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Abstract Spectral scaling properties have already been evidenced on oceanic numerical simulations and
have been subject to several interpretations. They can be used to evaluate classical turbulence theories that
predict scaling with specific exponents and to evaluate the quality of GCM outputs from a statistical and
multiscale point of view. However, a more complete framework based on multifractal cascades is able to
generalize the classical but restrictive second-order spectral framework to other moment orders, providing
an accurate description of probability distributions of the fields at multiple scales. The predictions of this for-
malism still needed systematic verification in oceanic GCM while they have been confirmed recently for
their atmospheric counterparts by several papers. The present paper is devoted to a systematic analysis of
several oceanic fields produced by the NEMO oceanic GCM. Attention is focused to regional, idealized con-
figurations that permit to evaluate the NEMO engine core from a scaling point of view regardless of limita-
tions involved by land masks. Based on classical multifractal analysis tools, multifractal properties were
evidenced for several oceanic state variables (sea surface temperature and salinity, velocity components,
etc.). While first-order structure functions estimated a different nonconservativity parameter H in two scaling
ranges, the multiorder statistics of turbulent fluxes were scaling over almost the whole available scaling
range. This multifractal scaling was then parameterized with the help of the universal multifractal frame-
work, providing parameters that are coherent with existing empirical literature. Finally, we argue that the
knowledge of these properties may be useful for oceanographers. The framework seems very well suited
for the statistical evaluation of OGCM outputs. Moreover, it also provides practical solutions to simulate sub-
pixel variability stochastically for GCM downscaling purposes. As an independent perspective, the existence
of multifractal properties in oceanic flows seems also interesting for investigating scale dependencies in
remote sensing inversion algorithms.

1. Introduction

The dynamical properties of the ocean are of fundamental interest in geophysics and climate science. Since
the oceans cover the three quarters of the earth surface, are a few kilometers deep and exchange many
heat and gas fluxes with the atmosphere, they play a key role in the variability of climate. The horizontal
and vertical motions of oceanic flows also largely govern the spatial distribution of phytoplankton, which is
the basis of the oceanic biosphere. However, a key point about oceanic motions is their turbulent character.
Last decades, it has been realized that mesoscale eddies (50–300 km) are very important in the spatial distri-
bution of kinetic energy [e.g., Semtner and Mintz, 1977; Richardson, 1983; Wyrtki et al., 1976; Krauss and K€ase,
1984]. Even though metrics such as the first internal Rossby radius may be used to characterize their size,
the problem is more involved since these structures also transfer their energy to smaller ones, and so on.
Submesoscale eddies and filaments are also dynamically important and their role should not be neglected
[L�evy et al., 2010, 2012].

Numerical tools are indispensable for investigating turbulence in the ocean. The numerical approach con-
sists to solve the numerical equations of motion (momentum equation, conservation of mass and of tracers
concentrations) over a three-dimensional spatial grid. These equations are generally simplified with some
hypotheses. Often numerical models of the ocean (hereafter OGCM) are based on the formulations of the
so-called primitive equations [Bryan, 1969], but other formulations remain possible. In the general case, the
approach is attractive due to its strongly physical formalism and has proven its utility both for the
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understanding and forecasting of oceanic flows, including climate-related applications. The drawbacks of
the approach are the large computational cost that limits available resolutions, and the problem of unre-
solved scales that is the consequence of the latter scale truncations. The first issue is partially addressed
with the help of permanent improvements of the efficiency of (super)computers. However, resolutions are
often limited to O(10 km) for global OGCMs even with a huge computational power. The problem of unre-
solved scales is tackled with the help of a parameterization, which generally involves some kind of diffusive
operators [e.g., Smagorinsky, 1963; Basdevant and Sadourny, 1983; Redi, 1982; Gent and Mcwilliams, 1990; Le
Sommer et al., 2011]. Nevertheless, this diffusion may also filter too strongly scales close to the grid spacing,
leading to coarser effective resolutions for OGCMs that can be of the order of 2–10 times the grid step [Ska-
marock, 2004; L�evy et al., 2012].

A complementary approach would be to use statistical tools to characterize the variability of the different
oceanic fields. However, since the variability is governed by turbulent processes, it has inhomogeneous and
scale-dependent properties. For instance, the variance of a turbulent field strongly depends on the time
and space scale at which it is estimated.

The correct approach for describing statistical properties of turbulent flows over a wide range of scales is to
express statistics as function of the scale and of scale-independent exponents. This approach is fully consist-
ent with classical theoretical works in statistical mechanics of turbulence. It is well known that in the inertial
range, energy spectra of 3-D isotropic homogeneous turbulence should follow a k25/3 power law, where k is
the spatial wave number [Kolmogorov, 1941], and that passive tracers concentrations should follow similar
laws [Obukhov, 1949; Corrsin, 1951]. Many variants of these theories have been proposed to take into
account the stratification of atmospheric and oceanic flows involving a few scaling ranges with 25/3 or 23
scaling exponents [e.g., Charney, 1971; Lapeyre and Klein, 2006]. Such scaling properties of spectra (with pos-
sibly different scaling exponents) have been observed over multiple dynamic (reference) and biological
fields [e.g., Currie and Roff, 2006]. Spectra are also appropriate for statistical evaluation of a given data set:
for instance, if the scaling law is replaced at the highest wave numbers by a flat curve of constant power,
this is the indicator of a high level of white noise that contaminates high frequencies and reduces the effec-
tive resolution of the data. In a converse manner, when the spectra unexpectedly drops off at high frequen-
cies with very high spectral exponent, this shows a lack of variability with excessively smooth data at small
scales. Spectral analysis is useful to determine the effective resolution of an OGCM, which is the scale at
which the spectra drops from the theoretical power law [Skamarock, 2004; Capet et al., 2008; L�evy et al.,
2012]. Such applications are attractive since they combine the two approaches (numerical and statistical) in
the modeling of oceanic variability over a wide range of scales. Such tools are therefore appropriate for the
evaluation of oceanic (and atmospheric) oceanic models.

