∈ R and ∂ 3 is defined by ∂ 3 (1 A ⊗ g) = v ⊗ f where vf is a decomposition of g ∈ V ⊗ R ∩ R ⊗ V in V ⊗ R. By definition of ∂ 3 , ∂ 3 (1 A ⊗ g) does not depend on the decomposition of g in V ⊗ R. 3.1.1. The constructions of h -1 and h 0 . The maps h -1 : K -→ A and h 0 : A -→ A ⊗ V are defined by h -1 (1 K ) = 1 A and h 0 (a) = f , where f ∈ T (V ) is such that f = a. We have h 0 (1 A ) = 0 and h -1 ε (1 A ) = 1 A . If A belongs to A m for m ≥ 1, we have ε (a) = 0 and ∂ 1 h 0 (a) = f . It follows that ∂ 1 h 0 + h -1 ε is equal to Id A .
3.1.2. The construction of h 1 . Recall from Proposition 2.2.6 that the algebra A admits as a basis the set {w, w ∈ X is a normal form}. Thus, in order to define h 1 : A ⊗ V -→ A ⊗ R, it is sufficient to define h 1 (w ⊗ x) for every normal form w ∈ X and every x ∈ X. Moreover, h 1 has to satisfy the relation

∂ 2 h 1 (w ⊗ x) = w ⊗ x -h 0 (wx) , (1) 
for every normal form w ∈ X and every x ∈ X. We define h 1 (w ⊗ x) by Noetherian induction on wx. Assume that wx is a normal form. Then, let h 1 (w ⊗ x) = 0. We have:

h 0 (wx) = [ wx] = [wx] = w ⊗ x.
Thus, Relation 1 holds. Assume that wx is not a normal form and that h 1 w ⊗ x is defined and satisfies 1 for every normal form w ∈ X and every x ∈ X such that w x < wx. The word wx can be written as a product w 1 w 2 , where w 2 ∈ X (N ) is not a normal form. The presentation X | R is reduced. Thus, there exists a unique f ∈ R such that f = w 2 -w 2 . Let

h 1 (w ⊗ x) = w 1 ⊗ f + h 1 ([w 1 w 2 ]) .
We have:

∂ 2 h 1 (w ⊗ x) = [w 1 f ] + ∂ 2 h 1 ([w 1 w 2 ]) = [w 1 w 2 ] -[w 1 w 2 ] + ∂ 2 h 1 ([w 1 w 2 ]) .

By induction hypothesis, ∂

2 h 1 ([w 1 w 2 ]) is equal to [w 1 w 2 ] -w 1 w 2 .
Hence, we have:

∂ 2 h 1 (w ⊗ x) = [w 1 w 2 ] -w 1 w 2 = w ⊗ x -[ wx] = w ⊗ x -h 0 (wx) .
Thus, Relation 1 holds.

3.1.3. Remark. We consider the K-linear morphisms

F 1 : A ⊗ V -→ V ⊗N , w 1 w 2 ⊗ x -→ w 1 ⊗ w 2 x, F 1 1 : A ⊗ V ⊗N -→ A ⊗ V, w 1 ⊗ w 2 x -→ w 1 w 2 ⊗ x, F 1 2 : A ⊗ V -→ A ⊗ V ⊗N , w 1 w 2 ⊗ x -→ w 1 ⊗ w 2 x.
The inductive definition of h 1 implies that h 1 (w ⊗ x) is equal to

F 1 -F 1 2 (w ⊗ x) + F 1 -F 1 2 F 1 1 F 1 2 (w ⊗ x) + F 1 -F 1 2 F 1 1 F 1 2 2 (w ⊗ x) + • • • ,
where

F 1 -F 1 2 F 1 1 F 1 2 2k (w ⊗ x) vanishes for k sufficiently large.
In order to define h 2 we need the following:

3.1.4. Lemma. Let A be an N -homogeneous algebra. Assume that A admits an extra-confluent presentation X | R . Let w 1 ∈ X , w 2 ∈ X (N -1) and x 1 , x 2 ∈ X such that:

1. w 1 x 1 and x 1 w 2 are normal forms for X | R , 2. w 2 x 2 is not a normal form for X | R .

The word w 1 x 1 w 2 is a normal form for X | R .

Proof. Assume that w 1 x 1 w 2 is not a normal form. By hypothesis, w 1 x 1 and x 1 w 2 are normal forms. Thus, there exist a right divisor u of w 1 and a left divisor v of w 2 such that ux 1 v has length N and is not a normal form. In particular, ux 1 w 2 x 2 is the source of a critical branching. From Proposition 2.3.4, the word x 1 w 2 is not a normal form, which is a contradiction. Thus, Lemma 3.1.4 holds.

3.1.5. The construction of h 2 . Recall from Proposition 2.2.6 that the algebra A admits as a basis the set {w, w ∈ X is a normal form}. Thus, in order to define

h 2 : A ⊗ R -→ A ⊗ J 3 it is sufficient
to define h 1 (w ⊗ f ) for every normal form w ∈ X and every f ∈ R. Moreover, h 2 has to satisfy the relation

∂ 3 h 2 (w ⊗ f ) = w ⊗ f -h 1 ∂ 2 (w ⊗ f ) , (2) 
for every normal form w ∈ X and every f ∈ R.

We write w = w 1 x 1 , f = w -w and w = w 2 x 2 . We define h 2 (w ⊗ f ) by Noetherian induction on x 1 w 2 . Assume that x 1 w 2 is a normal form. Let h 2 (w ⊗ f ) = 0. We have:

h 1 ∂ 2 (w ⊗ f ) = h 1 ([wf ]) = h 1 ([ww ]) -h 1 [w w ] = h 1 (ww 2 ⊗ x ) -h 1 [w w ] .
From Lemma 3.1.4, ww 2 is a normal form. Thus, by construction of h 1 , we have:

h 1 (ww 2 ⊗ x ) = w ⊗ f + h 1 [w w ] .
We conclude that h 1 ∂ 2 (w ⊗ f ) is equal to w ⊗ f . Hence, Relation 2 holds.

Assume that h 2 (u ⊗ g) is defined and that (E 2 ) holds for every normal form u ∈ X and g ∈ R such that yv < x 1 w 2 , where y ∈ X and v ∈ X (N -1) are such that u = u y and lm (g) = vz for u ∈ X and z ∈ X. We consider the two morphisms

S 1 = S ⊗ Id V and S 2 = Id V ⊗ S.
The presentation X | R is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k such that:

Id V ⊗N +1 -S 2 , Id V ⊗N +1 -S 1 k = Id V ⊗N +1 -S 1 , Id V ⊗N +1 -S 2 k .
We denote by Λ this common morphism. The image of Λ is included in ker (S 1 ) ∩ ker (S 2 ). The latter is equal to R ⊗ V ∩ V ⊗ R . Recall that we have:

Id V ⊗N +1 -S 2 , Id V ⊗N +1 -S 1 k = Id V ⊗N +1 + k-1 i=1 (-1) i S 1 , S 2 i + S 2 , S 1 i + (-1) k S 2 , S 1 k .
Thus, we have:

Λ = (Id V ⊗N +1 -S 2 ) + (Id V ⊗N +1 -S 2 ) k-1 i=1 (-1) i g i (S 1 , S 2 ) ,
where g i (S 1 , S 2 ) denotes the product S 1 S 2 S 1 • • • with i factors. In particular, there exist

f 1 , • • • , f l ∈ R, x 1 , • • • , x l ∈ X and λ 1 , • • • , λ l ∈ K such that x i w i < x 1 w 2 where lm (f i ) = w i y i and Λ (xw ) = xf + l i=1 λ i x i f i .
Then, let

h 2 (w ⊗ f ) = w 1 ⊗ Λ (xw ) - l i=1 λ i h 2 (w 1 x i ⊗ f i ) .
We will show in Section 4 that Relation 2 holds.

