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Confluence algebras and acyclicity of the Koszul complex

CYRILLE CHENAVIER

Abstract. The N-Koszul algebras are N-homogeneous algebras which satisfy an homological property.
These algebras are characterised by their Koszul complex: an N-homogeneous algebra is N-Koszul if and
only if its Koszul complex is acyclic. Methods based on computational approaches were used to prove
N-Koszulness: an algebra admitting a side-confluent presentation is N-Koszul if and only if the extra-
condition holds. However, in general, these methods do not provide an explicit contracting homotopy
for the Koszul complex. In this article we present a way to construct such a contracting homotopy. The
property of side-confluence enables us to define specific representations of confluence algebras. These
representations provide a candidate for the contracting homotopy. When the extra-condition holds, it
turns out that this candidate works. We explicit our construction on several examples.
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1 Introduction

An overview on Koszulness and N-Koszulness

Koszul algebras. Koszul algebras were defined by Priddy in [Pri70] as quadratic algebras which
satisfy a homological property. A quadratic algebra is a graded associative algebra over a field K which
admits a quadratic presentation (X | R), that is, X is a set of generators and R a set of quadratic
relations. If A is a quadratic algebra, the field K admits a left and right A-module structure induced



by the K-linear projection € : A — K which maps any generator of A to 0. A quadratic algebra A is

said to be Koszul if the Tor groups Torf’(m) (K,K) (n is the homological degree and m is graduation
induced by the natural graduation over A) vanish for m # n.

A property of Koszul algebras is that the ground field K admits a Koszul resolution. The name
of this resolution is due to the fact that it is inspired by ideas of Koszul (see [Kos50]). The Koszul
complez of a quadratic algebra A which admits a quadratic presentation (X | R) is the complex of free
left A-modules:

N Ae T, Dy A0 T — P AT 2 AR AKX 2 A S K — 0,

where KX and R denote the vector space spanned by X and the sub vector space of KX®? spanned
by R, respectively, and for every integer n such that n > 2, we have:

n—2
Jn = KX® @ Ro KX®" N,
=0

The differentials of the Koszul complex are defined by the inclusions of R in A ® KX, of J3 in A® R
and of J, in A® J,_1 for n > 4. Then, a quadratic algebra is Koszul if and only if its Koszul complex
is acyclic, that is, if and only if the Koszul complex of A is a resolution of K.

Another characterisation of Koszulness was given by Backelin in [BF83| (see also Theorem 4.1
in [PP05, chapter 2]): a quadratic algebra is Koszul if and only if it is distributive (which means that
some lattices defined with X and R are distributive). Moreover, Koszul algebras have been studied
through computational approaches based a monomial order, that is, a well founded total order on the
set of monomials. In [Ani86], Anick used Grobner basis to construct a free resolution of K. This
resolution enables us to conclude that an algebra which admits a quadratic Grébner basis is Koszul.
In [Ber98|, Berger studied quadratic algebras with a side-confluent presentation . The latter is a
transcription of the notion of quadratic Grébner basis using some linear operators. More precisely, we
can associate with any quadratic presentation (X | R) of A an unique linear projector S of KX @ KX.
This projector maps any element of KX ® KX to a better one with respect to the monomial order. The
presentation (X | R) is said to be side-confluent if there exists an integer k such that:

<S® Idgx,Idgx ® S>k = <IdKX ®S5,5S® Ide>k ,

where (t, s) denotes the product - - - sts with k factors. The algebra presented by:

<81752 | <51782>k = <827sl>k7 812 = S, 1= 172>7

is naturally associated with a side-confluent presentation. This algebra is the confluence algebra of
degree k. In [Ber98, Section 5|, Berger used specific representations of these algebras to construct a
contracting homotopy for the Koszul complex of an algebra which admits a side-confluent presentation.
This construction enables us to conclude that a quadratic algebra admitting a side-confluent presentation
is Koszul.

N-Koszul algebras. Let N be an integer such that N > 2. An N-homogeneous algebra is a graded
associative algebra over a field K which admits an N-homogeneous presentation (X | R), that is, X is
a set of generators and R is a set of N-homogeneous relations. In [Ber01] the notion of Koszul algebra
is extended to the notion of N-Koszul algebra. An N-homogeneous algebra A is said to be N-Koszul if
the Tor groups Tor (K, K) vanish for m # Iy (n), where [y is the function defined by:

n,(m)

ZN(n) =

kN,  ifn =2k,
EN +1, if n=2k+ 1.

1This notion corresponds to the one of X-confluent algebra in [Ber98]. However, we prefer to use our terminology
because the property of confluence depends on the presentation.



We remark that a 2-Koszul algebra is precisely a Koszul algebra. Thus, the notion of N-Koszul algebra
generalises the one of Koszul algebra.

In the same paper, Berger defined the Koszul complex of an N-homogeneous algebra. Let (X | R)
be an N-homogeneous presentation of A. The Koszul complex of A is the complex of left A-modules:

AN I A N o B A N B AR 2 AKX 2 A4S K — 0,

where the vector spaces JV are defined by:

In(n)—N _ '
JN= [ KX®@ReKX®W~m-N-

n
=0

Asin the quadratic case, this complex characterises the property of N-Koszulness: an N-homogeneous
algebra is N-Koszul if and only if its Koszul complex is acyclic (see [Ber01, Proposition 2.12]). This
complex also find applications in the study of higher Koszul duality (see [DV13]).

Berger studied the property of N-Koszulness using monomial orders. As in the quadratic case,
there exists a unique linear projector S of KX®V associated with an N-homogeneous presentation of
A which maps any element to a better one with respect to the monomial order. Then, a presentation
is side-confluent if for every integer m such that N +1 < m < 2N — 1, there exists an integer k£ which
satisfies:

<S ® Ide®m—N7 IdKX(X]‘m,—N ® S>k - <IdKX®'m,—N ® S, S ® Ide®m—N>k

Contrary to the quadratic case, an algebra admitting a side-confluent presentation is not necessarily N-
Koszul. Indeed, when the set X is finite, such an algebra is N-Koszul if and only if the extra-condition
holds (see [Ber01, Proposition 3.4]). The extra-condition is stated as follows:

(ec): (KX®"@R)N(ROKX®") c KX®" '@ R®KX, for every 2<m < N —1,
We group these hypothesis in the following definition:

2.3.2 Definition. Let A be an N-homogeneous algebra. A side-presentation (X | R) such
that X is finite and the extra-condition holds is said to be eztra-confluent.

Our problematic. We deduce of the works from [Ber01] that the Koszul complex of an algebra A
admitting an extra-confluent presentation is acyclic. However, there does not exist an explicit contract-
ing homotopy for the Koszul complex of A. The purpose of this paper is to construct such a contracting
homotopy. For the quadratic case, our contracting homotopy is the one constructed in [Ber98, Section
5].

Our results

We present the different steps of our construction. Recall that an extra-confluent presentation needs
a monomial order. Thus, in what follows, we work with a monomial order. For every integer m, we
denote by X (™ the set of words of length m.

Reduction pairs associated with a presentation. In the way to construct our contracting ho-
motopy, we will associate with any N-homogeneous presentation (X | R) such that X is finite a family
Py = (F"™, F3"™), where F"™ and Fy"™ are linear projectors of KX (™). The pair P, , is called
the reduction pair of bi-degree (n,m) associated with (X | R). We point the fact that the finiteness
condition over X will be necessary to define the operators F,"". Moreover, these operators satisfy the
following condition: for any w € X (™), F""™ (w) is either equal to w or is a sum of monomials which are
strictly smaller than w with respect to the monomial order. The linear projectors of KX (™) satisfying



the previous condition are called reduction operators relatively to X ™). The set of reduction operators
relatively to X (™) admits a lattice structure (we will recall it in Section 3.2). This structure plays an
essential role in our constructions. A pair (77, 7T5) of reduction operators relatively to X (m) is said to
be confluent if there exists an integer k such that we have the following equality in End (KX (m)):

(Ty,To)" = (T, Ty)".
Then, our first result is:

4.1.4 Theorem Let A be an N-homogeneous algebra admitting a side-confluent presentation
(X | R), where X is a finite set. The reduction pairs associated with (X | R) are confluent.

The left bound. The reduction pairs associated with a side-confluent presentation (X | R) enable
us to define a family of representations of confluence algebras in the following way:

@Fmm <51,52 | (51, 82)F ™ = (s9,81) ™ 2 =55, i = 1,2> — End (KX(m)) ,
S; —> Fin,m
where the integer k,, ,, satisfies:
kn.m 5 5 kn,m
(FY B0 = (T T

For every integers n and m we will consider a specific element in <, :

M= (1= s9) (51 + 518281 + - -+ + (89, 81>2z’+1) ’

where the integer ¢ depends on ky, ,,. The shape of this element will be motivated in Section 3.1. In
Section 4.2 we will use the elements 7™ () to construct a family of K-linear maps

ho A— A® KX,
h: AKX — A® R,
hy: AR — A® JY,
hn: A®JY — A® JN,,, forn > 3.
The family (h,,),, is called the left bound of (X | R). In Proposition 4.2.5, we will show that the left

bound of (X | R) is a contracting homotopy for the Koszul complex of the algebra presented by (X | R)
if and only if (X | R) satisfies some identities, called the reduction relations.

Extra-confluent presentations and reduction relations. Finally we will show that (ec) implies
that the reduction relations hold. Then, our main result is stated as follows:

4.3.5 Theorem Let A be an N-homogeneous algebra. If A admits an extra-confluent pre-
sentation (X | R), then the left bound of (X | R) is a contracting homotopy for the Koszul
complex of A.