However, it is perhaps not always fully realized that spectra can only provide a truncated view of the overall
multiscale variability of oceanic (and atmospheric) flows. This is due to that spectra are a statistical moment
of the second order, i.e., a quantity that depends on, but does not characterize the probability distribution
(the same remark applies to correlations and covariances). Even though for Gaussian random variables the
knowledge of the mean and of the variance is sufficient to know the whole probability distribution, the
problem is that variables of interest are generally non-Gaussian in geosciences. What is needed is therefore
a tool that can deal with the changes in probability distributions over a wide range of scales. This has led to
consider more sophisticated statistical approaches that deal with moments of multiple orders over a scaling
range: these are multifractal approaches [e.g., Schertzer and Lovejoy, 1987] that are fully consistent with
refined phenomenologies of turbulence where energy dissipation rates are not considered homogeneous
but distributed over fractal sets by cascade processes [Kolmogorov, 1962; Yaglom, 1966]. In particular, spec-
tral power laws are a particular (second order) consequence of multifractality in this framework.

The multifractality (in the time or space domain) of several oceanic fields (temperature, chlorophyll concen-
tration) has been established by various studies based on in situ [Seuront et al., 1996a, 1996b, 1999] or
remotely sensed from aircraft or satellite [Lovejoy et al., 2001; de Montera et al., 2011]. Therefore, it is very
likely that if OGCMs outputs are statistically realistic (as suggested by spectral analysis) over a wide range of
scales, then they also should follow multifractal statistics, for dynamic and tracers fields (velocity, sea surface
temperature, height, and salinity). Moreover, it has recently been shown that the atmospheric counterparts
of OGCMs indeed follow multiscale statistics conform to the predictions of the multifractal framework: Stolle
et al. [2009] analyzed outputs of the GEMS and GFS meteorological model and from ERA-40 reanalysis and
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found evidence of multifractal scaling laws extending from planetary scales to spatial scales of the order of
1�. Gires et al. [2011] also shown that rainfall products of nonhydrostatic regional Meso-NH model followed
scaling and multifractal laws over meso and submesoscale regimes. Since the dynamical core of OGCMs is
strongly analog to that of atmospheric models, we should expect to find similar results in oceanic models.
However, there is almost no information available in the literature about the possible multifractality of
OGCMs outputs. This is a limitation of existing statistical evaluation studies, which should be overpassed
with the help of existing, well-established multifractal analysis techniques.

In the present study, we apply multifractal analysis tools to oceanic simulations provided by idealized regional
configurations of the NEMO (Nucleus for European Modeling of the Ocean) [Madec and The NEMO Team, 2008]
OGCM. This study is based on theoretical simulations of the dynamics starting from rest and not on analyses or
reanalysis of real oceanic states. This permits to focus on the multiscale statistics of outputs produced by the
dynamical core of NEMO regardless to corrections applied by data assimilation procedures. Such a methodology
is useful for the evaluation of the core of the OGCM, but may of course be adapted if necessary to the study of
realistic simulations, possibly including more complex boundary conditions.

Now let us present the outline of the study. In section 2, we propose a review on important concepts of the
multifractal formalism. Some results of the literature related to oceanic fields are also synthesized in section 3.
In section 4, we present our simulations based on the NEMO code. The monofractal analysis (based on first-
order Kolmogorov structure functions) of the simulations is performed in section 5. Then, we move in section
6 on the multifractal analysis of multiple surface fields (SST, SSS, and velocity) produced by the model. Finally,
we expose the potential implications of oceanic multifractality from a GCM and remote sensing perspective in
section 7 and we conclude in section 8.

2. Theoretical Notions on Scaling and Multifractals

2.1. KOC Approach and Cascades
Many scaling theories exist for turbulent fields [e.g., Kraichnan, 1967; Leith, 1968; Charney, 1971]. These theo-
ries are generally (at least qualitatively) inspired by some fundamental ideas tracing back to Kolmogorov
[1941]. In particular, the latter derived a scaling law for velocity increments in homogeneous 3-D turbulence:

Dv 5
d

e1=3:Dx1=3 (1)

where v is the velocity, e the flux of energy, Dx the distance over which the velocity increment Dv is taken,
and 5

d means equality in probability distribution.

A direct consequence of equation (1) is the famous 25/3 law in terms of turbulent kinetic energy spectrum:

EðkÞ / k25=3 (2)

where k is the spatial wave number.

Similar extensions of equations (1) and (2) hold for passive tracers concentrations [Obukhov, 1949; Corrsin,
1951]. As may be seen, all these laws depend on a single scaling exponent 1/3, which is a sign of monoscal-
ing or ‘‘monofractality.’’

An important hypothesis in the initial Kolmogorov formulation is the homogeneity of the energy flux. Later,
it has been realized that such a hypothesis was untenable and leaded to refined scaling laws, where e was
distributed inhomogeneously [Kolmogorov, 1962], especially by cascade processes [Yaglom, 1966]. The
study of the latter led to the development of the theory of multifractal cascades [Mandelbrot, 1974; Schertzer
and Lovejoy, 1987; Meneveau and Sreenivasan, 1987; She and Leveque, 1994; Dubrulle, 1994]. The cascade for-
malism relies on some fundamental assumptions, in particular the description of scale transfers of energy
occurring over neighboring scales in an autosimilar way while some quantity U (e.g., energy flux, tracer var-
iance flux) is generally conserved in statistical average:

hUki5const (3)

where k is the resolution, defined by convention as the ratio of a conventional maximal (or external) scale
and the size of the pixels on which data are sampled. (Multiplicative) Cascade processes are defined
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recursively by a sequence of successive refinements of resolutions for constructing U. For example, for a
resolution refinement of factor 2, the relation involves a multiplicative modulation:

Uk5Uk=2:le (4)

where le is a random variable that does not depend on the resolution nor of the position of the point in
space. le should also have a statistical mean equal to 1 in order to ensure (equation (3)).