3.1.6. Remark. We consider the K-linear maps

F 2 : A ⊗ V ⊗N -→ V ⊗N +1 , w 1 x ⊗ w 2 -→ w 1 ⊗ xw 2 , F 2 1 : A ⊗ V ⊗N +1 -→ A ⊗ V ⊗N , w 1 ⊗ xw 2 -→ w 1 x ⊗ w 2 , F 2 2 : A ⊗ V ⊗N -→ A ⊗ V ⊗N +1 , w 1 x ⊗ w 2 -→ w 1 ⊗ xw 2 -Λ (xw 2 ) .
The inductive definition of h 2 implies that h 2 (w ⊗ f ) is equal to

F 2 -F 2 2 (w ⊗ f ) + F 2 -F 2 2 F 1 2 F 2 2 (w ⊗ f ) + F 2 -F 2 2 F 1 2 F 2 2 2 (w ⊗ f ) + • • • , where F 2 -F 2 2 F 1 2 F 2 2 2k
(w ⊗ f ) vanishes for k sufficiently large.

3.1.7. Example. The construction of our contracting homotopy for the Koszul complex of the enveloping algebra of the Heisenberg Lie algebra is done in Section 5.3.

Reduction operators and confluence algebras

We fix a finite set Y , totally ordered by a relation <. For every v ∈ KY \ {0}, we denote by lm(v) the greatest element of Y occurring in the decomposition of v. We extend the order < to a partial order on KY in the following way: we have v < w if either v = 0 or if lm(v) < lm(w).

In this section we recall some results from [START_REF] Berger | Confluence and Koszulity[END_REF] about reduction operators and confluence algebras. We denote by L (KY ) the lattice of sub-vector spaces of KY : the order is the inclusion, the lower bound is the intersection and the upper bound is the sum. To define the upper bound and the lower bound on Red (Y ), recall from [Ber98, Theorem 2.3] that the map

3.

θ Y : Red (Y ) -→ L (KY ), T -→ ker(T )
is a bijection. The lower bound T 1 ∧ T 2 and the upper bound T 1 ∨ T 2 of two elements T 1 and T 2 of Red (Y ) are defined in the following way:

T 1 ∧ T 2 = θ -1 Y (ker(T 1 ) + ker(T 2 )) , T 1 ∨ T 2 = θ -1
Y (ker(T 1 ) ∩ ker(T 2 )) .

Remark.

The lattice Red (Y ) admits Id KY as maximum and 0 KY as minimum.

Confluent pairs of reduction operators.

A pair P = (T 1 , T 2 ) of reduction operators relatively to Y is said to be confluent if there exists an integer k such that:

T 1 , T 2 k = T 2 , T 1 k .
We will see in Section 3.3 the link between this notion and the side-confluent presentations.

Confluence algebras.

Let k be an integer. The confluence algebra of degree k is the algebra presented by

s 1 , s 2 | s 2 i = s i , s 1 , s 2 k = s 2 , s 1 k , i = 1, 2 .
This algebra is denoted by A k . Let us consider the following elements of A k :

σ = s 1 , s 2 k = s 2 , s 1 k , γ 1 = (1 -s 2 ) i∈I s 2 , s 1 i , γ 2 = (1 -s 1 ) i∈I s 1 , s 2 i , λ = 1 -(σ + γ 1 + γ 2 ) ,
where I is the set of odd integers between 1 and k -1. We easily check that we have the following relations:

γ i s i = γ i , for i = 1, 2, (3a) 
s i γ i = s i -σ, for i = 1, 2. (3b) 
3.2.6. P -representations of confluence algebras. Let P = (T 1 , T 2 ) be a confluent pair of reduction operators relatively to Y . Let k be an integer such that T 1 , T 2 k = T 2 , T 1 k . We consider the morphism of algebras

ϕ P : A k -→ End (KY ) . s i -→ T i
The morphism ϕ P is called the P -representation of A k . Recall from [START_REF] Berger | Confluence and Koszulity[END_REF] that:

ϕ P (σ) = T 1 ∧ T 2 , ( 4a 
) ϕ P (1 -λ) = T 1 ∨ T 2 . ( 4b 
)
3.2.7. The left bound and the right bound. Let P = (T 1 , T 2 ) be a confluent pair of reduction operators relatively to Y . By definition of λ and from 3.2.6, we have:

T 1 ∨ T 2 = T 1 ∧ T 2 + ϕ P (γ 1 ) + ϕ P (γ 2 ) . (5) 
The morphisms ϕ P (γ 1 ) and ϕ P (γ 2 ) are called the left bound of P and the right bound of P, respectively.

We end this section with the following:

3.2.8. Lemma. Let P = (T 1 , T 2 ) be a confluent pair of reduction operators relatively to Y. Let W be a sub-vector space of KY . If W is included in ker (T i ) for i = 1 or 2, we have:

ϕ P (γ i ) |W = T 1 ∨ T 2|W .
Proof. By definition, σ and γ i factorize on the right by s i . Hence, the restrictions of ϕ P (σ) and ϕ P (γ i ) to W vanish. Thus, Lemma 3.2.8 is a consequence of Relation 5.

Reduction operators and side-confluent presentations

Let A be an N -homogeneous algebra. We suppose that A admits a side-confluent presentation X | R where X is a totally ordered finite set. For every integer m, the set X (m) is finite and totally ordered for the lexicographic order induced by the order over X. We write V = KX.

3.3.1. Normal forms and the Koszul complex. In Lemma 3.3.3 we will link together the Koszul complex of A and the reduction operators. In this way, recall from Proposition 2.2.6 that every element f ∈ T (V ) admits a unique normal form for X | R , denoted by f . Let

φ : T (V ) -→ T (V ) . f -→ f
Recall from Proposition 2.2.6 that for every f ∈ T (V ), we have f ∈ I(R) if and only if f = 0. Hence, φ induces a K-linear isomorphism φ from A to im (φ). In particular, for every integer n, the morphism

φ n = φ ⊗ Id V ⊗l N (n) is a K-linear isomorphism from A ⊗ J n to im (φ) ⊗ J n . Thus, the Koszul complex (K • , ∂) of A is isomorphic to the complex of vector spaces (K • , ∂ ) • • • ∂ n+1 -→ im (φ) ⊗ J n ∂ n -→ im (φ) ⊗ J n-1 -→ • • • ∂ 2 -→ im (φ) ⊗ J 1 ∂ 1 -→ im (φ) ε -→ K -→ 0, where ∂ n is equal to φ n-1 • ∂ n • φ -1 n .
3.3.2. Definition. The complex (K • , ∂ ) is the normalised Koszul complex of A.