Organisation

In Section 2 we recall how we can construct the Koszul complex of an N-homogeneous algebra. We also
recall the definition of an extra-confluent presentation. In Section 3.1 we make explicit our construction
in small homological degree. In Section 3.2 we recall the definitions of confluence algebras and reduc-
tion operators. We also recall the link between reduction operators and representations of confluence
algebras. In Section 4 we construct the contracting homotopy in terms of confluence. As an illustration



of our construction we provide in Section 5 three examples: the symmetric algebra, monomial algebras
which satisfy the overlap properties and the Yang-Mills algebra over two generators.

Acknowledgement. The author wish to thank Roland Berger for helpful discussions. This work
is supported by the Sorbonne-Paris-Cité IDEX grant Focal and the ANR grant ANR-13-BS02-0005-02
CATHRE.

2 Preliminaries

2.1 The Koszul complex

2.1.1. Conventions and notation. We denote by K a field. We say vector space and algebra instead
of K-vector space and K-algebra, respectively. We consider only associative algebras. Given a set X,
we denote by (X) and KX the free monoid and the vector space spanned by X, respectively. For every
integer m, we denote by X (™) the subset of (X) of words of length m.

We write V = KX. We identify KX (™) and the free algebra K (X) spanned by X to V®™ and to
the tensor algebra T (V') over V, respectively.

Let A be an algebra. A presentation of A is a pair (X | R), where X is a set and R is a subset K (X))
such that A is isomorphic to the quotient of K (X) by I(R), where I(R) is the two-sided ideal of K (X))
spanned by R. The isomorphism from A to K (X) /I(R) is denoted by ¢ (x|ry. For every f € K(X),
we denote by f the image of f through the canonical projection of K (X) over A.

Let N be an integer such that N > 2. An N-homogeneous presentation of A is a presentation
(X | R) of A such that R is included in KX, In this case, the two-sided ideal I(R) is the direct sum
of vector spaces I(R),, defined by I(R),, =0 if m < N, and

m—N
IR)m= Y VI@R@ V™ N"ifm > N,
=0

where R denotes the subspace of V&Y spanned by R. An N-homogeneous algebra is a graded algebra
A =@,,cn Am which admits an N-homogeneous presentation (X | R) such that for every integer m,
Y(x|r) induces a K-linear isomorphism from A,, to VE™ /I(R),,:

A:EBAm

meN
VenN VON+1

~KeVae - -aV¥Phlg—o — ®---
R VQR+RQV

We denote by € : A — K the projection which maps 14 to 1x and A,, to 0 for every m > 1.

2.1.2. The construction of the Koszul complex. Let A be an N-homogeneous algebra and let
(X | R) be an N-homogeneous presentation of A. We write VV = KX. We consider the family of vector
spaces (JX),, defined by J&¥ =K, JN¥ =V, JV = R and for every integer n > 3
lN(TL)—N
JN= (] V¥eReVeWm-N=
i=0

where the function I : N — N is defined by

Loy = [V it
NI TN 41, ifn =2k + 1.



When there is no ambiguity, we write J,, instead of J.~.
Let n be an integer. For every w € X(n(+1) et v € XUnn+D)=In(m) and wy € XN (M) guch
that w = wyws. Let us consider the A-linear map

Fop1: A VONITD g gy @i,
14 ®@wr— w1 ® ws

Recall from [Ber01, Section 3| that the Koszul complex of A is the complex (K,, )
On+1 On 02 61 €
= AR, ARy — o —m AR — A— K — 0,

where 9, is the restriction of F}, to A ® J,. In particular, the map 9, is defined by & (14 ®z) = T
for every z € X.

2.1.3. Remark. The two following remarks show that the Koszul complex is well-defined:

1. Let n be an integer. The vector space J, 41 is included in VeIN(nt)=in(n) & J Thus, the vector
space Fp11 (A® Jy41) is included in A ® J,.

2. Let m be an integer such that n > 1. The vector space J,41 is included in R ® J,,—1. Thus, the
restriction of F, F,11 to A® J,41 vanishes.

2.1.4. Example. We consider the example from [KVdB14, Section 6.3]. Let A be the Yang-Mills
algebra over 2 generators: this algebra is the 3-homogeneous algebra presented by

(x1, T2 | Taw121 — 2T1T2%1 + T1XT1T2, TaTaZT1 — 2T2T1T2 + T1T2Ta) .

The map 9 : A® R — A® V is defined by
O (lA ® Tor1T1 — 2X1X2X1 + .Z‘ll‘lxz) =TT ® X1 — 2T1T3 R T1 + T1T1 @ T2, and
0o (1A ® Xoxor1 — 2x2x1X9 + $1$2$2) =TTy ®T1 — 27201 ® To + X123 R To.

The vector space J3 = (V @ R) N (R® V) is the one-dimensional vector space spanned by

v = xo(Taw1x1 — 221221 + T12122) + 1 (TaTox1 — 2X0X1To + T1T2X2)

= (I’QIQZEl — 2£E21‘1$2 + Ill'gl’g)llil + (Igl‘lfﬂl — 2I11‘21‘1 + 1‘1501172).’52.
The map 93 : A® J3 — A® R is defined by

03 (14 ®v) = T3 @ (vaw121 — 2x1T9%1 + 12122) + T @ (Taxox — 2T2T1X2 + T1X2T2) .

2.2 Side-confluent presentations

Through this section we fix an N-homogeneous algebra A and an N-homogeneous presentation (X | R)
of A. We assume that X is a totally ordered set. We write V = KX.

2.2.1. Reductions. For every integer m, the set X (™) is totally ordered for the lexicographic order
induced by the order over X. For every f € V®™\ {0}, we denote by Im (f) the greatest element of X (™)

occurring in the decomposition of f. We denote by lc(f) the coefficient of Im (f) in the decomposition
of f. Let

R/:{lczf)f’ feR}.



Then, (X | R’) is an N-homogeneous presentation of A. Thus, we can assume that lc (f) is equal to 1
for every f € R.

For every wi, ws € (X) and every f € R, let ry, fu, be the K-linear endomorphism of T (V') defined
on the basis (X) in the following way:

wy (Im (f) — f)wa, if w=wilm (f)w,,
w, otherwise.

Twi fws (w) = {
Taking the terminology of [Ber78], the morphisms 7, fu, are called the reductions of (X | R).

2.2.2. Normal forms. An element f € T (V) is said to be a normal form for (X | R) if r(f) = f for
every reduction r of (X | R). Given an element f of T (V'), a normal form of f is a normal form g such
that there exist reductions 7y, -- , 7, satisfying g =7, ---7,(f). In this case, we have f = 3.

The presentation (X | R) is said to be reduced if, for every f € R, lm(f) — f is a normal form for
(X | Ry and lm (f) is a normal form for (X | R\ {f}). From this moment, all the presentations are
assumed to be reduced.

2.2.3. Critical branching. A critical branching of (X | R) is a 5-tuple (w1, wa, ws, f, g) where f,g € R
and w1y, we, w3 are non empty words such that:

wiwe =1m (f), and

WoaWs = Im (g) .

The word wiwows is the source of this critical branching.

2.2.4. The operator of a presentation. Let S be the endomorphism of V&V defined on the basis
X W) in the following way:

{lm(f) — f, if there exists f € R such that w =Im (f),
S (w) =

w, otherwise.

The operator S is the operator of (X | R). The presentation (X | R) is reduced. Thus, S is well-defined
and is a projector. The kernel of S is equal to R. If w € X(N) is a normal form, then S(w) is equal to
w. If w is not a normal form, then S(w) is strictly smaller than w.

2.2.5. Definition. The presentation (X | R) is said to be side-confluent if for every integer m such
that 1 < m < N — 1, there exists an integer k such that:

<Idv®7n ® S, S ® Idv®m,>k - <S ® IdV@m,IdV@nz ® S>k 5
where (t,5)* denotes the product - - - sts with k factors.

The Diamond Lemma ( [Ber78, Theorem 1.2]) implies the following:

2.2.6. Proposition. Let A be an N-homogeneous algebra. Assume that A admits a side-confluent
presentation (X | R). Then, the following hold:

1. Every element of T (V) admits a unique normal form for (X | R).
2. The set {w, w € (X) is a normal form} is a basis of A.

3. An element of T (V) belongs to I(R) if and only if its normal form is equal to 0.



Proof. Let S be the operator of (X | R). Let (w1, ws,ws, f,g) be a critical branching of (X | R).
Let m be the length of w = wjwews. The presentation (X | R) being N-homogeneous, we have
N +1<m < 2N — 1. Thus, there exists an integer k such that:

Idyem-~ ® 9,8 @ Idyen-~)* (w) = (S @ Idyen-~, Idyen-y @ ) (w).

Thus, there exist two sequences of reductions rq, - - - ,r, and rf, - - - , v} such that ry - - - r, (Im (f) — f) ws3)
isequal tor} - - 7] (w1 (Im (g) — g)). We deduce from [Ber78, Theorem 1.2] that every element f € T (V)
admits a unique normal form for (X | R) and that {w, w € (X) is a normal form} is a basis of A. Thus,
the two first points hold. R

Let us show the third point. Let f be an element of T (V') and let f be its unique normal form. We
write:

f= > A,

where w; € (X) are normal forms. Then, f is equal to > icr Aiw;. From the second point, f is equal to
0 if and only if ); is equal to 0 for every i € I.
O

2.2.7. Lemma. Assume that the presentation (X | R) is side-confluent. Let S be the operator of
(X | R). For every integer m such that N +1 < m < 2N — 1, there exists an integer k such that:
(Idyem —Idyem-~ ® S, Idyen — S @ Idyem-~ )"
= <Idv®7n - S®Idyem-~,Idyem — Idyem-v ® S)k .