2.2. Conservative and Universal Multifractals
Due to the scale independence of le, multiplicative cascades converge to multifractal fields for which statis-
tical moments follow power laws of the resolutions with scaling exponents that depend on the particular
statistics order (denoted q). Namely, a scale-dependent positive physical quantity Uk is multifractal when:

hUq
ki / kKðqÞ (5)

where K(q) is a convex function of the noninteger, positive value of q [Lovejoy and Schertzer, 2013, Appendix
3A] and describes the whole spectrum of the scaling exponents of Uk . From the Wiener theorem, it may be
shown that the spectrum of a multifractal process with conservative means follows a decreasing power law
of the form:

EUðkÞ / k2b (6)

where b 5 1 2 K(2).

This means that the scaling of a power spectrum is indeed an particular case of the multiscaling described by
the function K(q). Other special values should be mentioned, namely, K(0) 5 0, and, due to equation (3), K(1) 5 0.

In the general case, there are very few constraints on K(q) (convexity and special values), which means that
the knowledge of K(q) would in principle require an infinity of parameters. However, continuous-in-scale
(i.e., that involve a continuum of scales instead of the dyadic cascade structure assumed in equation (4)) cas-
cade processes have log-infinitely divisible distributions that can be decomposed into a mixture of lognor-
mal, log-compound Poisson, and log-L�evy distributions (L�evy-Khinchine theorem) [see, e.g., She and
Waymire, 1995]. In special cases, K(q) follows an analytical form that is even more easily parameterizable.
Log-stable distributions have been a popular choice leading to the Universal Multifractal Model [Schertzer
and Lovejoy, 1987, 1997]. The latter has been found suitable for the statistical modeling of multiple geo-
physical fields [Lovejoy and Schertzer, 2007], especially in atmospheric science [Lovejoy and Schertzer, 2010a,
2010b, 2010c], but also in oceanic science (e.g., references below).

Within, this universal framework, the moment scaling function is expressed as follows:

KðqÞ5 C1

a21
qa2qð Þ (7)

which depends on two parameters, and obviously verifies the properties K(0) 5 K(1) 5 0.

C1 describes the inhomogeneity associated with intensity levels close to the mean field, it belongs to the
real interval [0,D] where D is the dimension of the space over which the cascade is constructed. The param-
eter a has a (real) value in the range 0–2 and describes how quickly the inhomogeneity of the field changes
when we are leaving away from the mean level. It is a multifractality parameter: while a50 corresponds to a
monofractal case with linear K(q), a52 is a characteristic of lognormal multifractals.

2.3. Nonconservative Multifractals
A wider class of multifractal processes has also been defined in order to combine the initial Kolmogorov
approach with the benefits of cascade refinements. These nonconservative multifractals rely on fractional
integrations of real-order H of conservative multifractal cascades [Schertzer and Lovejoy, 1987]. Locally, these
cascades correspond to the following equation relating the integrated observables Q to the cascade U:

DQ 5
d

Uk:DxH (8)

where DQ stands for absolute increments of Q over a distance Dx and H is a scaling parameter. This formu-
lation is very similar to (equation (1)) (for which H 5 1/3) and leads to a power law spectrum with an
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exponent b512Kð2Þ12H. Since the fractional integration corresponds to a low-pass filtering by k2H in Fou-
rier space, H may be viewed as a smoothing parameter. It is also a nonconservativity parameter in the sense
that the mean of the absolute increments of a fractionally integrated process depends on Dx. From this
property, H may be estimated by plotting the first-order structure function in log-log coordinates, where
the function is defined as:

hjQðx1DxÞ2QðxÞji / jDxjH (9)

The addition of a fractional integration to universal multifractals is called the Fractionally Integrated Flux
(FIF) model [Schertzer and Lovejoy, 1987], which therefore depends on the three parameters H, a, C1.

3. Brief Overview of Scaling and Multifractality in Ocean Science

Many oceanic fields that have (or are distributed by) turbulent characteristics are expected to follow scaling
and possibly multifractal properties. These include the velocity field, the passive tracers (potential tempera-
ture, potential salinity, sea surface temperature (SST) and salinity (SSS), chlorophyll concentration, and its
surrogates such as fluorescence), and fields related by integrations or derivations to the velocity field (vor-
ticity, sea surface height (SSH)) since integrations and derivations are themselves power law filterings in
Fourier space. Investigations of spectral properties of dynamical and/or plankton-related fields have already
been performed many times on both numerical simulations and observational data.

Spectral analysis of numerical simulations of oceanic variables (SST, surface currents and densities, but also
variables in the interior of the ocean) has already been performed and reported in published studies [e.g.,
Skamarock, 2004; Capet et al., 2008; Klein et al., 2008; L�evy et al., 2012]. These works led to important conclu-
sions about the multiscale behavior of OGCMs, especially (1) the existence of a power law scaling regime at
scales much larger than the grid step; (2) the dependence of the spectral exponents on the depth (expo-
nents often close to 22 at the surface and to �23 below); (3) a limited effective resolution evidenced by a
spectral drop at the higher frequencies.

Regarding data, there are also multiple results based on very different kinds of measurements. Spectral analy-
sis of (airborne and spaceborne) remote sensing SST data has a long history [Saunders et al., 1972; Holladay
et al., 1975; Deschamps et al., 1981]. More recently, well-known satellite SST products have also been analyzed
[Reynolds et al., 2010], evidencing scaling regimes but also limitations at higher frequencies due signal proc-
essing artifacts. Altimetric measurements of sea surface height have also been considered by the literature, in
particular, the works by Stammer [1997] and Le Traon et al. [2008]. Regarding biological data, there exists also
multiple results mainly based on in situ time series [see, e.g., Currie and Roff, 2006, and references therein].
Spectra of biological data are nevertheless often more complex with several piecewise characteristics.