Lemma.

1. For every integer m, the restriction of φ to V ⊗m is a reduction operator relatively to X (m) and its kernel is equal to I(R) m .

2.

Let n be an integer such that n ≥ 1. The morphism ∂ n is the restriction to im (φ) ⊗ J n of the morphism ϕ n : m≥l N (n) V ⊗m -→ T (V ) defined by

ϕ n|V ⊗m = φ |V ⊗m-l N (n-1) ⊗ Id V ⊗l N (n-1) .
Proof. Let us show the first point. The presentation X | R is N -homogeneous. Thus, for every w ∈ X (m) , φ(w) belongs to V ⊗m . In particular, the restriction of φ to V ⊗m is an endomorphism of V ⊗m . Let w ∈ X (m) . If w is a normal form, then φ(w) is equal to w. In particular, φ |V ⊗m is a projector. If w is not a normal form, then φ(w) = w is strictly smaller than w. Thus, φ |V ⊗m is a reduction operator relatively to X (m) . Moreover, f is equal to 0 if and only if f belongs to I(R). Thus, the kernel of φ |V ⊗m is equal to I(R) m . Let us show the second point. Recall from 2.1.2 that the differential ∂ n : A ⊗ J n -→ A ⊗ J n-1 of the Koszul complex of A is the restriction to A ⊗ J n of the A-linear map defined by:

A ⊗ V ⊗l N (n) -→ A ⊗ V ⊗l N (n-1) , 1 A ⊗ w -→ w 1 ⊗ w 2
where w 1 ∈ X (l N (n)-l N (n-1)) and w 2 ∈ X (l N (n-1)) are such that w = w 1 w 2 . Thus, the map ∂ n is the restriction of the morphism which maps a word w of length m ≥ l N (n) to w 1 w 2 , where w 1 ∈ X (m-l N (n-1)) and w 2 ∈ X (l N (n-1)) are such that w = w 1 w 2 . The latter is equal to φ |V ⊗m-l N (n-1) ⊗ Id V ⊗l N (n-1) .

Lattice properties.

Let S ∈ End V ⊗N be the operator of X | R :

S (w) = lm (f ) -f, if there exists f ∈ R such that w = lm (f ) , w, otherwise.
The properties of S described in 2.2.4 imply that S is equal to θ -1 X (N ) R . For every integers m and i such that m ≥ N and 0 ≤ i ≤ m -N , we consider the following reduction operator relatively to X (m) :

S (m) i = Id V ⊗i ⊗ S ⊗ Id V ⊗m-N -i . The kernel of S (m) i is equal to V ⊗i ⊗ R ⊗ V ⊗m-N -i .
The presentation X | R is side-confluent. Hence, the pair S (2N -1) i , S (2N -1) j is confluent for every integers i and j such that 0 ≤ i , j ≤ N -1. We deduce from [Ber01, Section 3] and [Ber98, Theorem 2.12] that for every integer m such that m ≥ N , the sub-lattice of Red X (m) spanned by

S (m) 0 , • • • , S (m)
m-N is confluent (that is, the elements of this lattice are pairwise confluent) and distributive (that is, for every S, T, U belonging to this lattice, we have

(S ∧ T ) ∨ U = (S ∨ U ) ∧ (T ∨ U )).

The left bound of a side-confluent presentation

Through this section we fix an N -homogeneous algebra A. We assume that A admits an N -homogeneous presentation X | R where X is a totally ordered finite set. This presentation is also fixed. We write V = KX. We consider the notations of 3.3.4.

Reduction pairs associated with a presentation

For every integers n and m such that m ≥ l N (n), we consider the following reduction operators relatively to X (m) :

F n,m 1 = θ -1 X (m) I(R) m-l N (n) ⊗ V ⊗l N (n) , F n,m 2 =    Id V ⊗m , if m < l N (n + 1), θ -1 X (m) V ⊗m-l N (n+1) ⊗ J n+1 , otherwise.
The pair

(F n,m 1 , F n,m 2 
) is denoted by P n,m .

4.1.1. Definition. The pair P n,m is the reduction pair of bi-degree (n,m) associated with X | R .

4.1.2. Lemma. Let n and m be two integers such that n ≥ 1 and l

N (n) ≤ m < l N (n + 1). Then, m -l N (n -1) is smaller than N -1 and F n-1,m 1 is equal to Id V ⊗m .
Proof. First, we show that m -l N (n -1) is smaller than N -1. Assume that m is a multiple of N : m = kN . In this case, the hypothesis l N (n) ≤ m < l N (n + 1) implies that n is equal to 2k. Thus,

l N (n -1) is equal to (k -1)N + 1. That implies that m -l N (n -1) is equal to N -1. Assume that m is not a multiple of N : m = kN +r with 1 ≤ r ≤ N -1. In this case, the hypothesis l N (n) ≤ m < l N (n+1) implies that n is equal to 2k + 1. Thus, m -l N (n -1) = m -kN is smaller than N -1. Let us show that F n-1,m 1 is equal to Id V ⊗m . The first part of the lemma implies that I(R) m-l N (n-1) is equal to {0}. Thus, the kernel of F n-1,m 1 is equal to {0}, that is, F n-1,m 1 is equal to Id V ⊗m . 4.1.3. Lemma.
1. Let n and let m be two integers such that m ≥ l N (n + 2). We have:

F n,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-l N (n+2) .
2. Let n and m be two integers such that n ≥ 1 and m ≥ l N (n + 1). We have:

F n,m 2 = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-N .
Proof. By definition of ∧, we have:

ker S (m) 0 ∧ • • • ∧ S (m) m-l N (n+2) = m-l N (n+2) i=0 ker S (m) i = m-l N (n+2) i=0 V ⊗i ⊗ R ⊗ V ⊗m-N -i =   m-l N (n+2) i=0 V ⊗i ⊗ R ⊗ V ⊗m-l N (n)-N -i   ⊗ V ⊗l N (n) =   m-l N (n)-N i=0 V ⊗i ⊗ R ⊗ V ⊗m-l N (n)-N -i   ⊗ V ⊗l N (n) = I(E) m-l N (n) ⊗ V ⊗l N (n) .
By definition of ∨, we have:

ker S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-N = m-N i=m-l N (n+1) ker S (m) i = m-N i=m-l N (n+1) V ⊗i ⊗ R ⊗ V ⊗m-N -i = V ⊗m-l N (n+1) ⊗   l N (n+1)-N i=0 V ⊗i ⊗ R ⊗ V ⊗l N (n+1)-N -i   = V ⊗m-l N (n+1) ⊗ J n+1 .
The map θ X (m) being a bijection, the two relations hold.

4.1.4. Theorem. Let A be an N -homogeneous algebra admitting a side-confluent presentation X | R , where X is a finite set. The reduction pairs associated with X | R are confluent.

Proof. Let n and m be two integers such that m ≥ l N (n). We have to show that the reduction pair of bi-degree (n, m) associated with X | R is confluent. We proceed in four steps.