Moreover, for every w € X ™) such that Idyem-~ ® S(w) and S @ Idyem-~(w) are different from w,
we have:

Im (((Idv®m ~Tdyen-~) ® 8, Idyen — S @ Idyen-x)* (w)) = w.
Proof. We write 51 = Idyem-~v ® S and Sy = S® Idyem-n.

The presentation (X | R) is side-confluent. Thus, there exists k& € N such that (S5, Sl>k is equal to

(S1, Sg) The morphisms S; and S being projectors we show by induction that for every integer j we
have:

Jj—1
(Idyon — S1,Tdyen = S3)’ = Idyen + 3 (=1)" ((S1,8)" + (S2, 81)") + (=1)7 (81, 8)7
=1
(Idyem — So, Idyam — S1) = Idyen + Z ( S, 85)" + (S, Sl>1) 4 (—1)7 (S, 1) .

i=1

In particular we have:
<Idv®7n - SQ, Idv@vn - Sl>k - <Idv®7n - Sl, Idv@nz - SQ)k .

Moreover, if w € X(™ is such that S;(w) and Sy(w) are different from w, then S;(w) and So(w)
are strictly smaller than w. We deduce from the relation

<Idv®7n Sl,ldv®m — SQ w =w+ Z ( Sl, SQ) <523 Sl>l) (w) + (_1)k <Sla S2>k (w)7

that lm ((Idv®m — S, Idyem — S)" (w)) is equal to w. O



2.2.8. Example. We consider the presentation from Example 2.1.4 of the Yang-Mills algebra over
two generators with the order x; < z2. The operator S € End (V®3) of this presentation is defined on
the basis X©®) by

2r1T0m1 — 12122, if W = Zo21 21,
S(w) =< 2xom1x2 — 1 X2T2, if w = xozomy,

w, otherwise.
This presentation admits exactly one critical branching:
(z2, 2271, T1, L2121 — 2T1T2T1 + T1T1T2, TaZaXi — 2T9T1T2 + T1T2T2) .
We have:

<S R Idy,Idy ® S>2 (.2321‘2331.131) = <IdV ®5,5® Idv>2 (3321‘2]}1.231)

= ToX1X2X1 — 2T1T2X1%2 + T1T1T2T2.

Moreover, for every w € X*) which is different from zszoz121, we check that (S ®Idy,Idy ® S>2 (w)
is equal to (Idy ® S, S ® Idy)* (w). Thus, we have:

(S @1dy,Idy ® 8)° = (Idy ® 5,8 @ Idy)> .

For every w € X® we check that (S @ Idye2,Idye: @ S)° (w) and (Idye: ® 5,8 @ Idys2)” (w) are
equal. Thus, we have:

(S @ ldyez,Idye: @ S>2 = Idye: ® 5,5 ® Idv®2>2 .

We conclude that the presentation from Example 2.1.4 with the order x1 < x5 is side-confluent.

2.3 Extra-confluent presentations

2.3.1. The extra-condition. Let A be an N-homogeneous algebra. Assume that A admits a side-
confluent presentation (X | R) where X is a totally ordered finite set. Recall from [Ber01, Section 3|
that the Koszul complex of A is acyclic if and only if the extra-condition holds. The extra-condition is
stated as follows:

(]KX(”) ®E) n (R@ KX(”)) c KX D @R®KX, for every 2<n < N — 1.

2.3.2. Definition. Let A be an N-homogeneous algebra. A side-presentation (X | R) such that X is
finite and the extra-condition holds is said to be extra-confluent.

2.3.3. Remark. If N =2, the extra-condition is an empty condition. Thus, in this case, the notions
of extra-confluent presentation and side-confluent presentation coincide.

An extra-confluent presentation has the following interpretation in terms of critical branching:

2.3.4. Proposition. Let A be an N-homogeneous algebra. Assume that A admits an extra-confluent
presentation (X | R). Let w = x1---xy, be the source of a critical branching of (X | Ry. The word
Tyn—N *** Tm—1 18 not a normal form for (X | R).

Proof. The presentation (X | R) is N-homogeneous. In particular, we have N +1 < m < 2N — 1. If
m = N + 1, there is nothing to prove. Thus, we assume that m is greater than N + 2.



Let S be the operator of (X | R). We write
S1=95®Idgm—n and Sy = Idgm-—n ® S.
The presentation (X | R) is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k& such that
Idyem — Sz, Idyem — S1)" = Idyem — S1, Idyen — S2)".

We denote by A this common morphism. By hypothesis, S;(w) and Ss(w) are different from w. From
Lemma 2.2.7, Im (A(w)) is equal to w.

The image of A is included in im (Idg ymy —S1) N im (Idg x o) — S2) that is, ker (S1) N ker (S5).
The latter is equal to R @ KX~ N) A KX(™=N) @ R. The presentation (X | R) satisfies the extra-
condition. Thus, the image of A is included in KX N-1) @ R ® KX. In particular, there exist
wy, - wp € XMN=D g0 fie Rz, 2 € X and Ay, --- A\ € K which satisfy

l
i=1

Thus, Im (A(w)) = w is equal to w;lm (f;) z; for some 1 < i <. We conclude that x,_n - Tpm_1 is
equal to lm (f;). In particular, it is not a normal form. O

2.3.5. Remark. Let A be the algebra presented by (z < y | zyz). This presentation is side-confluent.
There is only one critical branching: (xy, z, yz, xyz, xyx). The source zyxyx of this critical has length
5. We deduce from Proposition 2.3.4 that the extra-condition does not hold.

Let us check that the Koszul complex of A is not acyclic: the vector space Js is reduced to {0} and
the map 9 : A® R — A® V is defined by 05 (14 ® ryz) = Ty ® z. In particular, Zy ® zyx belongs

to the kernel of 0. Thus, we have a strict inclusion im (93) & ker (0a).

2.3.6. Example. We consider the presentation from Example 2.2.8 of the Yang-Mills algebra over

two generators. The vector space V¥? ® RN R ® V2 is reduced to {0}. Then, the extra-condition
holds. We conclude that the presentation from Example 2.2.8 is extra-confluent.

3 Confluence algebras and reduction operators

3.1 The contracting homotopy in small degree

Through this section we fix an N-homogeneous algebra A. We assume that A admits an extra-confluent
presentation (X | R). This presentation is also fixed. We write V = KX.

The aim of this section is to make explicit our contracting homotopy in small homological degree.
The formal construction will be done in Section 4.

We have to construct a family of K-linear maps

h1:K— A, and h, : AR J, — A® Jpy1, for 0 <n <2,

satisfying the following relations:
Ov1hg + h_1e =Id4 and an—i—lhn 4+ hp_10, = IdA®Jn, for0<n<2.

By assumption, the set X is finite. However, we will see that for the constructions of h_1, hg and hq
this hypothesis is not necessary.

From Proposition 2.2.6, every element f of T (V) admits a unique normal form for (X | R). This
normal form is denoted by ]/C\
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For every w € (X), we define [w] € A®V as follows:
] 0, if w is the empty word,
wl=1< _
w’ @ z, where w’ € (X) and z € X are such that w = w'z.

The map []: (X) — A®V is extended into a K-linear map from T (V) to A® V. Let w € (X) be a

non empty word. For every a € A, the action of a on [w] is given by a.[w] = [fw], where f € T (V) is
such that a = f.
In small degree, the Koszul complex of A is

A (VeRNRoV) 2 AeR 2 A0V 25 4 55K — 0,

where 0, is defined by 0, (14 ®v) =0 for every v € V, 95 is defined by 0> (14 ® f) = [f]jorjvery
f € R and 03 is defined by 03 (14 ® g) = > 0 ® f where ) v f is a decomposition of g € VR RN RV
in V ® R. By definition of 03, 95 (14 ® g) does not depend on the decomposition of g in V ® R.

3.1.1. The constructions of h_; and hg. The maps h_; : K — Aand hg : A — A ® V are
defined by

h_1(1g) = 14 and ho(a) = [ﬂ , where f € T (V) is such that f = a.

We have ho (1a) = 0 and h_ye(14) = 14. If a belongs to A, for m > 1, we have ¢ (a) = 0 and
O1ho (a) = f. Tt follows that d1hg + h_1e is equal to Id 4.

3.1.2. The construction of h;. Recall from Proposition 2.2.6 that the algebra A admits as a basis
the set {w, w € (X) is a normal form}. Thus, in order to define b1 : AQ V — A ® R, it is sufficient

to define hy (W ® x) for every normal form w € (X) and every x € X. Moreover, h; has to satisfy the
relation

82}11(@@%‘):@@33—}10(%), (1)

for every normal form w € (X) and every z € X.
We define hy (W ® x) by Noetherian induction on wz. Assume that wzx is a normal form. Then, let

hi (W ® x) = 0. We have:

ho (we) = (73]
= [wa]
=W T

Thus, Relation 1 holds. Assume that wzx is not a normal form and that hq (W@ :U’) is defined and
satisfies (E;) for every normal form w’ € (X) and every 2’ € X such that w'z’ < wz. The word wx
can be written as a product wywy where wy € X) is not a normal form. The presentation (X | R) is
reduced. Thus, there exists a unique f € R such that f = ws — ws. Let

hi(@®x) =w1 ® f 4 hy ([wiws]).
We have:
Dby (W @ x) = w1 f] + O2ha ([wrw3)])
= [wiwa] — [wiws] + d2hy ([wrws]) -
By induction hypothesis, d2h1 ([w1ws]) is equal to [wiws] — [wiwz]. Hence, we have:
Oohy (W ® x) = [wyws] — [1@]
=uU Rz — |[wi]
=wWRx — hy (Wx).