Multifractal analysis tools have widely been applied to in situ data, especially temperature and fluorescence
time series (the latter being a surrogate of phytoplankton concentration) [Seuront et al., 1996a, 1996b,
1999]. The latter studies showed the existence of multifractal properties in the time domain in several scal-
ing regimes. For most fields, a more or less common set of universal multifractal parameters is a � 1.7,
C1 5 0.03–0.05, H 5 0.3–0.4, with significant exceptions (e.g., ‘‘biologically active’’ fluorescence was charac-
terized by much lower values of a and H, and Lagrangian (drifter) data were associated with higher values
of H). Seuront et al. [1999] also demonstrate the existence of multifractal properties for the in situ salinity,
with multifractal scaling parameters that are remarkably consistent with those of the temperature.

Then, Lovejoy et al. [2001] investigated the horizontal scaling properties of remote sensed ocean color data
collected by airborne sensors. They showed that radiances in eight (visible and IR) channels were scaling in
the range 100 km–100 m with parameters a � 2, C1 � 0.05, H � 0.2. Recently, the multifractality of chloro-
phyll concentrations in the space domain was assessed by de Montera et al. [2011] based on chlorophyll
data products based on SeaWifs satellite measurements. In the latter case, the scaling held in the range 128
km–4 km with multifractal exponents values a � 1.9, C1 � 0.1, H � 0.4 which are rather similar to parame-
ters usually found in atmospheric science for several dynamical and tracers fields [e.g., Lovejoy and Schertzer,
2010a, 2010b, 2010c].

Other important works investigated the multifractality of remote sensing SST and surface chlorophyll con-
centration products [Isern-Fontanet et al., 2007; Nieves et al., 2007; Turiel et al., 2008, 2009], although with
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the help of the slightly different formalism of singularity exponents. These authors found evidence of multi-
fractal properties that can even be used for estimating high-quality maps of streamlines. Moreover, the
same team recently found that SST and SSS are likely to share a common multifractal structure [Umbert
et al., 2014].

These results are significant evidence of the existence of multifractal properties emerging in ocean dynam-
ics and biological fields. Such properties indeed need to be verified on numerical simulations of oceanic
GCM outputs, which is missing in the literature (excepted, on one hand, the paper by Umbert et al. [2014]
who analyzed products that include data assimilation, and, on the other hand, a study carried out at
LOCEAN/IPSL by de Montera et al. [2011]) while their atmospheric counterparts have recently been analyzed
successfully within this framework. In particular, Stolle et al. [2009] analyzed the cascade structure of fluxes
derived from meteorological forecasting GCMs and reanalyzes and found multifractal cascade properties
extending from planetary and synoptic scales to approximately 1� space scale, with multifractal exponents
a � 1.6–2, C1 � 0.05–0.1 for most atmospheric state variables. The latter study has been confirmed and
extended by Lovejoy and Schertzer [2011] based on ECMWF reanalyses. These authors also provided esti-
mates of the H parameter in horizontal directions but found more nonstandard parameters and evidence
the importance of horizontally anisotropic properties of the flows.

4. Simulation Setup

NEMO [Madec et al., 1998; Madec and The NEMO Team, 2008], standing for ‘‘Nucleus for European Modeling
of the Ocean,’’ is a primitive equation oceanic numerical model that can be adapted in a variety of global
(ORCA) or regional (GYRE,. . .) configurations of various resolutions. NEMO (and its direct predecessor OPA)
has been the basis of many studies in physical oceanography [e.g., Madec et al., 1996; Aumont et al., 1998;
Marchesiello et al., 2011; L�evy et al., 2010, 2012] and includes components for the dynamics (OPA), sea-ice
(LIM), biology (PISCES), data assimilation, etc. [Madec and The NEMO Team, 2008]. In this study, we focus on
an idealized reference configuration called GYRE with flat bottom and ‘‘vertical walls’’ boundary conditions
and with specific analytical wind forcings. A linear equation of state describes relationships of the density,
the temperature, and the salinity. The configuration is supposed to be representative of the Gyre circulation
in the Northern Atlantic. The domain (of dimension O(3000 3 2000 km)) is defined on rotated axes [Haze-
leger and Drijfthout, 1998] and a beta-plane approximation is used. While the configuration was originally
defined on a 1� grid, it may be easily extended to higher spatial resolutions.

In the present study, we have performed simulations of the dynamical fields NEMO-GYRE at 1/9� (272 3

182 pixels in the horizontal) with 31 vertical levels (with an increased resolution near to the surface), starting
from rest initial conditions. The state variables are the horizontal components of the velocity, the tempera-
ture, the salinity, and the SSH. Physical choices (turbulence closures, boundary conditions) are summed up
in Table 1. Turbulence closure is needed in every GCM and since the problem is globally unsolved, the per-
formance of subgrid parameterization may impact the model outputs even at the scales greater than the

Table 1. Details of the NEMO Simulations and Physical Assets

Configuration GYRE BJET

Resolution 1/9� 5 km
Diffusion operator Bilaplacian Bilaplacian
Viscosity 21.0e 1 10 m4/s 27.8e 1 8 m4/s
Diffusivity 21.0e 1 10 m4/s 22.0e 1 8 m4/s
Boundary Free slip Zonally periodic and free slip
Max scale 3000 km 2000 km
Grid size 272 3 182 3 31 400 3 100 3 80
Tra Pot temperature and salinity Potential density
Equation of state Linear Salinity 5 constant
Zonal nudging False True
Spin-up window 50 years 1 year
Study window 1 year 1 year
Sampling in study window 2/month 6/month
Time step 900 s 300 s
Wind forcing GYRE analytical forcing (sbcgyre) Constant
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grid step. This typically causes prob-
lems of ‘‘effective resolution’’ that are
significantly greater than the grid
step. In our simulations, a horizontal
bi-Laplacian scheme was used due
to its scale selectivity, thus favoring
initiation of turbulence which is
strongly filtered out by, e.g., Lapla-
cian operators [Griffies and Hallberg,
2000]. The values of viscosities and
diffusivities have been chosen with
respect of the values proposed by
L�evy et al. [2012] with slight adapta-
tions. Since it may take some time to
reach a strongly turbulent state from
rest (and especially at significant
depth), we performed a spin-up sim-
ulation representative of 50 years of
flow, with time step 900 s. A snap-
shot of the SST surface field (in a
selected square area) after the spin-

up time is given in Figure 1. We notice strong velocities in the western part of the figure, as the meandering
of surface temperature structures, coherently with the high-resolution simulations by L�evy et al. [2012].