Step 1. Assume that n = 0. We have P 0,0 = (Id K , Id K ). Thus, the pair P 0,0 is confluent. Let m be an integer such that m ≥ 1. The kernel of F 0,m 2 is equal to V ⊗m-1 ⊗ J 1 = V ⊗m . Thus, F 0,m 2 is equal to 0 V ⊗m . In particular, the operators F 0,m 1 and F 0,m 2 commute, that is, they satisfy the relation

F 0,m 1 , F 0,m 2 2 = F 0,m 2 , F 0,m 1 2
. Hence, the pair P 0,m is confluent for every integer m.

Step 2. Assume that n ≥ 1 and l n (n) ≤ m < l N (n + 1). The pair P n,m is equal to (F n,m 1 , Id V ⊗m ). Thus, the operators F n,m 1 and F n,m 2 commute. We conclude that the pairs P n,m such that n ≥ 1 and l n (n) ≤ m < l N (n + 1) are confluent.

Step 3. Assume that n ≥ 1 and l N (n + 1) ≤ m < l N (n + 2). From Lemma 4.1.2, the morphism F n,m 1 is equal to Id V ⊗m . In particular, the operators F n,m 1 and F n,m 2 commute. Thus, the pairs P n,m such that n ≥ 1 and l N (n + 1) ≤ m < l N (n + 2) are confluent.

Step 4. Assume that n ≥ 1 and m ≥ l N (n + 2). Lemma 4.1.3 implies that F n,m 1 and F n,m 2 belong to the lattice generated by S (m) i , for 0 ≤ i ≤ m -N . From 3.3.4 the latter is confluent. Hence, the pairs P n,m such that n ≥ 1 and m ≥ l N (n + 2) are confluent.

Construction

Through this section, we assume that the presentation X | R of A is side-confluent. From Proposition 2.2.6, every element f of T (V ) admits a unique normal for X | R . This normal form is denoted by f . We denote by φ the endomorphism of T (V ) which maps an element to its unique normal form. We consider the notations of Section 4.1.

Lemma. For every integers n and m

such that m ≥ l N (n), the operator F n,m 1 is equal to φ |V ⊗m-l N (n) ⊗ Id V ⊗l N (n) . Proof. From Point 1 of Lemma 3.3.3, the operator φ |V ⊗m-l N (n) ⊗ Id V ⊗l N (n)
is a reduction operator relatively to X (m) and its kernel is equal to I(R) m-ln(n) ⊗ V ⊗ln(n) . The map θ X (m) being a bijection, Lemma 4.2.1 holds.

Lemma.

Let n be an integer. Let h n : m≥l N (n) V ⊗m -→ T (V ) be the K-linear map defined by

h n|V ⊗m = ϕ Pn,m (γ 1 ) ,
where ϕ Pn,m (γ 1 ) is the left bound of P n,m . The image of h n is included in im (φ) ⊗ J n+1 .

Proof. Let m be an integer such that m ≥ l N (n). By definition of the left bound, there exists an endomorphism H of V ⊗m such that

ϕ Pn,m (γ 1 ) = (Id V ⊗m -F n,m 2 ) F n,m 1 H. The image of F n,m 1 = φ |V ⊗m-l N (n) ⊗ V ⊗l N (n)
is equal to the vector space spanned by the elements with shape w 1 w 2 where

w 1 ∈ X (m-l N (n)) is a normal form and w 2 ∈ X (l N (n)) . Let G = θ -1 X (l N (n+1)) (J n+1 ) .
We have

F n,m 2 = Id V ⊗m-l N (n+1) ⊗ G.
The latter implies that

(Id V ⊗m -F n,m 2 ) = Id V ⊗m-l N (n+1) ⊗ (Id V ⊗l N (n+1) -G) .
We conclude that the image of ϕ Pn,m (γ 1 ) is included in the vector space spanned by elements with shape wf where w ∈ X (m-l N (n+1)) is a normal form and f ∈ J n+1 . This vector space is equal to im φ |V ⊗m-l N (n+1) ⊗ J n+1 .

Definition. For every integer n, let

h n = φ -1 n+1 • h n • φ n : A ⊗ J n -→ A ⊗ J n+1 ,
where φ n is the K-linear isomorphism between A ⊗ J n and im (φ) ⊗ J n defined in 3.3.1. The family (h n ) n is the left bound of X | R .

Reduction relations.

Let n and m be two integers such that m ≥ l N (n). Then, we denote by

K (m) n = im φ |V ⊗m-l N (n) ⊗ J n .
In particular, we have:

im (φ) ⊗ J n = m≥l N (n) K (m) n .
We say that the presentation X | R satisfy the reduction relations if for every integers n and m such that m ≥ l n (n), the following equality holds:

(r n,m ) F n,m 1 ∧ F n,m 2 |K (m) n = F n-1,m 1 ∨ F n-1,m 2 |K (m) n .
4.2.5. Proposition. Let A be an N -homogeneous algebra. Assume that A admits a side-confluent presentation X | R where X is a finite set. The left bound of X | R is a contracting homotopy for the Koszul complex of A if and only if X | R satisfies the reduction relations.

Proof. The left bound of X | R is a contracting homotopy for the Koszul complex of A if and only if the family h n : im (φ) ⊗ J n -→ im (φ) ⊗ J n+1 n defined in Lemma 4.2.2 is a contracting homotopy for the normalised Koszul complex of A.

4.3.1. Lemma. Let m, r and k be three integers such that m ≥ N +2, 2 ≤ k ≤ N -1 and r+k ≤ m-N . Then, we have:

1. S (m) r ∨ S (m) r+k = S (m) r ∨ • • • ∨ S (m) r+k , 2. S (m) r ∧ • • • ∧ S (m) r+k-1 ∨ S (m) r+k = S (m) r+k-1 ∨ S (m) r+k .
Proof. Let us prove the point 1. The extra-condition implies the following inclusion:

V ⊗r+k ⊗ R ⊗ V ⊗m-N -r-k ∩ V ⊗r ⊗ R ⊗ V ⊗m-N -r ⊂ V ⊗r+k-1 ⊗ R ⊗ V ⊗m-N -r-k+1 .
Applying the bijection θ -1 X (m) , we have:

S (m) r+k-1 S (m) r ∨ S (m) r+k .
By definition of the upper bound, we deduce that

S (m) r ∨ S (m) r+k-1 ∨ S (m) r+k is equal to S (m) r ∨ S (m)
r+k . By induction on k, we obtain the first relation.

Let us prove the point 2. Recall from 3.3.4 that the lattice spanned by

S (m) 0 , • • • , S (m) 
m-N is distributive. Thus, the left hand side of 2 is equal to

S (m) r ∨ S (m) r+k ∧ • • • ∧ S (m) r+k-1 ∨ S (m)
r+k . By the first point, for every integer i such that

0 ≤ i ≤ n -2, S (m) r+i ∨ S (m) r+k is equal to S (m) r+i ∨ • • • ∨ S (m) r+k , so it is greater than S (m) r+k-1 ∨ S (m)
k+r . By definition of the lower bound, the second relation holds.

Lemma.

