Recent Advances in Parallel Implementations of Scalar Multiplication over Binary Elliptic Curves

C. Negre and J.M. Robert

RAIM 2015, Rennes, april 8, 2015

Outline

1 Overview of elliptic curve cryptography

- 2 Implementation of \mathbb{F}_{2^m} arithmetic
- 3 Elliptic curve arithmetic
- 4 Scalar multiplication

Outline

1 Overview of elliptic curve cryptography

2 Implementation of \mathbb{F}_{2^m} arithmetic

3 Elliptic curve arithmetic

4 Scalar multiplication

Alice and Bob agree on a group (G, +, O) and a generating point of the group P.

Shared secret key $K = a \cdot b \cdot P$

Alice and Bob agree on a group $(G, +, \mathcal{O})$ and a generating point of the group P.

Shared secret key $K = a \cdot b \cdot P$

The main operation is the scalar multiplication $a \cdot P$.

Group law for an elliptic curve $y^2 = x^3 - 2x + 1$

Group law for an elliptic curve $y^2 = x^3 - 2x + 1$

Addition (chord):

$$\begin{cases} x_R = \lambda - x_P - x_Q \\ y_R = y_P - \lambda(x_R - x_P) \\ \text{with } \lambda = \frac{y_P - y_Q}{x_P - x_Q} \end{cases}$$

Addition (chord):

$$\begin{cases} x_R = \lambda - x_P - x_Q \\ y_R = y_P - \lambda(x_R - x_P) \\ \text{with } \lambda = \frac{y_P - y_Q}{x_P - x_Q} \end{cases}$$

Doubling (tangent):

$$\begin{cases} x_R = \lambda - 2x_P \\ y_R = y_P - \lambda(x_R - x_P) \\ \text{with } \lambda = \frac{3x_P^2 + a}{2y_P} \end{cases}$$

Scalar multiplication : $k \cdot P$

Scalar multiplication : $k \cdot P$

Hierarchy of operations

The considered elliptic curves $E(\mathbb{F}_{2^m})$

• Binary field: $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$.

- Extended binary field: $\mathbb{F}_{2^m} = \mathbb{F}_2[t]/(f(t))$ where f(t) is irreducible.
- For $A = \sum_{i=0}^{m-1} a_i t^i$ and $B = \sum_{i=0}^{m-1} b_i t^i$ in \mathbb{F}_{2^m}

addition :
$$A + B = \sum_{i=0}^{m-1} (a_i + b_i) \cdot t^i$$
,

multiplication : $A \times B = A \cdot B \mod f(t)$.

• Binary elliptic curve: the set of points $P = (x, y) \in \mathbb{F}_{2^m}^2$ satisfying

$$E:y^2+xy=x^3+ax^2+b, \quad a,b\in \mathbb{F}_{2^m}.$$

Curve and field implemented

• NIST curve B233: defined over $\mathbb{F}_2[t]/(t^{233}+t^{74}+1)$ with equation

$$E: y^2 + xy = x^3 + x^2 + b$$

where

$$\begin{split} b = & 0 \times 066647 ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad, \\ N = & 6901746346790563787434755862277025555839812737345013555379383634485463. \end{split}$$

• GHS curve $E(\mathbb{F}_{2^{2} \cdot 127})$: defined over the field $\mathbb{F}_{2^{2} \cdot 127}$ constructed as

$$\begin{split} \mathbb{F}_{2^{127}} &= \mathbb{F}[t]/(t^{127}+t^{63}+1) \\ \mathbb{F}_{2^{2\cdot 127}} &= \mathbb{F}_{2^{127}}[u]/(u^2+u+1) \end{split}$$

with curve equation

$$E: y^2 + xy = x^3 + ux^2 + b$$
$$\sqrt{b} = 0xE2DA921E91E38DD1$$

and admitting an endomorphism.