We also considered dynamical simulations performed in a different configuration of NEMO called BJET. This
configuration, derived from the more well-known EEL configuration, is set over a 2000 3 500 km region
with zonally periodic boundary conditions with axis parallel to the north-south and east-west directions.
Idealized bottom boundary conditions apply (as in the GYRE case) and at the surface forcings are assumed
to be representative of a midlatitude region. In this configuration, the salinity is fixed as a constant at 35
psu and the passive scalar is potential density. Initial conditions are at rest and defined from stratified initial
conditions in density and temperature, permitting the generation of a zonal jet. By construction, the BJET
configuration includes a perturbation of the initial state designed to generate a baroclinic instability that
destabilize the zonal jet centered in the domain and produces turbulent motions. By construction, genera-
tion of turbulent motions is quicker in BJET than in the GYRE configuration. We performed a BJET simulation

representative of 2 years at 5 km
resolution with time step 300 s. The
first year is the spin-up of the simula-
tion while the second year is
devoted to the statistical study. Due
to the choice of the resolutions, the
grids are of dimension 400 3 100 3

80. As shown on the snapshot (Fig-
ure 2), the zonal jet destabilization is
associated with a zone of meso and
submesoscale eddies.

The spin-up simulations were then
followed by subsequent simulations
performed from restart files pro-
duced at the end of the spin-up win-
dow. The additional time-window
considered was of 1 year in both
cases with six backup restart files per
month in the BJET case and two per
month in the GYRE simulation (note,

Figure 1. Snapshot of the sea surface temperature field produced by NEMO-GYRE
1/9� at time step 1,787,040. The area shown corresponds to the square area
selected for multifractal analysis.

Figure 2. Snapshot of the surface density field produced by NEMO-BJET 5 km at
time step 128,160. The area shown corresponds to the square area selected for mul-
tifractal analysis.
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by convention we set up all ‘‘months’’ considered in this study to a 30 day duration for simplification in the
GYRE case). Then we analyzed the surface fields stored in the 74 (resp. 25) restart files associated to each
simulation, these fields are analyzed in the two next sections.

5. Structure Function Analysis of the Simulated Surface Fields

Outputs of (oceanic or atmospheric) GCM simulations are strongly anisotropic due to a strong meridional
stratification. In the case of regional GCMs located in the midlatitudes, this stratification is monotonic and
similar to an additional trend that should be removed before statistical analysis of the turbulent part of the
field. Indeed, it is well known that the presence of trends in data may significantly affect the outputs of
spectral analysis tools [Skamarock, 2004]. For this reason, we did not apply spectral analysis on the available
data but focused on other mono and multifractal estimators. As noted by Lovejoy and Schertzer [2011],
monofractal estimators applied directly on the GCM state variables may also produce questionable results
in the presence of anisotropic fields. On the contrary, multifractal analysis of fluxes estimated by derivation
of the state variables are not sensitive to these artifacts [Stolle et al., 2009; Lovejoy and Schertzer, 2011] since
they remove any trend by construction, but there results are limited to the scaling properties of conserva-
tive fluxes, not of the physical fields themselves (see equation (8)). Analysis of the fluxes of NEMO simula-
tions will be detailed in the next section.

Direct analysis of oceanic GCM physical variables (SST, SSS, SSH, velocity, etc.) is useful to estimate the multi-
fractal exponent H defined in equation (8). We have chosen to estimate H directly from a first-order Kolmo-
gorov structure function analysis which is based on the study of the scaling of mean increments of the field
with respect to the distance (as expressed by equation (9)). Even though alternative definitions of structure
functions do exist (e.g., Haar structure functions) [cf. Lovejoy and Schertzer, 2012], the classical definition
based on equation (9) was kept due to its simplicity and its good performance for 0<H< 1.

From the NEMO simulations described in section 4, we extracted square maps centered in turbulent areas
(for each state variable, we have 74 maps close to the jet center for BJET simulations; and 25 maps close to
the north-western of the GYRE domain). It is obvious that structure functions are strongly sensitive to aniso-
tropies in the field. In particular, the latitudinal stratification adds a trend to the data in the north-south
direction. In order to avoid strong biases at large increments, such a trend has to be removed before com-
puting the first-order structure functions (i.e., empirical averages of absolute increments, see equation (9)).
Nevertheless, it is important to note that more subtle effects may also impact the scaling properties of the
simulations, even after detrending. Indeed, zonal and meridional gradients are likely to be different physi-
cally and in some cases [Lovejoy and Schertzer, 2011] this could imply different values of H along different
directions (e.g., east-west versus north-south). In the following, structure functions have been estimated
along zonal and meridional directions.

Figures 3a–3d show an example of structure function obtained for SST, SSS, surface velocity data (GYRE), and
potential density data (BJET). For most NEMO variables, these graphs show a rupture at O(5–10) times the grid
step separating a large-scale regime, with a mean scaling exponent H 5 0.2–0.4, from a small-scale regime
with a steeper scaling, with H 5 0.7–0.8, the detailed result being reported in Tables 2 and 3 (including the
case of the BJET velocity, not shown in Figure 3). The large-scale exponent is coherent with classical values in
geophysics: recalled that H 5 1/3 corresponds approximately to the classical 25/3 turbulent spectral expo-
nent. The result is also quite coherent with published spectral analyses of OGCM surface outputs, even though
the latter results often favor a spectral exponent closer to 22, hence H � 1/2 [Klein et al., 2008; Capet et al.,
2008; L�evy et al., 2012]. The dichotomy between the large-scale, turbulent, regime (H � 1/3 to 1/2) and a
small-scale, smooth, regime (with H closer to 1 or k23 power spectrum) has also been observed by the authors
of the three papers cited above. The interpretation of the scale break and of the small-scale regime is likely to
be related with the model hyperviscosity which still affects the smallest scales, e.g., a few times the grid step.
In this case, this would mean that the effective resolution of the model could be significantly larger than the
grid step. Nevertheless, we will see that such a scale break is not confirmed by multifractal analysis tools in
the next section.