Let n and m be two integers such that n ≥ 2 and l N (n + 1) ≤ m < l N (n + 2). We have:

S (m) 0 ∧ • • • ∧ S (m) m-l N (n+1) ∨ S (m) m-l N (n) = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-l N (n) . (7) 
Proof. From Lemma 4.1.2, the hypothesis

l N (n + 1) ≤ m < l N (n + 2) implies that m -l N (n) is smaller than N -1.
Assume that m is a multiple of N . The hypothesis l N (n + 1) ≤ m < l N (n + 2) implies that m is equal to l N (n + 1). Thus, the left hand side of 7 is equal to

S (m) 0 ∨ S (m)
m-l N (n) and the right hand side of 7 is equal to

S (m) 0 ∨ • • • ∨ S (m)
m-l N (n) . Hence, Relation 7 is a consequence of Lemma 4.3.1 point 1. Assume that m is not a multiple of N . The hypothesis l N (n + 1) ≤ m < l N (n + 2) implies that n is even. Hence, the left hand side of 7 is equal to

S (m) 0 ∧ • • • ∧ S (m) m-l N (n)-1 ∨ S (m) m-l N (n) and the right hand side of 7 is equal to S (m) m-l N (n)-1 ∨ S (m) m-ln(n) . If n is equal to 2 and m is equal to N + 1, these two morphisms are equal to S (N +1) 0 ∨ S (N +1) 1 . If the couple (n, m) is different from (2, N + 1), Relation 7 is a consequence of Lemma 4.3.1 point 2. 4.3.3. Lemma.
Let n and m be two integers such that n ≥ 2 and m ≥ l N (n + 2). Letting

T n,m = S (m) m-l N (n+2)+1 ∧ • • • ∧ S (m) m-l N (n+1) ,
we have:

T n,m ∨ F n-1,m 2 = F n,m 2 .
Proof. From Lemma 4.1.3, we have

F n-1,m 2 = S (m) m-l N (n) ∨ • • • ∨ S (m) m-N , and F n,m 2 = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-N .
The law ∨ being associative, it is sufficient to show:

T n,m ∨ S (m) m-l N (n) = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-l N (n) . (8)
Assume that n is odd. We have l N (n + 2) = l N (n + 1) + 1. Hence, the left hand side of 8 is equal to (n) . Moreover, l N (n+1)-l N (n) is equal to N -1. Thus, Relation 8 is a consequence of Lemma 4.3.1 point 1.

S (m) m-l N (n+1) ∨S (m) m-l N
Assume that n is even. We have l N (n + 1) = l N (n) + 1. Hence, the left hand side of 8 is

equal to S (m) m-l N (n+2)+1 ∧ • • • ∧ S (m) m-l N (n)-1) ∨ S (m)
m-l N (n) and the right hand side of 8 is equal to

S (m) m-ln(n)-1 ∨ S (m) m-l N (n) . Moreover, l N (n + 2) -1 -l N (n) is equal to N -1.
Thus, Relation 8 is a consequence of Lemma 4.3.1 point 2.

Proposition.

Let A be an N -homogeneous algebra. Assume that A admits a side-confluent presentation X | R . Then, the presentation X | R satisfies the extra-condition if and only if for every integers n and m such that n ≥ 1 and m ≥ l N (n + 1), we have:

F n,m 1 ∧ F n-1,m 1 ∨ F n-1,m 2 = F n,m 1 ∧ F n,m 2 .
Proof. For every integers n and m such that n ≥ 1 and m ≥ l N (n + 1), let

L n,m = F n,m 1 ∧ F n-1,m 1 ∨ F n-1,m 2 , R n,m = F n,m 1 ∧ F n,m 2 .
Step 1. Assume that n = 1. Fist, we show that:

L 1,m = F 0,m 1 . ( 9 
)
The kernel of F 0,m 2 is equal to Assume that m = N . The kernel of F 1,N 1 is equal to

V ⊗m-1 ⊗ J 1 = V ⊗m , that is, F 0,m 2 is equal to 0 V ⊗m . In particular, F 0,m 1 ∨ F 0,
I(R) N -1 ⊗ V = {0}, that is, F 1,N 1 is equal to Id V ⊗N . In particular, R 1,N is equal to F 1,N 2
. Moreover, we have:

F 0,N 1 = θ X (N ) -1 (I(R) N ) = θ X (N ) -1 (R) , and F 1,N 2 = θ X (N ) -1 (J 2 ) = θ X (N ) -1 (R) .
Thus L 1,N and R 1,N are equal.

Assume that m ≥ N + 1. From Lemma 4.1.3, we have:

F 0,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-N , F 1,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-N -1 , F 1,m 2 = S (m) m-N .
Thus, R 1,m is equal to F 0,m 1 . We conclude that Proposition 4.3.4 holds for n = 1 and m ≥ N .

Step 2. Assume that, n ≥ 2 and l N (n + 1) ≤ m < l N (n + 2). From Lemma 4.1.2, m -l N (n) is smaller than N -1. Thus, the kernel of F n,m

1 is equal to {0}, that is, F n,m 1 is equal to Id V ⊗m . In particular, L n,m is equal to F n-1,m 1 ∨ F n-1,m 2 and R n,m is equal to F n,m 2 .
From Lemma 4.1.3, we have:

F n-1,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-l N (n+1) , F n-1,m 2 = S (m) m-l N (n) ∨ • • • ∨ S (m) m-N , F n,m 2 = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-N .
Moreover, from Lemma 4.3.2, we have:

S (m) 0 ∧ • • • ∧ S (m) m-l N (n+1) ∨ S (m) m-l N (n) = S (m) m-l N (n+1) ∨ • • • ∨ S (m) m-l N (n) .
The law ∨ being associative, we deduce that Proposition 4.3.4 holds for every integers n and m such that n ≥ 2 and l N ( n + 1 ) ≤ m < l N ( n + 2 ).

Step 3. Assume that n ≥ 2 and m ≥ l N (n + 2). From Lemma 4.1.3, we have: n+1) , and

F n-1,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-l N (
F n,m 1 = S (m) 0 ∧ • • • ∧ S (m) m-l N (n+2) . Thus, letting T n,m = S (m) m-l N (n+2)+1 ∧ • • • ∧ S (m)
m-l N (n+1) , we have:

F n-1,m 1 = F n,m 1 ∧ T n,m .
The lattice generated by

S (m) 0 , • • • , S (m) 
m-N being distributive, we have:

F n-1,m 1 ∨ F n-1,m 2 = F n,m 1 ∨ F n-1,m 2 ∧ T n,m ∨ F n-1,m 2 . Using the inequality F n,m 1 F n,m 1 ∨ F n-1,m

2

, we deduce:

L n,m = F n,m 1 ∧ T n,m ∨ F n-1,m 2 . From Lemma 4.3.3, T n,m ∨ F n-1,m 2 is equal to F n,m

2

. Thus, Proposition 4.3.4 holds for every integers n and m such n ≥ 2 and that m ≥ l N (n + 2). 4.3.5. Theorem. Let A be an N -homogeneous algebra admitting an extra-confluent presentation X | R . The left bound of X | R is a contracting homotopy for the Koszul complex of A.

Proof. Let φ be the endomorphism of T (V ) which maps any element to its unique normal form for X | R .