Thus, Relation 1 holds.
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3.1.3. Remark. We consider the K-linear morphisms

Fil: AV — VO wiws; ® ¢ — W1 @ war,
Fl AV — ARV, W7 ® wez — Ww; @ 7,

F}:AQV — A VN ww; ® x — W1 @ s
The inductive definition of h; implies that hi (W ® ) is equal to
(P - F) @o)+ (P - F) (FIF (@eo) + (A - F) (RA) @)+

where (F) — Fy) ((Fllel)% (T® x)) is vanishes for k sufficiently large.

In order to define hy we need the following:
3.1.4. Lemma. Let A be an N-homogeneous algebra. Assume that A admits an extra-confluent pre-
sentation (X | R). Let wy € (X), ws € XWN=Y and x1, x5 € X such that:

1. wizy and ziwy are normal forms for (X | R).

2. waxo is not a normal form for (X | R).
The word wyziws is a normal form for (X | R).

Proof. Assume that wyxiws is not a normal form. By hypothesis, wiz; and xyws are normal forms.
Thus, there exist a right divisor v of w; and a left divisor v of ws such that uziv has length N and is
not a normal form. In particular, uziwsyxs is the source of a critical branching. From Proposition 2.3.4,
the word x,ws is not normal, which is a contradiction. Thus, Lemma 3.1.4 holds. O]

3.1.5. The construction of hy. Recall from Proposition 2.2.6 that the algebra A admits as a basis
the set {w, w € (X) is a normal form}. Thus, in order to define hy : A ® R — A ® J3 it is sufficient

to define hy (W ® f) for every normal form w € (X) and every f € R. Moreover, hs has to satisfy the
relation

aghg(@(@f):@@f*hlaz(w@f), (2)

for every normal form w € (X) and every f € R.
We write w = wyz1, f =w —w and w’ = woxzy. We define he (W ® f) by Noetherian induction on
z1ws. Assume that zyws is a normal form. Let hy (W ® f) = 0. We have:

h102 (W @ f) = ha ([wf])
= hy ([ww')) — by ([wu’])
=h (Wwz @ x') — hy ([w@}) :
From Lemma 3.1.4, wws is a normal form. Thus, by construction of hy, we have:
hy (wwz @ 2') =w® f+h <[wt/u\’]) .

We conclude that h10; (W ® f) is equal to W ® f. Hence, Relation 2 holds.
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Assume that hy (T ® g) is defined and that (E2) holds for every normal form u € (X) and g € R
such that yv < zyws, where y € X and v € XV 1 are such that u = v’y and Im (g) = vz for v’ € (X)
and z € X. We consider the two morphisms

S1=5S®Idy and So =Idy ® S.

The presentation (X | R) is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k such
that:

(Idyen+1 — Sy, Idyene — 81)% = (Idyes: — 81, Idyeni — S5)".

We denote by A this common morphism. The image of A is included in ker (S1) Nker (S2). The latter
is equal to (R ® V) N (V ® R). Recall that we have:

k—1
<IdV®N+1 — Sy, Idyens — Sl>k =Idye~v+1 + Z(*l)l <<Sl, SQ>Z + <S2, Sl>l) + (*1)]C <SQ, Sl>k .

i=1
Thus, we have:

k—1
A= (Idv®N+1 — 52) + (Idv®N+1 — SQ) Z(—l)i 9; (Sl, SQ) ,

i=1

where g; (51, S2) denotes the product S752957 - - - with ¢ factors. In particular, there exist f1,---, f; € R,
21, ,x € X and A1, -+, \; € K such that x;w; < zqywy where Im (f;) = w;y; and

!
A(zw') =xf + Zx\zm,fl

=1

Then, let

l
ha (@ f) =1 @ A (aw') = Ao (0777 ® fi) .
i=1

We will show in Section 4 that Relation 2 holds.

3.1.6. Remark. We consider the K-linear maps

F: A VeN 5 veNtl 5F @ wy — W1 ® zws,

FEiA@VENTL — A VOV, w7 ® zws — WiT ® ws,

F22 CAQVEN 5 A VENTL Tz @ wy — WT ® zwe — A (zwo) .
The inductive definition of ho implies that hs (W ® f) is equal to

(F2— F3) @& f) + (B = B) (BB @0 ) + (B — B3) (B )° (@@ )+
where (Fh — F3) ((F%Ff)zk (T® f)) is vanishes for k sufficiently large.

3.1.7. Example. The construction of our contracting homotopy for the Koszul complex of the Yang-
Mills algebra over two generators is done in Section 5.3.
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3.2 Reduction operators and confluence algebras

We fix a finite set Y, totally ordered by a relation <. For every v € KY \ {0}, we denote by lm(v) the
greatest element of Y occurring in the decomposition of v. We extend the order < to a partial order
on KY in the following way: we have v < w if either v = 0 or if lm(v) < Im(w).

In this section we recall some results from [Ber98] about reductions operators and confluence alge-
bras.

3.2.1. Reduction operators. A linear projector T of KY is called a reduction operator relatively to
Y if for every y € Y, we have either T'(y) = y or T(y) < y. We denote by Red (V') the set of reduction
operators relatively to Y.

3.2.2. Lattice structure. The set Red (V) admits a lattice structure. To define the order, recall
from [Ber98, Lemma 2.2] that if U, T € Red (Y) are such that ker (U) is included in ker (T'), then im (7")
is included in im (U). Thus, the relation defined by T <X U if ker(U) C ker(T) is an order relation on
Red (Y).

We denote by Z(KY') the lattice of sub vector spaces of KY: the order is the inclusion, the lower
bound is the intersection and the upper bound is the sum. To define the upper bound and the lower
bound on Red (Y), recall from [Ber98, Theorem 2.3] that the map

Oy : Red (Y) — Z(KY),
T — ker(T)

is a bijection. The lower bound 77 A Ty and the upper bound 77 V T5 of two elements 77 and 75 of
Red (V') are defined in the following way:

Ty ATy = 05" (ker(T)) + ker(T3)),
Ty Vv Ty = 03" (ker(T)) Nker(Ty)).

3.2.3. Remark. The lattice Red (Y) admits Idgy as maximum and Ogy as minimum.

3.2.4. Confluent pairs of reduction operators. A pair P = (T3,7%) of reduction operators rela-
tively to Y is said to be confluent if there exists an integer k such that:

(Ty, To)* = (Ty, 1))

We will see in Section 3.3 the link between this notion and the side-confluent presentations.

3.2.5. Confluence algebras. Let k be an integer. The confluence algebra of degree k is the algebra
presented by

<81782 | 82 =55, (s1,82)" = (s2,81)", i = 172>-
This algebra is denoted by 7. Let us consider the following elements of .o7:

o= (s1,52)" = (s2,51)",
71 =(1- 82)2 (s2,51)"
el
Yo=(1=s1)> (s1,82)"
el
)‘:1_(J+71+72)3
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where I is the set of odd integers between 1 and k£ — 1. We easily check that we have the following
relations:

YiSi = Vi, for i = 17 27 (33)
8iv; = 8; — o, fori=1,2. (3b)

3.2.6. P-representations of confluence algebras. Let P = (T3, 7T3) be a confluent pair of reduction

operators relatively to Y. Let k be an integer such that (T}, T5)" = (T, T1)*. We consider the morphism
of algebras

oF: o, — End (KY).
s; — T;

The morphism ¢ is called the P-representation of <. Recall from [Ber98] that:

o' (0) =Ti N T, (4a)

P 1=\ =TV T (4b)
3.2.7. The left bound and the right bound. Let P = (T},T5) be a confluent pair of reduction
operators relatively to Y. By definition of A and from 3.2.6 we have:

TyNVT, =Ty ATo + 0" (1) + 9" (12). (5)
The morphisms o (1) and ¢ (72) are called the left bound of P and the right bound of P, respectively.

We end this section with the following:

3.2.8. Lemma. Let P = (T1,T3) be a confluent pair of reduction operators relatively to Y. Let W be
a sub vector space of KY. If W is included in ker (T;) for i =1 or 2, we have:

" (W)w =TV Topw

Proof. By definition, o and +; factorize on the right by s;. Hence, the restrictions of ¢’ (o) and ¢ (v;)
to W vanish. Thus, Lemma 3.2.8 is a consequence of Relation 5. O

3.3 Reduction operators and side-confluent presentations

Let A be an N-homogeneous algebra. We suppose that A admits a side-confluent presentation (X | R)
where X is a totally ordered finite set. For every integer m, the set X("™) is finite and totally ordered
for the lexicographic order induced by the order over X. We write V = KX.

3.3.1. Normal forms and the Koszul complex. In Lemma 3.3.3 we will link together the Koszul
complex of A and the reduction operators. In this way, recall from Proposition 2.2.6 that every element
f € T(V) admits a unique normal form for (X | R), denoted by f. Let

o: T(V)—T(V),
f—f

Recall from Proposition 2.2.6 that for every f € T (V), we have f € I(R) if and only if f: 0. Hence,
¢ induces a K-linear isomorphism ¢ from A to im (¢). In particular, for every integer n, the morphism
bn=0® Idy @iy is a K-linear isomorphism from A ® J,, to im (¢) ® J,. Thus, the Koszul complex
(Ke,0) of A is isomorphic to the complex of vector spaces (K, d")

a;r#l

S (6) © Jn 2 im (6) © Juot — - 2 im (6) @ Ty 5 im (¢) <o K — 0,

where 0/, is equal to ¢,,_1 09, 0 ¢, L.
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3.3.2. Definition. The complex (K], d") is the normalised Koszul complezx of A.