From Tables 2 and 3, it is apparent that in some scale ranges the estimate of H is quite sensitive to the
direction considered. As shown in Figures 3a–3d and in the tables, H is slightly but sometimes
significantly greater in the east-west direction compared to the North direction. This is especially the case

Journal of Geophysical Research: Oceans 10.1002/2014JC009811

VERRIER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 6451



for the large-scale regime for GYRE SST and SSS fields where HN-S � HE-W 3 0.7. On the contrary, the esti-
mate of H does not seem to depend on the direction in the small-scale regime (i.e., <90 km for the GYRE
simulations). This small-scale isotropy could be related to the fact that the smaller scales are likely to be
affected by the (isotropic) model horizontal diffusion.

Regarding the interpretation of large-scale exponents, it is worth pointing out that in a recent application of
similar tools to atmospheric GCM outputs [Lovejoy and Schertzer, 2011], the authors found different expo-
nents H along east-west and north-south directions and attributed the difference to an effect of the combi-
nation of important GCM properties, i.e., GCM (hyperviscosity-related) isotropy at small-scales and
prescribed anisotropy at large scales. While similar ideas should apply to our results, there remain some

Figure 3. First-order structure functions in log2-log2 coordinates for the following surface variables in the analysis window: (a) GYRE 1/9� SST, (b) GYRE 1/9� SSS, (c) GYRE 1/9� zonal
velocity, (d) BJET potential density. The fit regimes are detailed in Tables 2 and 3. The abscissa coordinate is associated to the lag dx expressed in number of gridsteps, with small scales
on the left.

Table 2. Multifractal Scaling Regimes and Parameters for the BJET Simulation

Configuration Number of Maps Variable Scaling Range (km) H a C1

BJET5km 74 maps 64 3 64 Surface density 120–20 0.51 6 0.02 (E–W)
0.44 6 0.01 (N–S)

BJET5km 74 maps 64 3 64 Surface density 20–5 0.80 (E–W) 6 0.13
0.76 (N–S) 6 0.17

BJET5km 74 maps 64 3 64 Surface density 80–10 1.93 0.08
BJET5km 74 maps 64 3 64 Uzon 160–40 0.45 1.83 0.12
BJET5km 74 maps 64 3 64 Uzon 40–10 0.78 1.83 0.12
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differences in the estimated exponents and in the nature of anisotropy since Lovejoy and Schertzer gener-
ally found greater exponents in the north-south direction.

Whatever possible problems involved by the detrending step, the results of this paragraph show clearly
that the (piecewise) scaling properties of the observables always share the fundamental properties of inte-
grated ‘‘nonconservative’’ fractal fields, i.e., H> 0. This means that these fields cannot be directly modeled
by conservative multifractals (for which the spectral slope is 1 2 K(2)< 1). This is also the case of most
atmospheric fields [Lovejoy and Schertzer, 2010a, 2010b, 2010c] and for most turbulent flows. However, for
these fields, the conservative quantity that is directly cascaded is not the state variable field but a hidden
(energy or variance) flux. This is coherent with the principle of theories of turbulent fields with heterogene-
ous, sparse energy fluxes (see theoretical remarks in Lovejoy and Schertzer [2010a, 2010b, 2010c]).

6. Multifractal Analysis of Conservative Fluxes Derived From Surface Maps

As explained above, fractionally integrated multifractal models presented in section 2.3 are likely to be neces-
sary for representing most oceanic surface fields. Within this framework, we shall consider the superposition
of an overall, fractional integration filter that strongly constrains the spectral shape and of a cascading quan-
tity U, often called ‘‘flux’’ [Lovejoy et al., 2011], which is representative of sharp gradients (see equation (8)).

Then, we aim at assessing the assumed cascading structure of the fluxes. However, a classical difficulty at this
step is to invert U from the observable variables. Theoretically, this would need a fractional derivative of order
H, which is equivalent to a fractional integration of order –H. However, two problems arise in practice: H is
always known within some uncertainty and the positivity of U is generally not respected from numerical dif-
ferentiation of the observables. These kinds of difficulties have led to several solutions in the multifractal litera-
ture. One possibility is to use convenient wavelets to filter the signal [Nieves et al., 2007; Turiel et al., 2008], for
instance using the wavelet-transform modulus-maxima method [Muzy et al., 1991, 1993].

However, most studies relying on the universal multifractal model used another simple solution, validated
on analysis of multifractal fields [Lavall�ee et al., 1993; Tessier et al., 1993]. In this context, the processing is
the following:

1. First differentiate the observed integrated field at an order>H. Generally, an integer order of differentia-
tion is used. On 1-D, the classical choice is the finite difference increments while in 2-D a finite difference
Laplacian performs well [Tessier et al., 1993]. It is important that the order of differentiation be greater
than H since the statistical cascade structure is more affected by integrations than by overdifferentiations
[Lavall�ee et al., 1993]. Another advantage of the Laplacian is its efficiency in removing trends.

2. Then take absolute values (and normalize by the mean) in order to get an estimate of U at the maximal
available resolution kmax .