The presentation X | R is side-confluent. Thus, from Proposition 4.2.5, it is sufficient to show that for every integers n and m such that n ≥ 1 and m ≥ l N (n) we have:

(r n,m ) F n,m 1 ∧ F n,m 2 |K (m) n = F n-1,m 1 ∨ F n-1,m 2 |K (m) n , where K (m) n is the vector space im φ |V ⊗m-l N (n) ⊗ J n .
Assume that l N (n) ≤ m < l N (n + 1). We show that F n,m

1 ∧ F n,m 2 and F n-1,m 1 ∨ F n-1,m 2 are equal to Id V ⊗m . ∂ 2 (1 A ⊗ (x j x i -x i x j )) = x j ⊗ x i -x i ⊗ x j , for every 1 ≤ i < j ≤ d.
If d is greater than 3, the vector space J 3 is spanned by the elements

r i1<i2<i3 : = x i3 (x i2 x i1 -x i1 x i2 ) -x i2 (x i3 x i1 -x i1 x i3 ) + x i1 (x i3 x i2 -x i2 x i3 ) = (x i3 x i2 -x i2 x i3 ) x i1 -(x i3 x i1 -x i1 x i3 ) x i2 + (x i2 x i1 -x i1 x i2 ) x i3 , where 1 ≤ i 1 < i 2 < i 3 ≤ d. The morphism ∂ 3 : A ⊗ J 3 -→ A ⊗ R maps the element 1 A ⊗ r i1<i2<i3 to x i3 ⊗ (x i2 x i1 -x i1 x i2 ) -x i2 ⊗ (x i3 x i1 -x i1 x i3 ) + x i1 ⊗ (x i3 x i2 -x i2 x i3 ).
Assume that d is greater than 4 and let n be an integer such that 3 ≤ n ≤ d -1. We denote by I n the set of sequences i 1 < • • • < i n such that 1 ≤ i 1 and i n ≤ d. Assume that r l is defined for every l ∈ I n . For every l = i 1 < • • • < i n+1 ∈ I n+1 and every 1 ≤ j ≤ n + 1 we denote by l j the element of I n obtained from l removing i j . Then, let

r l = n+1 j=0 (-1) -η(n+j) x ij r lj , where η : N -→ {-1, 1} is defined by η(k) = 1 if k is even and η(k) = -1 if k is odd. For every 4 ≤ n ≤ d, the vector space J n is spanned by the elements r l for l ∈ I n . The map ∂ n : A ⊗ J n -→ A ⊗ J n-1 is defined by ∂ n (1 A ⊗ r l ) = n j=1 (-1) -η(n-1+j) x ij ⊗ r lj .
For every integer n such that n ≥ d + 1, J n is equal to {0}. 

F 1,m 1 (x i1 • • • x im ) = wx im , where w = x i1 • • • x im-1 , and 
F 1,m 2 (x i1 • • • x im ) = x i1 • • • x im-2 w, where w = x im-1 x im .

These morphisms satisfy the relation

F 1,m 1 , F 1,m 2 4 = F 1,m 2 , F 1,m 1 3
. Thus, we consider the P 1,mrepresentation of A 4 : 

ϕ 1,m : A 4 -→ End V ⊗m . s i -→ F 1,m i The image of γ 1 = (1 -s 2 )(s 1 + s 1 s 2 s 1 ) through this morphism is equal to F 1,m 1 -F 1,m 2 F 1,m 1 . Let wx i1 ∈ X (m) . Denoting by w = w x i2 , ϕ 1,m (γ 1 ) (wx i1 ) is equal to w (x i2 x i1 -x i1 x i2 ) if i 2 < i 1 and ϕ 1,m (γ 1 ) (wx i1 ) is equal to 0, otherwise. Then, the map h 1 : A ⊗ V -→ A ⊗ R is defined by h 1 (w ⊗ x i1 ) = w ⊗ (x i2 x i1 -x i1 x i2 ) , if i 2 < i 1 , 0, otherwise.
F 1,m 1 (x i1 • • • x im ) = wx im-1 x im , where w = x i1 • • • x im-2 , and F 1,m 2 (x i1 • • • x im ) = x i1 • • • x im-3 r im-2<im-1<im , if i m-2 < i m-1 < i m , 0, otherwise.
These morphisms satisfy the relation

F 2,m 1 , F 2,m 2 4 = F 2,m 2 , F 2,m 1 3
. Thus, we consider the P 2,mrepresentation of A 4 :

ϕ 2,m : A 4 -→ End V ⊗m . s i -→ F 2,m i The image of γ 1 = (1 -s 2 )(s 1 + s 1 s 2 s 1 ) through this morphism is equal to F 2,m 1 -F 2,m 2 F 2,m 1 . Let wx i2 x i1 ∈ X (m) . Denoting by w = w x i3 , ϕ 2,m (γ 1 ) (wx i2 x i1 ) is equal to w r i1<i2<i3 if i 1 < i 2 < i 3 and ϕ 2,m (γ 1 ) (wx i2 x i1 ) is equal to 0 otherwise. Then, the map h 2 : A ⊗ R -→ A ⊗ J 3 is defined by h 2 (w ⊗ (x i2 x i1 -x i1 x i2 )) = w ⊗ (r i1<i2<i3 ) , if i 1 < i 2 < i 3 , 0, otherwise.
5.1.5. The construction of h n . More generally, for every w ⊗ r i1<•••<in we denote by w = w x in+1 . The map h n : A ⊗ J n -→ A ⊗ J n+1 is defined by 

h n (w ⊗ r i1<•••<in ) = w ⊗ r i1<•••<in+1 , if i 1 < • • • < i n+1 , 0 

Monomial algebras satisfying the overlap property

In the section we consider the example from [Ber01, Proposition 3.8]. We consider a monomial algebra A over d generators:

X = {x 1 , • • • , x d } and R = {w 1 , • • • , w l }
is a set of words of length N . We assume that the presentation X | R satisfies the overlap property. This property is stated as follows:

5.2.1. The overlap property. For every integer n such that N + 2 ≤ n ≤ 2N -1 and for any word

w = x i1 • • • x in such that x i1 • • • x i N and x i n-N +1 • • • x in belong to
R, all the sub-words of length N of w belong to R.

Extra-confluence.

For any choice of order on X, the operator S ∈ End V ⊗N of the presentation X | R is defined on the basis X (N ) by

S(w) = 0, if w ∈ R, w, otherwise.
As a consequence, for every integer m such that 1 ≤ m ≤ N -1, the operators S ⊗Id V ⊗m and Id V ⊗m ⊗S commute. Thus, the presentation X | R is side-confluent. Moreover, for monomial algebras, the extracondition is equivalent to the overlap property. Thus, the presentation X | R is extra-confluent. The normal form of a word w is equal to 0 if w admits a sub-word which belongs to R, and w otherwise.