3.3.3. Lemma.

1. For every integer m, the restriction of ¢ to VE™ is a reduction operator relatively to X™) and
its kernel is equal t0 I(R)p,.

2. Let n be an integer such that n > 1. The morphism ), is the restriction to im (¢) ® J,, of the
morphism o+ D51y () VE™ — T (V) defined by

Onijyem = ¢ yOm-lym-1) & Idv®LN(n—l) .
| |

Proof. Let us show the first point. The presentation (X | R) is N-homogeneous. Thus, for every
w e XM, ¢(w) belongs to VO™, In particular, the restriction of ¢ to V™ is an endomorphism of
Vem, Let w € X, If w is a normal form, then #(w) is equal to w. In particular, ¢;yem is a projector.
If w is not a normal form, then ¢(w) = @ is strictly smaller than w. Thus, ¢|yem is a reduction operator
relatively to X (™). Moreover, fis equal to 0 if and only if f belongs to I(R). Thus, the kernel of ¢y em
is equal to I(R) .

Let us show the second point. Recall from 2.1.2 that the differential 9,, : A ® J, — A® J,_1
of the Koszul complex of A is the restriction to A ® J,, of the A-linear map defined by:

AQVeNM — Ag Vel
1a@wr— w1 @ ws

where wy € XUNM=In(=1)) and wy € XUN=1) are such that w = wyws. Thus, the map &/, is the re-
striction of the morphism which maps a word w of length m > I (n) to wiws, where wy € X (m=In(n-1))
and wy € XU (=1) are such that w = wyws. The latter is equal to qulV@Tnsz(nfl) ®Idyeiym-n. O

3.3.4. Lattice properties. Let S € End (V®¥) be the operator of (X | R):

S lm (f) — f, if there exists f € R such that w = 1m (f),
w) =
w, otherwise.

-1
X (N)

such that m > N and 0 < i < m — N, we consider the following reduction operator relatively to X (m),

The properties of S described in 2.2.4 imply that S is equal to 6 (E) For every integers m and

Sz(m) =Idye: ® S @ Idyem-~n-i.

The kernel of Si(m) is equal to V¥ @ R @ V&m—N—i,
The presentation (X | R) is side-confluent. Hence, the pair (SZ(

integers ¢ and j such that 0 < i, j < N — 1. We deduce from [Ber01, Section 3] and [Ber98,
Theorem 2.12| that for every integer m such that m > N, the sub-lattice of Red (X(m)) spanned by

S’ém)7 ceey anni)  is confluent (that is, the elements of this lattice are pairwise confluent) and distributive
(that is, for every S, T, U belonging to this lattice, we have (SAT)VU = (SVU) A (T Vv U)).

2N71), S§2N71)) is confluent for every

4 The left bound of a side-confluent presentation
Through this section we fix an N-homogeneous algebra A. We assume that A admits an N-homogeneous

presentation (X | R) where X is a totally ordered finite set. This presentation is also fixed. We write
V =KX. We consider the notations of 3.3.4.
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4.1 Reduction pairs associated with a presentation

For every integers n and m such that m > Iy (n), we consider the following reduction operators relatively
to X (m).

F{L’m = 9}%7?1) (I(R)WL—IN(YL) ® V®lN(n)) I

Iy gm, if m < Ly(n+ 1),

aX%rn) <V®m Iv(nt1) ®Jn+1), otherwise.

n7m p—
Fyom =

We denote by P, ,, the pair (F]"", F;"™).
4.1.1. Definition. The pair P, ,, is the reduction pair of bi-degree (n,m) associated with (X | R).
4.1.2. Lemma. Let n and m be two integers such that n > 1 and In(n) < m < Inx(n+1). Then,

—In(n—1) is smaller than N —1 and F]""""™ is equal to Idyem.

Proof. First, we show that m — Iy (n — 1) is smaller than N — 1. Assume that m is a multiple of N:
m = kN. In this case, the hypothesis Iy(n) < m < Iy(n + 1) implies that n is equal to 2k. Thus,
In(n—1)is equal to (k—1)N + 1. That implies that m — Iy (n—1) is equal to N — 1. Assume that m is
not a multiple of N: m = kN+r with 1 < < N—1. In this case, the hypothesis [y(n) < m < Iy(n+1)
implies that n is equal to 2k + 1. Thus, m — Ix(n — 1) = m — kN is smaller than N — 1.

Let us show that '~ "™ is equal to Idyem. The first part of the lemma implies that I(R) -1y (n—1)

is equal to {0}. Thus, the kernel of F/""""™ is equal to {0}, that is, Fi' "™ is equal to Idyem. O
4.1.3. Lemma.
1. Let n and let m be two integers such that m > ln(n + 2). We have:

n,m (m) (m)
Fy :Som AR Smm In(n+2)"

2. Let n and m be two integers such that n > 1 and m > Iy(n+1). We have:

nm (m) (m)
=S, vt V- VS N

Proof. By definition of A, we have:

m—In(n+2)

ker (Sém)/\' anm)zN(mz)): >, ke (Si(m))
=0
m—In(n+2)

Z Ve @R yeOm—N—i
m—In( n+2)
V®z ® R® V®m IN(n)—N—i ® V®lN(n)
— ( V®i ® R ® V®m—lN(n)—N—i ® V®lN(n)

:I(E m— lN(n V®1N(n)-
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By definition of V, we have:

m—N

(m) (m) \ _ (m)
ker (Smle(nH) \ARERY, Sm7N> = m ker (Si )
i=m—In(n+1)
m—N

= (1 V¥eRever N
i=m—Iy(n+1)
InN(n+1)—N
= yem=in(ntl) g m V® @ R Vet —N—i
i=0

= Ve iviit @ g,

The map 0 being a bijection, the two relations hold. O

4.1.4. Theorem. Let A be an N-homogeneous algebra admitting a side-confluent presentation (X | R),
where X is a finite set. The reduction pairs associated with (X | R) are confluent.

Proof. Let n and m be two integers such that Iy (n) < m. We have to show that the reduction pair of
bi-degree (n,m) associated with (X | R) is confluent.

Step 1. Assume that n = 0. We have Py = (Idg,Idg). Thus, the pair Py is confluent. Let m
be an integer such that m > 1. The kernel of FS”” is equal to VO™l @ J; = V®™.  Thus, FQO’m is
equal to Oy em. In particular, the operators Fl0 ™ and FQ0 ™ commute, that is, they satisfy the relation

2 2
<F{)’m, F20m> = <F§’m7 Flom> . Hence, the pair Py, is confluent for every integer m.

Step 2. Assume that n > 1 and [,(n) < m < Ix(n + 1). The pair P, ., is equal to (F]""", Idyem).
Thus, the operators F"" and F;""™ commute. We conclude that the pairs P, ,,, such that n > 1 and
ln(n) <m <lIy(n+1) are confluent.

Step 3. Assume that n > 1 and Iy(n+1) <m < Iy(n+2). From Lemma 4.1.2, the morphism F;"™
is equal to Idyem. In particular, the operators F}""™ and F;"™ commute. Thus, the pairs P, ,, such
that n > 1 and Iy(n+ 1) < m < Iy(n + 2) are confluent.

Step 4. Assume that n > 1 and m > Iy(n + 2). Lemma 4.1.3 implies that F}""™ and F,"™ belong to

the lattice generated by Si(m), for 0 <i < m — N. From 3.3.4 that the latter is confluent. Hence, the
pairs P, ,, such that n > 1 and m > [y (n + 2) are confluent. O

4.2 Construction

Through this section, we assume that the presentation (X | R) of A is side-confluent. From Proposi-
tion 2.2.6, every element f of T (V) admits a unique normal for (X | R). This normal form is denoted
by f We denote by ¢ the endomorphism of T (V) which maps an element to its unique normal form.
We consider the notations of Section 4.1.

4.2.1. Lemma. For every integers n and m such that m > Ix(n), the operator F|"™ is equal to
¢‘V®m—lN(n) ®Idv®LN(n).

Proof. From Point 1 of Lemma 3.3.3, the operator (Z)W@mfz,\,(n) ® Idy ey is a reduction operator

relatively to X (™) and its kernel is equal to I(R)pm—1,(n) @ V@) The map Oy being a bijection,
Lemma 4.2.1 holds. O
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4.2.2. Lemma. Let n be an integer. Let hy, : @,,51, (n) Vem — T (V) be the K-linear map defined
by

h;’L|V®m =" (),

where @Frm (y1) is the left bound of Py . The image of hl, is included in im (¢) ® Jyi1.

Proof. Let m be an integer such that m > Iy(n). By definition of the left bound, there exists an
endomorphism H of V®™ such that

efmm (1) = (ldyom — F3°™) F{"™H.

The image of F|""™" = ¢jyem-1ym @ V®In(1) js equal to the vector space spanned by the elements

with shape wiws where wy € X (m=In(n) ig a normal form and wy € X~ (1),
Let

G=0" ) (Jng).

X(ZN(7L+1)

We have Fy"" =Idyem-iymt1 ® G. The latter implies that
(Idyem — F3"™) = Idyem-ixymin @ Idyeiymin —G).