3. Estimate Uk at various resolutions by averaging contiguous pixels of the previous estimate Ukmax .

Table 3. Multifractal Scaling Regimes and Parameters for the GYRE Simulation

Configuration Number of Maps Variable Scaling Range (km) H a C1

GYRE1/9 25 maps 128 3 128 SST 500–90 0.32 6 0.01 (E–W)
0.23 6 0.02 (N–S)

GYRE1/9 25 maps 128 3 128 SST 90–10 0.76 6 0.10 (E–W N–S)
GYRE1/9 25 maps 128 3 128 SST 750–20 1.82 0.10
GYRE1/9 25 maps 128 3 128 SSS 500–90 0.44 6 0.01 (E–W)

0.31 6 0.01 (N–S)
GYRE1/9 25 maps 128 3 128 SSS 90–10 0.75 6 0.10 (E–W)

0.73 6 0.12 (N–S)
GYRE1/9 25 maps 128 3 128 SSS 750–20 1.79 0.10
GYRE1/9 25 maps 128 3 128 Uzon 500–90 0.00 6 0.01 (E–W)

0.09 6 0.02 (N–S)
GYRE1/9 25 maps 128 3 128 Uzon 90–10 0.75 6 0.12 (E–W)

0.76 6 0.12 (N–S)
GYRE1/9 25 maps 128 3 128 Uzon 750–20 1.87 0.12
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The latter methodology has been applied for the (undetrended) NEMO state variables considered in the
previous section, leading to a multiscale estimate of the flux Uk for each field. Then, statistical moments of
the cascades are computed at various orders q such that we may investigate the validity of the fundamental
equation of the multifractal formalism (equation (5)). The choice of the orders is important since a narrow
range of moments reduces the information we get from the data (narrower family of scaling exponents),
but a too large range may involve biased high-order estimates. Here the moment orders q are regularly
sampled in the range 0–3 in order to avoid sampling/divergence problems arising for higher-order
moments [e.g., Lombardo et al., 2013; Schertzer et al., 2013]. The results are plotted in Figures 4a–4d, which
shows the moments as a function the resolution in log-log coordinates for each flux. As expected from
equation (5), we may approximate the dependence of the statistics by power laws of the resolution with
exponents K(q) that can be readily fitted by the linear regressions in Figures 4a–4d. It is remarkable that cor-
rect scaling laws are verified by most variables over almost all the available scale ranges which extend from
320 to 5 km for BJET simulations and from 1600 to 11 km for the GYRE simulations. The main limitations
consist in some discrepancies at large scales close to the square domain size and in other slight discrepan-
cies at small scales (smaller than 2 times the gridstep). Details on scaling ranges are reported in Tables 2
and 3. Despite these discrepancies, the scaling is generally proper for all oceanic variables considered and
for all computed moment orders. Remarkably, we do not find any rupture in the scaling of the fluxes, which
is an important difference between the results of the present section and the previous one. This means that
even though the GCM state variables are partly filtered at small scales, the NEMO code is nevertheless able

Figure 4. Fluxes empirical moments MqðkÞ5empiricalmeanðUq
kÞ (orders q 5 0. . .3) in log2-log2 coordinates for the following surface fields in the analysis window: (a) GYRE 1/9� SST, (b)

GYRE 1/9� SSS, (c) GYRE 1/9� zonal velocity, (d) BJET potential density. The abscissa coordinate is the log2 of the resolution k (k 5 domain size/pixel size). Thus, large scales are on the left
(x 5 0 corresponds to the domain size, i.e., 1600 km for the GYRE subdomain considered in this study, Figures 4a–4c).
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to reproduce more correctly scaling properties of the fluxes down to the smallest resolved scales. The qual-
ity of the scaling of flux statistics is qualitatively comparable to that identified by Stolle et al. [2009] for
AGCM outputs.

The scaling coefficients K(q) are plotted as a function of the order q (Figures 5a–5d). We added the graph of
the least squares fit obtained from the universal parameterized form (equation (7)) (note that the fit was opti-
mized for moments orders comprised between 0 and 2 in order to avoid possible sampling artifacts on
higher-order moments). It may be seen from the quality of the fits that the two-parameter universal form per-
forms well in describing the statistics of the field cascades. Combined with the previous results on H, this
means that the FIF model defined in section 2.3 is able to describe the scaling of multiorder statistics of oce-
anic fields. All the multifractal parameters are reported in Tables 2 and 3—in particular, we found consistent
multifractal parameterizations for SST and SSS fields, and for velocity fluxes with a � 1.8 and C1 � 0.1. The
parameters are more or less similar to those estimated from empirical oceanic data by various authors (as
summarized in section 3). These multifractal exponents are also very comparable with those of atmospheric
fluxes estimated on numerical AGCM outputs by Stolle et al. [2009] and Lovejoy and Schertzer [2011]. Finally,
we should mention that our results on SST and SSS multifractal parameters are consistent with the works by
Umbert et al. [2014] who found a common multifractal structure on SST and SSS products.

7. Additional Comments on Oceanic Multifractality and OGCMs

The previous sections have shown the existence of scaling and multifractal properties on NEMO oceanic
simulations. We have also seen that qualitatively similar properties have already been found on many

Figure 5. Moment scaling functions K(q) for the following surface variables in the analysis window: (a) GYRE 1/9� SST, (b) GYRE 1/9� SSS, (c) GYRE 1/9� zonal velocity, (d) BJET potential
density. The empirical curve is drawn in blue, the theoretical fit (optimal close to q 5 1) is drawn in pink.
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oceanic in situ or remotely sensed measurements. This confirms that scaling and multifractals are a very
convenient framework to understand the statistics of the oceanic variability over a wide range of scales.
The present section aims at illustrating a bit more the potential interest of the framework for ocean model-
ers. Meteorological equivalents of some of these potential applications have recently been proposed in the
literature.

7.1. OGCM Evaluation
A direct application of the formalism, illustrated by the present paper and by previous papers in
atmospheric science [Stolle et al., 2009; Lovejoy and Schertzer, 2011], is the evaluation of the statistics
of oceanic numerical models. Contrary to other existing statistical tools, multifractal analysis tools do
not work at an arbitrary fixed scale but are able to investigate a wide range of scales. They are there-
fore able to:

1. Detect spurious breaks in the scaling due to incorrect physics: for instance, by using an overdiffusive
physical scheme, we may spuriously wash out small-scale variability, which would lead to an overattenua-
tion of high-order moments (and a spectral drop).

2. Intercompare the intermittency and variability of the outputs of two different GCMs. We may easily see
whether a given GCM generates more scale-by-scale variability compared with one another, which could
be compared with reference data/or reanalyses.

3. Deal simultaneously with different state variables: for instance, it may be seen if the model is better for
simulating one variable but not one another.