5.2.3. The Koszul complex of a monomial algebra. Let n be an integer such that n ≥ 2. The vector space J n is spanned by words w of length l N (n) such that every sub-word of length N of w belongs to R. The morphism

∂ n : A⊗J n -→ A⊗J n-1 maps 1 A ⊗x i1 • • • x i l N (n) to w ⊗x i l N (n)-l N (n-1)+1 • • • x i l N (n) ,
where w is equal to 

x i1 • • • x i l N (n)-l N (n-1) .
F n,m 1 (x i1 • • • x im ) = 0, if a sub-word of length N of x i1 • • • x i m-ln(n) belongs to R, w, otherwise, and 
F n,m 2 (x i1 • • • x im ) = 0, if x i m-l N (n+1)+1 • • • x im ∈ J n+1 , w, otherwise.
These operators commute. Thus, we consider the P n,m -representation of A 2 :

ϕ n,m : A 2 -→ End V ⊗m . s i -→ F 2,m i The image of γ 1 = (1 -s 2 )s 1 through this morphism is equal to F n,m 1 -F n,m 2 F n,m 1 . Let w = x i1 • • • x im be an element of X (m) . If w is such that no sub-word of length N of x i1 • • • x i m-ln (n) belongs to R and if x i m-l N (n+1)+1 • • • x im
belongs to J n+1 , ϕ n,m (γ 1 ) (w) is equal to w. In the other cases ϕ n,m (γ 1 ) (w) is equal to 0. Then, the morphism h n : A ⊗ J n -→ A ⊗ J n+1 is defined by 

h n w ⊗ x i m-l N (n)+1 • • • x im = w ⊗ x i m-l N (n+1)+1 • • • x im , if x i m-l N (n+1)+1 • • • x im ∈ J n+1 , 0 

The enveloping algebra of the Heisenberg Lie algebra

Let X | R be the presentation of Example 2.2.8. In this section we make explicit the left bound of X | R . Recall that X = {x 1 , x 2 } and R = {f 1 , f 2 } where f 1 = x 2 x 1 x 1 -2x 1 x 2 x 1 + x 1 x 1 x 2 , and

f 2 = x 2 x 2 x 1 -2x 2 x 1 x 2 + x 1 x 2 x 2 .
The acyclicty of the Koszul complex of any Yang-Mills algebra was proven in [CDV02, Theorem 1] and in [KVdB15, Section 6.3]. In this section, we propose an other proof for the enveloping algebra of the Heisenberg Lie algebra, based on the construction of an explicit contracting homotopy.

Extra-confluence.

Recall that for the order x 1 < x 2 , the operator S ∈ End V ⊗3 of the presentation X | R is defined on the basis X (3) by

S(w) =      2x 1 x 2 x 1 -x 1 x 1 x 2 , if w = x 2 x 1 x 1 , 2x 2 x 1 x 2 -x 1 x 2 x 2 , if w = x 2 x 2 x 1 , w, otherwise.
Recall from Example 2.3.6 that this presentation is extra-confluent.

5.3.2. The Koszul complex of the enveloping algebra of the Heisenberg Lie algebra. The morphism ∂ 1 : A⊗V -→ A is defined by ∂ 1 (1 A ⊗ x i ) = x i for i = 1 or 2. The morphism ∂ 2 : A⊗R -→ A ⊗ V is defined by

∂ 2 (1 A ⊗ f 1 ) = x 2 x 1 ⊗ x 1 -2x 1 x 2 ⊗ x 1 + x 1 x 1 ⊗ x 2 , and 
∂ 2 (1 A ⊗ f 2 ) = x 2 x 2 ⊗ x 1 -2x 2 x 1 ⊗ x 2 + x 1 x 2 ⊗ x 2 .
The vector space J 3 = V ⊗ R ∩ R ⊗ V is the one-dimensional vector space spanned by

v = x 2 f 1 + x 1 f 2 = f 2 x 1 + f 1 x 2 .
The morphism ∂ 3 : A ⊗ J 3 -→ A ⊗ R is defined by

∂ 3 (1 A ⊗ v) = x 2 ⊗ f 1 + x 1 ⊗ f 2 .
For every integer n such that n ≥ 4, the vector space J n is equal to {0}.

5.3.3. The construction of h 1 . Recall from Proposition 2.2.6 that the algebra A admits as a basis the set {w, w ∈ X is a normal form}. Thus, it is sufficient to define h 1 (w ⊗ x i ) for every normal form w ∈ X and i = 1 or 2.

Let m be an integer such that m ≥ 3. These morphisms commute. Thus, we consider the P 1,m -representation of A 2 :

ϕ 1,m : A 2 -→ End V ⊗m . s i -→ F 1,m i
The image of γ 1 = (1 -s 2 )s 1 through this morphism is equal to F 1,m 1 -F 1,m 2 F 1,m 1 . Let w be a normal form such that the length of w is equal to m -1. The word wx 2 does not factorize on the right by x 2 x 1 x 1 or x 2 x 2 x 1 . Thus, ϕ 1,m (γ 1 ) (wx 2 ) is equal to 0. In particular, h 1 (w ⊗ x 2 ) is equal to 0 for every normal form w ∈ X . If w does not factorize on the right by x 2 x 1 or x 2 x 2 , ϕ 1,m (γ 1 ) (wx 1 ) is equal to 0. Thus, h 1 (w ⊗ x 1 ) is equal to 0 for every normal form w ∈ X such that w does not factorize on the right by x 2 x 1 or x 2 x 2 . If w can be written w x 2 x 1 (respectively w x 2 x 2 ), then ϕ 1,m (γ 1 ) (wx 1 ) is equal to w (2x 1 x 2 x 1 -x 1 x 1 x 2 ) (respectively w (2x 2 x 1 x 2 -x 1 x 2 x 2 )). Thus, we have:

h 1 (w ⊗ x 1 ) = w ⊗ (2x 1 x 2 x 1 -x 1 x 1 x 2 ) , if w = w x 2 x 1 ,
w ⊗ (2x 2 x 1 x 2 -x 1 x 2 x 2 ) , if w = w x 2 x 2 .

5.3.4. The construction of h 2 . Recall from Proposition 2.2.6 that the algebra A admits as a basis the set {w, w ∈ X is a normal form}. Thus, it is sufficient to define h 2 (w ⊗ f i ) for every normal form w ∈ X and i = 1 or 2.

Let m be an integer such that m ≥ 4. Let P 2,m = F 2,m 1 , F 2,m 2 be the reduction pair of bi-degree

(2, m) associated with X | R . The operator F 2,m 1 maps a word w ∈ X (m) to w 1 w 2 , where w 1 ∈ X and w 2 ∈ X (4) are such that w = w 1 w 2 . The operator F 2,m 2 is equal to Id V ⊗m-4 ⊗ F where F is equal to θ -1 X (4) (J 3 ). The kernel of F is the one-dimensional vector space spanned by v. Thus, F (lm (v)) is equal to lm (v) -v, and for every w ∈ X (4) \ {lm (v)}, F (w) is equal to w. Thus, F is defined on the basis X (4) by F (w) = 2x 2 x 1 x 2 x 1 -x 2 x 1 x 1 x 2 -x 1 x 2 x 2 x 1 + 2x 1 x 2 x 1 x 2 -x 1 x 1 x 2 x 2 , if w = x 2 x 2 x 1 x 1 , w, otherwise.