Outline

1 Overview of elliptic curve cryptography

2 Implementation of \mathbb{F}_{2^m} arithmetic

4 Scalar multiplication

 \mathbb{F}_{2^m} arithmetic over Intel Cores

Intel Core i3,i5 and i7 offer:

- Logical instructions XOR, AND over 128 and 256 bits.
- PCLMUL instruction computing the product of two degree 64 binary polynomials.
- PSHUFB a byte shuffling instructions .
- Shifting instruction (vector 64 bit shifts and full 128 bit shifts).

 \mathbb{F}_{2^m} arithmetic over Intel Cores

Intel Core i3,i5 and i7 offer:

- Logical instructions XOR, AND over 128 and 256 bits.
- PCLMUL instruction computing the product of two degree 64 binary polynomials.
- PSHUFB a byte shuffling instructions .
- Shifting instruction (vector 64 bit shifts and full 128 bit shifts).

We will see how to implement arithmetic over $\mathbb{F}_{2^{233}}$:

- Opposite the second second
- Polynomial squaring with PSHUFB.
- Seduction with shift, 128-bit XOR and AND.
- Look up table for quadratic-solver.

Multiplication in $\mathbb{F}_{2^{233}}$ with Karatsuba

Karatsuba formula

For
$$A(x) = A_h + t^{m/2}A_l$$
 and $B(x) = B_h + t^{m/2}B_l$

 $A \times B = A_h B_h t^m + ((A_h + A_l)(B_h + B_l) + A_h B_h + A_l B_l) t^{m/2} + A_l B_l$

Multiplication in $\mathbb{F}_{2^{233}}$ with Karatsuba

Karatsuba formula

For
$$A(x) = A_h + t^{m/2}A_l$$
 and $B(x) = B_h + t^{m/2}B_l$

 $A \times B = A_h B_h t^m + ((A_h + A_l)(B_h + B_l) + A_h B_h + A_l B_l) t^{m/2} + A_l B_l$

Two recursions for degree m = 233:

Squaring with PSHUFB

- Let a and b be two 128-bits data = 16 bytes.
- The PSHUFB instruction permute the bytes of a as specified by b

PSHUFB(*b*, *a*) outputs

C = a[14] a[15] a[12] a[13] a[10] a[11] a[8] a[9] a[6] a[7] a[4] a[5] a[2] a[3] a[0] a[1]

• In other words c[i] = a[b[i]]

Squaring with PSHUFB

• Squaring a polynomial $b(t) = \sum_{i=0}^{m-1} b_i t^i \in \mathbb{F}_2[t]$:

$$b(t)^2 = \sum_{i=0}^{m-1} b_i t^{2i}.$$

• Aranha et al. 2010: Use PSHUFB for simultaneous look-up table:

• We store in a[j] the squaring of j (seen as an element of $\mathbb{F}_2[t]$)

$$a[j] = j^2$$

for *j* = 0, . . . , 16.
▶ PSHUFB(*b*,*a*) computes

$$c[i] = a[b[i]] = (b[i])^2.$$

• Squaring 128 bits = 2 PSHUFB + 1 Masking + 3 shifts.

Square root

We express the square root of $A(t) = \sum_{i=0}^{m-1} a_i t^i$ as:

- Masking: We separate A as A_{odd} and A_{even}.
- PSHUB: We suppress zeros in A_{odd} and A_{even}.
- Shift and XOR: we multiply A_{odd} by \sqrt{x} = and XOR it to A_{even} .

0 • • • • • 0	c ₄₆₄ · · · c ₃₈₄	c ₃₈₃ · · ·	· · · · c ₂₅₆	<i>c</i> ₂₅₅ · · ·	· · · c ₁₂₈	<i>c</i> ₁₂₇ · · ·	$\cdots c_1 c_0$
---------------	---	------------------------	--------------------------	-------------------------------	------------------------	-------------------------------	------------------

c ₃₈₃ · · ·	· · · · c ₂₅₆	<i>c</i> ₂₅₅ · · ·	· · · c ₁₂₈	<i>c</i> ₁₂₇ · · ·	$\cdots c_1 c_0$
0 · · · · ·	• 0 <i>c</i> ₄₆₄ · · · ·	c ₃₈₄			
	00	C464 · · · C384			
$c_{r,383}\cdots$	$\cdots c_{r,256}$	$c_{r,255}$ · · ·	$\cdots c_{r,128}$	$c_{r,127}$ · · ·	$\cdots c_{r,1}c_{r,0}$