We conclude that the image of @™ (1) is included in the vector space spanned by elements with
shape wf where w € X(m~In(»+1) is a normal form and f € J,4;. This vector space is equal to

im (qu@mlewn) @ s 0

4.2.3. Definition. For every integer n, let
hn :(b»,:.t,l_l Oh;lO(bn : A®Jn —>A®Jn+1,

where ¢,, is the K-linear isomorphism between A ® J,, and im (¢) ® J,, defined in 3.3.1. The family
(hn),, is the left bound of (X | R).

4.2.4. Reduction relations. Let n and m be two integers such that m > Iy(n). Then, we denote

by K{™ = im (¢|V®m_zN<n>> ® J,. In particular, we have:

m(@) o, = @ K.

m2>In(n)

We say that the presentation (X | R) satisfy the reduction relations if for every integers n and m such
that m > 1,,(n), the following equality holds:

n,m n,m n—1,m n—1,m
(rnm)  FU" N =F V

L B

4.2.5. Proposition. Let A be an N-homogeneous algebra. Assume that A admits a side-confluent
presentation (X | R) where X is a finite set. The left bound of (X | R) is a contracting homotopy for
the Koszul complex of A if and only if (X | R) satisfy the reduction relations.

Proof. The left bound of (X | R) is a contracting homotopy for the Koszul complex of A if and only
if the family (h;l cim (@) ® Jp, — im (¢) ® Jn+1> defined in Lemma 4.2.2 is a contracting homotopy

for the normalised Koszul complex of A.
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From Point 2 of Lemma 3.3.3, the restriction of Flnfl’m = ¢‘V®m_zN<n_1> ® Idy ®tnn-1) to K,(Lm) is

equal to the restriction of 9/, to K™ . Thus, the family (h},),, is a contracting homotopy for (K, d") if
and only if for every n and m such that n > 1 and m > Iy (n), the following relation holds:
(@ (s1) @ (1) + @t (1) @0 (1)) emr = Td ey

From Relation 3b (see page 15) and Relation 4a (see page 15), we have:

pfmm (s1) o () = F{"™ = (o)
= F/"" — F{"" AN Fy™

The image of """ = ¢yom-1ym @ Idyeiym is equal to im (qblV@rmsz(n)) @ VEN®M) | Thus, K™ is

included in im (F;"™). In particular, the restriction of F|"™ to K™ is the identity map. We deduce
that the left bound family of (X | R) is a contracting homotopy for the Koszul complex of A if and only
if the following relation holds:

(SDPnfl,m (;—Yl) wpn*l’m (51))|K£Lm) = Fln’m A F;7m|K$LM) ’

From Relation 3a (see page 15), @Fn—1m (1) pfn—1.m(s1) is equal to =17 (y1). Thus, it is sufficient
to show:

Lanfl,m, (71>\K7(L’”) —_ Fln—l,m V. F2n_17m‘KfL'*l>' (6)
By construction, K,(Lm) is included in ker (F2" _1’m). Hence, Relation 6 is a consequence of Lemma 3.2.8.
O

The following lemma will be used in the proof of Theorem 4.3.5:

4.2.6. Lemma. Let n and m be two integers such that n > 1 and In(n) < m < Iy(n+1). The
n,m n—1m n—1,m
operators Fy"" and F V F, commute.

Proof. The pair P, ,, being confluent, we deduce from Relation 4b (see page 15) that Fj*~ "™ v Fy~ b

is polynomial in F}'"""™ and Fj'~ "™, Hence, it is sufficient to show that F;*™ commutes with F}'~""™

and Fy b,
Let

_pn—1
G =0l oy ()

We have F;il’m =Idyem-1ym®G. Thus, F|"" = Pryem—iym @ldy ey @) commutes with F;"™. More-

over, the morphism F}""™ (respectively Fi'~"™) maps a word w of length m to wiw; (respectively 17}7111/2),
where w; € X(M=In() and wy € XN (vespectively w) € Xm—v(m=1) and w) € XUn(=1)
are such that w = wywy (respectively w = wjw)). Thus, the two compositions Fj""™F"" "™ and
FP~ M ER™ are equal to FI' ™ O

4.3 Extra-confluent presentations and reduction relations

Through this section we assume that the presentation (X | R) is extra-confluent. Our aim is to show
that (X | R) satisfy the reduction relations. We consider the notations of Section 4.1.
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4.3.1. Lemma. Letm, r and k be three integers such thatm > N+2,2 < k< N—1andr+k <m—N.
Then, we have:

L S0V S = S Vv S

2. (S A ASTLL) VST = ST v ST

Proof. Let us prove the point 1. The extra-condition implies the following inclusion:

(V®r+k ® E® V®m7N7r7k:) N (V(X)r ® E ® V®m7N7r) C V®r+k71 ® R ® V®m7N7T7k+1.

-1

(m)» We have:

Applying the bijection

S, < 50y st
By definition of the upper bound, we deduce that Sﬁm) \% Sfff,)c_l Vv Sﬁ:’f,)ﬁ is equal to Sﬁm) \% SﬁT,)C By
induction on k, we obtain the first relation.

Let us prove the point 2. Recall from 3.3.4 that the lattice spanned by Sém), ., gm N is distribu-

Y m—

tive. Thus, the left hand side of 2 is equal to (Sﬁm) vV Sﬁil,l) /ARERVAN (Sﬁ:’f,l_l vV SﬁT,l) By the first point,

for every 0 <7 <n —2, Sﬁﬁ) \Y Sﬁf,l is equal to 551? \VARERY Sf,il,)c, so it is greater than SﬁT,)Fl \Y S,(Jg
O

By definition of the lower bound, the second relation holds.

4.3.2. Lemma. Let n and m be two integers such that n > 2 and Iy(n+1) < m < Iy(n+2). We
have:
(m) (m) (m) _ qlm) (m)

(SO ARRERA Smle(nJrl)) N Smle(n) - Smle(nJrl) ViV Smle(n)’ (7)
Proof. From Lemma 4.1.2, the hypothesis Iy (n+ 1) < m < Iy(n+2) implies that m — [y (n) is smaller
than N — 1.

Assume that m is a multiple of N. The hypothesis Iy(n + 1) < m < Inx(n + 2) implies that m is
equal to I (n + 1). Thus, the left hand side of 7 is equal to Sém) v §m and the right hand side

m—In(n)

of 7 is equal to S(()m) VeV ST(:T_)lN(”). Hence, Relation 7 is a consequence of Lemma 4.3.1 point 1.
Assume that m is not a multiple of N. The hypothesis Iy(n + 1) < m < Ix(n + 2) implies that n
is even. Hence, the left hand side of 7 is equal to (S(gm) ARERWAY Sf;n_)lN(n)_l) \% anni)lN(n) and the right

S(m)

m—In(n)—

hand side of 7 is equal to Y Sf:i)ln(n). If n is equal to 2 and m is equal to N + 1, these two

morphisms are equal to S(()NH) \Y% S§N+1). If the couple (n,m) is different from (2, N + 1), Relation 7 is
a consequence of Lemma 4.3.1 point 2.
O

4.3.3. Lemma. Let n and m be two integers such that n > 2 and m > ly(n + 2). Letting

_ q(m) (m)
T”»m - Smle(n+2)+1 ASRRRA Sm*lN(nJFl)’
we have:
R e

Proof. From Lemma 4.1.3, we have

F;_l’m:S(m) \/~--\/S7(W@N, and

m—In(n)
= SmyilN(nH) Ve VSN
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The law V being associative, it is sufficient to show:

(m) _ q(m) (m)
T"v"” v Sm—lN(n) - Sm—lN(n-i-l) ViV Sm—lN(n)' (8)

Assume that n is odd. We have Iy (n+2) =Iy(n+1)+ 1. Hence, the left hand side of 8 is equal to
ST(:T_)IN(”H) \/Sy(nm_)lN(n). Moreover, [y (n+1)—In(n) is equal to N —1. Thus, Relation 8 is a consequence
of Lemma 4.3.1 point 1.

Assume that n is even. We have Iy(n + 1) = Iy(n) + 1. Hence, the left hand side of 8 is

equal to (kS”T(nm_)lN(nH)+1 /\--~/\S7(nm_)lN(n)_1)) \Y, anm_)lN(n) and the right hand side of 8 is equal to
kS'r(:L_)ln(n)_1 \ anm_)lN(n). Moreover, Iy(n +2) — 1 — Ix(n) is equal to N — 1. Thus, Relation 8 is
a consequence of Lemma 4.3.1 point 2. [

4.3.4. Proposition. Let A be an N-homogeneous algebra. Assume that A admits an extra-confluent
presentation (X | R). For every integers n and m such that n > 1 and m > Iy(n + 1), we have:

) -1, -1, _ ) )
Ff””/\(Fln my Ey ’")_FI”’”AF;”".
Proof. For every integers n and m such that n > 1 and m > Iy(n + 1), let

Lo = F"™ A (Fln_l’m v an_l,m> ,

Ry = F["™ A F™,

Step 1. Assume that n = 1. Fist, we show that:
Ly = F)™, (9)

The kernel of Fy'™ is equal to V™1 @ J; = V™ that is, Fy'™ is equal to Oyem. In particular,
FP™ v F™ is equal to F}"™. Moreover, the kernel of F}""" is equal to I(R),, 1 ® V and the kernel of
F"™ is equal to I(R),,. The inclusion I(R),, C I(R),,_1 ® V implies that F{"™ is smaller than F,"".
Hence, Relation 9 holds.