The two operators F 2,m 1 and F 2,m 2 commute. Thus, we consider the P 2,m -representation of A 2 :

ϕ 2,m : A 2 -→ End V ⊗m . s i -→ F 2,m i
The image of γ 1 = (1 -s 2 )s 1 is equal to F 2,m 1 -F 2,m 2 F 2,m 1 . Let w be a normal form such that the length of w is equal to m -1. The word x 2 x 2 x 1 x 1 does not occur in the decomposition of wf 2 . Thus, ϕ 2,m (wf 2 ) is equal to 0. In particular h 2 (w ⊗ f 2 ) is equal to 0 for every normal form w ∈ X . If w does not factorize on the right by x 2 , the word x 2 x 2 x 1 x 1 does not occur in the decomposition of wf 1 . Thus, ϕ 2,m (wf 1 ) is equal to 0. In particular h 2 (w ⊗ f 1 ) is equal to 0 for every normal form w ∈ X such that w does not factorize on the right by x 2 . Assume that w factorize on the right by x 2 : w = w x 2 . Thus, ϕ 2,m (wf 1 ) is equal to w (x 2 x 2 x 1 x 1 -F (x 2 x 2 x 1 x 1 )). In this case we have

h 2 (w ⊗ f 1 ) = w ⊗ (x 2 f 1 + x 1 f 2 ) .

  2.3.3. Remark. If N = 2, the extra-condition is an empty condition. Thus, in this case, the notions of extra-confluent presentation and side-confluent presentation coincide.

.

  Moreover, the kernel of F 1,m 1 is equal to I(R) m-1 ⊗ V and the kernel ofF 0,m 1 is equal to I(R) m . The inclusion I(R) m ⊂ I(R) m-1 ⊗ V implies that F 0,m 1 is smaller than F 1,m 1 .Hence, Relation 9 holds.

  5.1.3. The construction of h1 . Let m be an integer such that m ≥ 2. Let P 1,m = F 1,m 1 , F 1,m 2be the reduction pair of bi-degree (1, m) associated with X | R . The morphisms F 1
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 1 .4. The construction of h 2 . Let m be an integer such that m ≥ 3. Let P 2,m = F 2pair of bi-degree (2, m) associated with X | R . The morphisms F 2

  , otherwise. 5.1.6. Remark. The left bound family of X | R is the contracting homotopy constructed in the proof of [LV12, Proposition 3.4.8].
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 212 .4. The contracting homotopy. Let n and m be two integers such that m ≥ l n (n). Let P n,m = (F n,m be the reduction pair of bi-degree (n, m) associated with X | R . The operators F n,m 1 and F n,m 2 are defined by

  , otherwise,where w = x i1 • • • x i m-l N (n) and w = x i1 • • • x i m-l N (n+1) .

  Let P 1,m = F 1,m 1 , F 1,m 2be the reduction pair of bi-degree(1, m) associated with X | R . The morphisms F 1• • • x im ) = wx im , where w = x i1 • • • x im-1 ,andF 1,m 2 (x i1 • • • x im ) = x i1 • • • x im-3 w, where w = x im-2 x im-1 x im .

  2.1. Reduction operators. A linear projector T of KY is called a reduction operator relatively to Y if for every y ∈ Y , we have either T (y) = y or T (y) < y. We denote by Red (Y ) the set of reduction operators relatively to Y . 3.2.2. Lattice structure. The set Red (Y ) admits a lattice structure. To define the order, recall

from [Ber98, Lemma 2.2] that if U, T ∈ Red (Y ) are such that ker (U ) is included in ker (T ), then im (T ) is included in im (U ). Thus, the relation defined by T U if ker(U ) ⊂ ker(T ) is an order relation on Red (Y ).

This notion corresponds to the one of X-confluent algebra in[START_REF] Berger | Confluence and Koszulity[END_REF]. However, we prefer to use our terminology because the property of confluence depends on the presentation.

From Point 2 of Lemma 3.3.3, the restriction of F n-1,m 1 = φ |V ⊗m-l N (n-1) ⊗ Id V ⊗ln(n-1) to K (m) n is equal to the restriction of ∂ n to K (m) n . Thus, the family (h n ) n is a contracting homotopy for (K • , ∂ ) if and only if for every n and m such that n ≥ 1 and m ≥ l N (n), the following relation holds:

ϕ Pn,m (s 1 ) ϕ Pn,m (γ 1 ) + ϕ Pn-1,m (γ 1 ) ϕ Pn-1,m (s 1 ) |K (m)

From Relation 3b (see page 15) and Relation 4a (see page 15), we have:

). In particular, the restriction of

is the identity map. We deduce that the left bound family of X | R is a contracting homotopy for the Koszul complex of A if and only if the following relation holds:

From Relation 3a (see page 15), ϕ Pn-1,m (γ 1 ) ϕ Pn-1,m (s 1 ) is equal to ϕ Pn-1,m (γ 1 ). Thus, it is sufficient to show:

By construction,

. Hence, Relation 6 is a consequence of Lemma 3.2.8.

The following lemma will be used in the proof of Theorem 4.3.5:

4.2.6. Lemma. Let n and m be two integers such that n ≥ 1 and l N (n) ≤ m < l N (n + 1). The operators F n,m

Proof. The pair P n,m being confluent, we deduce from Relation 4b (see page 15) that

We have

) maps a word w of length m to w 1 w 2 (respectively w 1 w 2 ), where w 1 ∈ X (m-l N (n)) and w 2 ∈ X (l N (n)) (respectively w 1 ∈ X (m-l N (n-1)) and w 2 ∈ X (l N (n-1)) ) are such that w = w 1 w 2 (respectively w = w 1 w 2 ). Thus, the two compositions

Extra-confluent presentations and reduction relations

Through this section we assume that the presentation X | R is extra-confluent. Our aim is to show that X | R satisfies the reduction relations. In this way, we will show in Proposition 4.3.4 that the extra-condition enables us to link together the reduction pairs associated with X | R . We consider the notations of Section 4.1.

The hypothesis l

2 is equal to Id V ⊗m and Relation (r n,m ) holds.

Assume that m ≥ l N (n+1). From Lemma 4.2.6 the operators F n,m

We deduce from Relation 4a (see page 15):

Examples

In this section, we consider three examples of algebras which admit an extra-confluent presentation: the symmetric algebra, monomial algebras satisfying the overlap property and the enveloping algebra of the Heisenberg Lie algebra. For each of these examples we explicit the left bound constructed in Section 4.2.

The symmetric algebra

In this section we consider the symmetric algebra A = K[x 1 , • • • , x d ] over d generators. This algebra admits the presentation X | R , where the set X is equal to {x 1 , • • • , x d } and the set R is equal to {x i x j = x j x i , 1 ≤ i = j ≤ d}.

5.1.1. Extra-confluence. We consider the order x 1 < • • • < x d . The operator S ∈ End V ⊗2 of the presentation X | R is defined on the basis X (2) by S(x i x j ) =

x j x i , if i > j,

x i x j , otherwise.

Let w = x i x j x k ∈ X (3) . If k is strictly smaller than j and i is strictly smaller than k, we have

In the other cases the elements S ⊗ Id V , Id V ⊗ S 2 (w) and Id V ⊗ S, S ⊗ Id V 2 (w) are equal. In particular the two operators S ⊗ Id V , Id V ⊗ S 3 and Id V ⊗ S, S ⊗ Id V 3 are equal. Moreover, N is equal to 2. Thus, from Remark 2.