7.2. Downscaling of Oceanic Fields
A direct application of the multifractal framework is downscaling which means inferring unaccessible or
unresolved small-scale variability from low-resolution data or simulations. Due to the multiplicative struc-
ture of multifractal cascades (e.g., equation (4)), the stochastic generation of missing small-scale variability
may be performed readily with the help of discrete or continuous in scale multifractals. Some example of
multifractal downscaling of atmospheric fields (especially rainfall) have been recently been presented in the
literature [Rebora et al., 2006; Sharma et al., 2007; Onof and Arnbjerg-Nielsen, 2009; Gires et al., 2012] gener-
ally based on discrete in scales conservative multiplicative cascades. However, in oceanography since most
cascades include a strong fractional integration (as seen in sections 5 and 6), it would be questionable to
retain such an artificial discretization of scales since the fractional integration operator is by itself continu-
ous in scale. Nevertheless, as shown by Verrier [2011] we may get rid of conservativity and discrete scale
hypotheses in downscaling algorithms. For nonconservative, continuous-in scale oceanic field, the main
steps of the algorithm would be the following:

1. Inversion of the fractional integration (determining a positive flux with H 5 0 from data characterized by
H> 0).

2. Stochastic disaggregation of the flux with the help of conservative multiplicative cascades.

3. Adding a new fractional integration to estimate downscaled realizations of the field.

Figures 6a and 6b show an example of resolution enhancement of a detrended SST field produced by
the NEMO-GYRE code using such a method. Of course, a single realization is shown but this methodol-
ogy may produce an ensemble of possible disaggregated fields. The latter may have some interest for
computing ensemble statistics (e.g., representativeness errors, etc.). Such methods could be used to
tackle classical problems of scale and of related representativeness errors in oceanography such as the
link between coarse-scale model or satellite products and in situ ‘‘pointwise’’ observations. Work is pres-
ently in progress for the development of validation methodologies of such methods, but we already
see in Figures 6a and 6b that the method is able to simulate small-scale structures with at least qualita-
tively satisfactory levels of variability. Nevertheless, variants of such a method are also possible, for
instance improving the point-by-point properties of the cascade with the help of optimal wavelets
[Yahia et al., 2010]. Physically, progress is needed to simulate realistic filamentary structures required by
oceanic applications, which would need additional coupling with a velocity cascade and/or anisotropic
cascades.
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8. Conclusions

Numerous results in the scientific literature based on observational data have shown that the multiscale var-
iability of geophysical fields could be described by scaling, multifractal statistics. Oceanic fields such as sur-
face temperature, salinity, or chlorophyll concentration should obey such statistical constraints. However,
multiscale statistical analysis of outputs of numerical models of the ocean was up-to-now restricted to the
case of classical second-order statistics such as power spectra. This restriction reduces the description of the
statistical properties to a limited range of variability since only the second-order statistics were considered
(contrary to multifractal statistics). While recent results have emphasized that numerical models of the
atmosphere accurately follow the multifractal laws, it was therefore tempting to evaluate oceanic models in
the same way. In the present study, we have applied multifractal analysis tools to outputs of classical, ideal-
ized configuration of the NEMO OGCM. While direct structure function analysis of NEMO simulations (in
terms of surface temperature, salinity, and velocity) showed the existence of a rupture in the scaling at
O(10) times the grid step, possibly due to the an ‘‘effective resolution’’ problem, very different results were
found when investigating the statistics of the fluxes (i.e., ‘‘gradients’’ of the state variables) of the simulated
quantities. We found evidence of scaling properties for statistics of multiple orders of different (dynamical)
surface variables over a significant meso and submesoscale range. These multifractal properties held in
almost the whole available scale ranges. While the good scaling properties of the fluxes are associated with
the good performance of the NEMO code in terms of probability distributions of turbulent gradients down
to scales close to the grid step, the contrasting piecewise scaling property of structure functions

Figure 6. Result of a multifractal downscaling technique for a modeled SST field. (a) An area of a latitudinally detrended SST field produced
by NEMO-GYRE at a resolution close to 1� (rigorously, the map is a spatial aggregate at 8/9� of the 1/9� simulation considered in this
study). (b) A realization of the higher-resolution field (1/9�) produced by a continuous in scale multifractal downscaling method. (c) The
‘‘true’’ 1/9� simulation used to generate data in Figure 6a. Note that here the downscaling algorithm was calibrated with a single parameter
H and does not takes into account possible steeper scaling at very small scales suggested here by Figures 3a–3d. Another limitation is the
isotropic hypothesis in multifractal generators, which prevents the downscaled field (Figure 6b) to exhibit proper filamentary structures.
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nevertheless suggests that state variables (not the fluxes) remain overfiltered at small scales. The interpreta-
tion of this specific scaling break will require subsequent studies in order to determine whether this break is
really physical, or is due a filtering of small scales (e.g., related with to the turbulent diffusion scheme), or it
is simply an artifact due to the sensitivity of structure function (and spectral) tools to anisotropic features.

As expected from empirical literature results, the fractionally integrated flux is very well suited to describe
observed scaling statistics. We found more or less classical a and C1 parameters (respectively, close to 1.8
and 0.1 for most considered variables) with high values of the H (filtering) parameter in the range 0.3–0.8.
The present work opens some promising perspectives for modelers. Multifractal analysis tools could be
used to evaluate and compare different oceanic models from a multiscale and multi-intensity viewpoint.
They are convenient to address classical scale problems in geophysics: e.g., downscaling, calibration of
remote sensing instruments based on pointwise data [de Montera et al., 2011; Verrier et al., 2013]. This is
very promising in ocean science since the latter generally deals with two main sources of observational
data: coarse-scale satellite data (with a native resolution> 1 km2, and giving gridded products of much
coarser effective resolutions after interpolation and objective analysis) and in situ, pointwise data. Scale rep-
resentativeness errors are high when trying to merge these different sources of data, and may only be
described and corrected with the help of mathematical tools that explicitly take scales and scaling variabili-
ty into account.
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