Assume that m = N. The kernel of Fll’N is equal to I(R)y—1 ® V = {0}, that is, Fll’N is equal to
Idye~. In particular, Ry y is equal to F21 N Moreover, we have:

Y =0y ™ (I(R)x)
= GX(N)il (R), and
FyN =0y " ()
(

=0y T (R).

Thus Ly x and Ry n are equal.
Assume that m > N + 1. From Lemma 4.1.3, we have:

Fom = S5 a8
Fhm = Sém) Ao A 5,(nm_)z\r—17

™ = Sq(nm—)N-

Thus, Ry, is equal to Flo’m. We conclude that Proposition 4.3.4 holds for n =1 and m > N.
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Step 2. Assume that, n > 2 and that I[y(n 4+ 1) < m < Iy(n + 2). From Lemma 4.1.2, m — Iy (n)
is smaller than N — 1. Thus, the kernel of F}"™ is equal to {0}, that is, F]"" is equal to Idyem. In
particular, L, ,, is equal to F]"""™ Vv Fy"" "™ and R, ,, is equal to Fy"™.

From Lemma 4.1.3, we have:

Fpotm =g A A st

m—In(n+1)’
n—1m _ a(m) (m)
Iy _Smle(n) Ve VSN,
F2 - Sm—lN(n+1) \/\/Sm—N

Moreover, from Lemma 4.3.2, we have:

(m) (m) (m) _ q(m) (m)
(SO AR Smle(nJrl)) N Smle(n) - Smle(nJrl) VeV Smle(n)’

The law V being associative, we deduce that Proposition 4.3.4 holds for every integers n and m such
that n >2and that iy (n + 1) < m < Iy (n + 2).

Step 3. Assume that n > 2 and m > [y (n + 2). From Lemma 4.1.3, we have:

n—1m m m
b= Sgm A a8t L, and
Fln,m — Sém) A--- A anni)lN(nJrQ)'
Thus, letting T, ,, = Sr(n@lw(n+2)+1 ARRRWAN S’g’?m(nﬂ), we have:

EP75™ = B A Ty
The lattice generated by Sém), e ,Sgi)]\, being distributive, we have:
Fpomy B = (F BT ) A (T v FE T
Using the inequality F/""™ < (Flnm v }7‘2"71’7")7 we deduce:
Lo = F"™ A (Tmm v F;*L’") .

From Lemma 4.3.3, T}, ., V Fy "™ is equal to F;""™. Thus, Proposition 4.3.4 holds for every integers n
and m such that n > 2 and that m > Iy(n + 2). O

4.3.5. Theorem. Let A be an N-homogeneous algebra. If A admits an extra-confluent presentation
(X | R), then the left bound of (X | R) is a contracting homotopy for the Koszul complex of A.

Proof. Let ¢ be the endomorphism of T (V) which maps any element to its unique normal form for
(X | R).

The presentation (X | R) is side-confluent. Thus, from Proposition 4.2.5, it is sufficient to show that
for every integers n and m such that n > 1 and m > Iy (n) we have:

(rnm) FPP™AEP™ = ppbmy ppotm

L B
where KT(L"’) is the vector space im (¢|V®m_zmn)) ® Jn-

Assume that Iy(n) < m < Iy(n+ 1). We show that F;*™ A F;"™ and F}'" "™ v F3' "™ are equal
to Idv®m.
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The hypothesis Iy (n) < m < Iy(n+1) implies that m — I (n) is smaller than N — 1. In particular,
the kernel of F|"™ is equal to {0}, that is, F}"" is equal to Idyen. Moreover, Fy"™ is also equal to
Idy om. Thus, the morphism Fi"™ A F3™ is equal to Idyem. From Lemma 4.1.2, the morphism F}'~ "™
is equal to Idyem. Thus F' "™ v FJ "™ is equal to Idyem and Relation (r,_,,) holds.

Assume that m > Iy (n+1). From Lemma 4.2.6 the operators F|"" and F}'" "™V Fy~ "™ commute.
We deduce from Relation 4a (see page 15):

FPmo (B ) = (R B

From Lemma 4.2.1, the image of F}"™ is equal to im (rj)‘V@msz(n)) Q@ Ve Thus, K™ is included
in im (F]""™). Hence, the restriction of F/""™ A (Flnfl’m % F2”71’m> to K™ is equal to the restriction
of F'=1my Fpmlbm o K™ Moreover, the presentation (X | R) satisfies the extra-condition. Thus,

from Proposition 4.3.4, F/"™ A (Fln_l’m % F;_l’m) is equal to F}""™ A F;"™. Hence, Relation (74, ,)
holds. O

5 Examples

In this section, we consider three examples of algebras which admit an extra-confluent presentation:
the symmetric algebra, monomial algebras satisfying the overlap property and the Yang-Mills algebra
over two generators. For each of these examples we explicit the left bound constructed in Section 4.2.

5.1 The symmetric algebra

In this section we consider the symmetric algebra A = K[x1, -+, z4] over d generators. This algebra ad-
mits the presentation (X | R) where X isequalto {z1,--- ,z4} and Risequal to {z;z; = x;2;, 1 <i# j < d}.

5.1.1. Extra-confluence. We consider the order x; < --- < 4. The operator S € End (V®2) of the
presentation (X | R) is defined on the basis X(?) by

T;ixi, if ¢ > j,

x;2;, otherwise.
Let w = zyzj2), € XG)If k is strictly smaller than j and i is strictly smaller than k, we have

(S ®@1dy,1dy ® S)* (w) = (Idy ® S, 8 ® Idy)* (w)
= TLT;T.
In the other cases the elements (S ® Idy,Idy ® S)° (w) and (Idy ® S, S ® Idy)? (w) are equal. In
particular the two operators (S ® Idy,Idy ® S’>3 and (Idy ® S, 5 ® Idv>3 are equal. Moreover, IV is

equal to 2. Thus, from Remark 2.3.3, the presentation (X | R) is extra-confluent. The normal form of
a word x;, - - x;, is equal to zj, ---x;, where {j1, -+ ,jdn} ={@iy, -, @, }and j1 < - < jp.

5.1.2. The Koszul complex of the symmetric algebra. The morphism 9; : AQV — A is
defined by 01(14 ® ;) = 75, for every 1 < i < d. The morphism 0, : A® R — A ® V is defined by
Oo(1a ® (zjz; — 25x5)) = T; @ & — T; ® xj, for every 1 <i < j < d. If d is greater than 3, the vector
space J3 is spanned by the elements

Tiy<iz<is © = Tig (Tin @iy — Tiy Tig) — Tiy (TigTiy — Tiy Tig) + Tiy (TiyTiy — Tiy Tiy)

= (xi3xi2 - xizxis) Liy — (‘Ti?;xil - xilxi?:) Tiy + (xi2xi1 - xilxiz) Lig,
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where 1 < iy < iy < i3 < d. The morphism 95 : A® J3 — A ® R maps the element 14 ® r;, <j,<i, to
Tiz @ ($i2xi1 - xi1$i2) — Ty & (xi.’ixil - xilxis) + T ® (‘Ti3xi2 - xiz‘ri:s)'

Assume that d is greater than 4 and let n be an integer such that 3 < n < d — 1. We denote by
I,, the set of sequences i; < --- < i, such that 1 < iy and 7, < d. Assume that r; is defined for every
lel, Foreveryl=1; < - <ipt1 € In41 and every 1 < j < n+ 1 we denote by [; the element of I,,
obtained from [ removing i;. Then, let

n+1

= Z(*l)fn(nﬂ)xiﬁzja

Jj=0

where n : N — {—1, 1} is defined by (k) = 1if k is even and n(k) = —1if k is odd. For every 4 <n < d,
the vector space J, is spanned by the elements r; for [ € I,,. The map 0, : A® J, — AR J,_1 is
defined by

O (la®@r) = Z(—l)_"("*“)ﬁj Q7.
j=1

For every integer n such that n > d + 1, J, is equal to {0}.

5.1.3. The construction of h;. Let m be an integer such that m > 2. Let P, ,, = (Fll’m,le’m)
be the reduction pair of bi-degree (1,m) associated with (X | R). The morphisms F\"™ and F,"™ are
defined by

1,m N _
Fm (g, - my,) = Way,, where w =2y, -+, ,, and

1,m _ ~ _
Fy™ (xgy --x,) = Tiy -+ T4, _,W, where w =z, x;

4 3
These morphisms satisfy the relation <F11’m,F21’m> = <F21’m7F11’m> . Thus, we consider the P ,,-
representation of 7;:
©1,m: 2 — End (V®m) ,
si— F™
The image of v = (1 — s2)(s1 + s18281) through this morphism is equal to Fll’m — F;’mFll’m. Let

wx;, € X (™) Denoting by @ = W' Ty, 01m (1) (wzy,) is equal to w' (w4,w4, — x4, 2i,) if o <4y and
©1,m (71) (wzx;,) is equal to 0 otherwise. Then, the map hy : A®V — A ® R is defined by

hy (W ;) = {wl® (Tiaiy = wi i), i i <,

0, otherwise.

5.1.4. The construction of hy. Let m be an integer such that m > 3. Let P, = (Ffm, F;m)

be the reduction pair of bi-degree (2, m) associated with (X | R). The morphisms F™ and Fy™ are
defined by

1,m ~
F™ (2, - xy,,) = Wy, @i, , where w =z, -2, _,, and

(-

. ) ) Ty T, -3 (Tim,,2<im,1<z’m) y i o <idpmo1 <im,
3 - .
0, otherwise.
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4 3
These morphisms satisfy the relation <F12’m,F22’m> = <F22’m7F12’m> . Thus, we consider the P ,-

representation of 7;:
Y2.m: 2y — End (V®m) .
85 — Fi2,m,
The image of v;3 = (1 — s2)(s1 + s18281) through this morphism is equal to Ff’m — F22’mF12’m. Let

Wiy Tqy € X (™) Denoting by @& = W Tiy, P2.m (1) (Wri,2s,) s equal to w'ry, <4, <4, if i1 < iz < iz and
Va.m (71) (wxs,24,) is equal to 0 otherwise. Then, the map hy : A® R — A ® J3 is defined by

W R (T4, <ineia), if 11 <o <1
ho (W ® (Ti,xi, — xiy 24,)) = ( “<.Z2<Z3)’ PhEe
0, otherwise.

5.1.5. The construction of h,,. More generally, for every W®r;, <...<;, we denote by & = w'x;
The map h, : A® J, — A® Jp41 is defined by

n+1"°

w' ® T <o <ipg1s ifip<-- < in+1,

Ry (WRTs coici ) =
( 1<esin) {O, otherwise.

5.1.6. Remark. The left bound family of (X | R) is the contracting homotopy constructed in the
proof of [LV12, Proposition 3.4.13].

5.2 Monomial algebras satisfying the overlap property

In the section we consider the example from [Ber01, Proposition 3.8]. We consider a monomial algebra
A over d generators: X = {1, -+ ,zq} and R = {wy, - ,w;} is a set of words of length N. We assume
that the presentation (X | R) satisfies the overlap property. This property is stated as follows:

5.2.1. The overlap property. For every integer n such that N +2 <n < 2N — 1 and for any word
w = x4, -+, such that x;, ---z;, and z;, ., ---x;, belong to R, all the sub-words of length IV of w
belong to R.

5.2.2. Extra-confluence. For any choice of order on X, the operator S € End (V®N ) of the presen-
tation (X | R) is defined on the basis X(N) by

S(w) 0, if w € R,
w) =
w, otherwise.

As a consequence, for every integer m such that 1 < m < N —1, the operators S®Idyen and Idyem ® 5
commute. Thus, the presentation (X | R) is side-confluent. Moreover, for monomial algebras, the extra-
condition is equivalent to the overlap property. Thus, the presentation (X | R) is extra-confluent. The
normal form of a word w is equal to 0 if w admits a sub-word which belongs to R, and w otherwise.

5.2.3. The Koszul complex of a monomial algebra. Let n be an integer such that n > 2. The
vector space J,, is spanned by words w of length [y (n) such that every sub-word of length N of w belongs
to R. The morphism 0, : A®J,, — A®J,—1 maps 1, ®z;, - Ty 1O w/®zilN(n)—lN(n71)+l T Ty

/3 . .. .
where w' is equal to @, -+~ x4, ) )
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5.2.4. The contracting homotopy. Let n and m be two integers such that m > [,(n). Let
Pom = (F|"",F;"™) be the reduction pair of bi-degree (n,m) associated with (X | R). The op-
erators F|"™ and Fy"" are defined by

0, if a sub-word of length N of x;, ---x;__, ., belongs to R,

n,m o
By (g, emg,) = .
w, otherwise,

and

0,

w, otherwise.

if IianlN(n#»l)#»l © Ty, € Jn-‘rh

Ey ™ (g, evwg,) = {

These operators commute. Thus, we consider the P, ,,,-representation of @%:

On,m: 2 — End (V®m) .

2,m
si— F2

The image of 73 = (1 —s3)s; through this morphism is equal to F{""™ — F,""" F{"™. Let w = x4, - -x;,,
be an element of X (™). If w is such that no sub-word of length N of z;, --- Tipy 1 () belongs to R and
i i, inyen " @iy, Delongs 10 Jnp1, @ (71) (w) is equal to w. In the other cases @p m (71) (w) is
equal to 0. Then, the morphism h,, : A® J, — A ® J,41 is defined by

h (@ o w ® J;Imle(n+l)+1 L > if xlmle(n+1)+1 Ti,, € Jn+17
n|W®& Lim_inymy+1 " Lim

0, otherwise,

P— . . .. . / P . DEEEY .
where w = xz;, T 1) and w' = x;, Tip 1t

5.3 The Yang-Mills algebra over two generators

In this section we explicit the left upper bound family associated with the presentation (X | R) from
Example 2.2.8 of the Yang-Mills algebra over two generators. Recall that X = {z1, 22} and R = {f1, fo}
where

fi =xor1xy — 2212971 + X112, and

fo = xowoxy — 2w01T0 + T1T2To.

The acyclicty of the Koszul complex of this algebra was proven in [KVdB14, Section 6.3] using the
arguments of Example 2.3.6. In this section, we propose an other proof, based on the construction of
an explicit contracting homotopy.

5.3.1. Extra-confluence. Recall that for the order xy; < x9, the operator S € End (V®3) of the
presentation (X | R) is defined on the basis X by

2r120m1 — 12122, if W = 2oy 24,
S(w) = { 2x9x120 — T1X2T2, if W = 2oxay,

w, otherwise.

Recall from Example 2.3.6 that this presentation is extra-confluent.
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5.3.2. The Koszul complex of the Yang-Mills algebra. The morphism 9; : AV — A is
defined by 9; (14 ® ;) = T; for i = 1 or 2. The morphism 9y : A® R — A® V is defined by

02 (14 ® f1) =T2x1 @ x1 — 2T1T2 @ o1 + T121 @ T2, and
O (1A (9 fg) =020 ®T1 — 20221 R To + T1T2 Q Xo.

The vector space J3 = (V ® E) N (E ® V) is the one-dimensional vector space spanned by

v=2a2f1 +x1f2
= fox1 + fizo.

The morphism 03 : A® J; — A ® R is defined by

03(1a®v) =T2® fi + T1 ® fa.

For every integer n such that n > 4, the vector space J,, is equal to {0}.

5.3.3. The construction of h;. Recall from Proposition 2.2.6 that the algebra A admits as a basis
the set {w, w € (X) is a normal form}. Thus, it is sufficient to define hy (W ® z;) for every normal
form w € (X) and i =1 or 2.

Let m be an integer such that m > 3. Let Py, = (Fll’m7 F;m) be the reduction pair of bi-degree
(1,m) associated with (X | R). The morphisms F;"™ and F,"™ are defined by
FY™ (2, - -x; ) = @y, , where w =, ---2;,_,, and
B (2 -emg, ) = a4, - w0, where w =@, @i @

These morphisms commute. Thus, we consider the P, ,,-representation of .2%:

©1,m: 2 — End (V®m) .

1
si— B

The image of v, = (1 — s3)s; through this morphism is equal to F}"™ — Fy"™F'"™.

Let w be a normal form such that the length of w is equal to m — 1. The word wxy does not factorize
on the right by zoz1x1 or xaxex1. Thus, @1, (11) (wz2) is equal to 0. In particular, hy (W® x2) is
equal to 0 for every normal form w € (X). If w does not factorize on the right by xozq or xozs,
©1,m (71) (wzq) is equal to 0. Thus, h; (W z1) is equal to 0 for every normal form w € (X) such that
w does not factorize on the right by zexy or xozs. If w can be written w'zox; (respectively w'zoxs),
then 1., (1) (wz1) is equal to w’ (2z12221 — x12122) (respectively w’ (2x2x122 — T12222)). Thus, we
have:

w @ (2w12911 — 112172) , if W = W 971,

hi (W® 1) :{

w @ (2w22179 — T1T272) , if w = w ToTs.

5.3.4. The construction of hy. Recall from Proposition 2.2.6 that the algebra A admits as a basis
the set {w, w € (X) is a normal form}. Thus, it is sufficient to define hs (W ® f;) for every normal
form w € (X) and i =1 or 2.

Let m be an integer such that m > 4. Let P, = (Ff’m, F22m> be the reduction pair of bi-degree

(2,m) associated with (X | R). The operator F;"™ maps a word w € X (™ to wjwy, where w; € (X)
and wy € X are such that w = wyw,. The operator F22’m is equal to Idyem-4 ® F where F' is equal
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to 9)_(%4) (J3). The kernel of F is the one-dimensional vector space spanned by v. Thus, F(Im (v)) is
equal to Im (v) — v, and for every w € X® \ {Im (v)}, F(w) is equal to w. Thus, F is defined on the
basis X by

F(w) { 2LoX1ToT| — ToT1 X1 T — T1ToXoX1 + 2T1ToX 1T — T1T1XaXo, if W = Toxox X,
w) —

w, otherwise.

The two operators F;"" and F;"™ commute. Thus, we consider the P, ,-representation of :

Y2.m: 9 — End (V®m) .
S; > Ff’m
The image of v, = (1 — s3)s; is equal to F2™ — F2™ 2™,

Let w be a normal form such that the length of w is equal to m — 1. The word xoxox127 does not
occur in the decomposition of w fo. Thus, 2., (wf2) is equal to 0. In particular he (W ® f2) is equal to
0 for every normal form w € (X). If w does not factorize on the right by xs, the word zexsz12; does
not occur in the decomposition of w fi. Thus, @2 (wf1) is equal to 0. In particular ho (W ® f1) is equal
to 0 for every normal form w € (X) such that w does not factorize on the right by zo. Assume that w
factorize on the right by zo: w = w'ze. Thus, @, (wf1) is equal to w’ (zaxaz121 — F(22222121)). In
this case we have

he (W® f1) = w' @ (z2f1 + 21 f2) -
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