$c_{383} \cdots \cdots c_{256}$	<i>c</i> ₂₅₅ · · ·	· · · c ₁₂₈	<i>c</i> ₁₂₇ · · ·	$\cdots c_1 c_0$
0 · · · · · 0 C464 · · · ·	c ₃₈₄			
00	c464 · · · c384]		
	<i>c</i> _{r,255} · · ·	$\cdots c_{r,128}$	$c_{r,127}$ · · ·	$\cdots c_{r,1}c_{r,0}$
		<i>Cr</i> ,383 · · ·	···· <i>c</i> _{r,256}	
		c	r,383 · · ·	$\cdots c_{r,256}$
	c _{r,255} c _{r,235}	$\cdots c_{r,128}$	<i>c</i> _{<i>r</i>,127} · · ·	$\cdots c_{r,1}c_{r,0}$

c₃₈₃ ·

c383 · · · · · · c256	<i>c</i> ₂₅₅ · · ·	· · · c ₁₂₈	c_{127} · · ·	$\cdots c_1 c_0$
0 · · · · · 0 c ₄₆₄ · · · c	384			
0 · · · · · 0	c ₄₆₄ · · · c ₃₈₄			
	<i>c</i> _{r,255} · · ·	$\cdots c_{r,128}$	$c_{r,127}\cdots$	$\cdots c_{r,1}c_{r,0}$
		<i>c</i> _{<i>r</i>,383} · · ·	···· <i>c</i> _{r,256}	
		•	Fr,383 · · ·	$\cdots c_{r,256}$
	0) $\cdots c_{r,128}$	<i>c</i> _{r,127} · · ·	$\cdots c_{r,1}c_{r,0}$
			<i>C</i> _{r,255} <i>C</i> _r	,233
	_			$c_{r,255}c_{r,233}$
	0 ($c_{r,233}$ · · ·	<i>c</i> _{r,127} · · ·	$\cdots c_{r,1}c_{r,0}$

Lazy Reduction for $\mathbb{F}_{2^{233}}$

Lazy Reduction for $\mathbb{F}_{2^{233}}$

Inversion

• Little Fermat theorem in \mathbb{F}_{2^m} gives

$$a^{2^m}=a\Rightarrow\left(a^{2^{m-1}-1}
ight)^2=a^{-1}$$
 if $a
eq 0.$

Inversion

• Little Fermat theorem in \mathbb{F}_{2^m} gives

$$a^{2^m} = a \Rightarrow \left(a^{2^{m-1}-1}\right)^2 = a^{-1}$$
 if $a \neq 0$.

• Chaining: from $a^{2^{u}-1}$ and $a^{2^{v}-1}$ we get $a^{2^{u+v}-1}$:

$$(a^{2^{u}-1})^{2^{v}} \times a^{2^{v}-1} = a^{2^{u+v}-2^{v}+2^{v}-1} = a^{2^{u+v}-1}$$

Inversion

Little Fermat theorem in 𝔽_{2^m} gives

$$a^{2^m} = a \Rightarrow \left(a^{2^{m-1}-1}\right)^2 = a^{-1}$$
 if $a \neq 0$.

• Chaining: from $a^{2^{u}-1}$ and $a^{2^{v}-1}$ we get $a^{2^{u+v}-1}$:

o1 1

$$(a^{2^{u}-1})^{2^{v}} \times a^{2^{v}-1} = a^{2^{u+v}-2^{v}+2^{v}-1} = a^{2^{u+v}-1}$$

• To invert $a \in \mathbb{F}_{2^{233}}$ we choose an addition chain to get $a^{2^{232}-1}$ $1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 14 \rightarrow 28 \rightarrow 29 \rightarrow 58 \rightarrow 116 \rightarrow 232$

$$1 \rightarrow a^{2^{-1}} = a$$

$$2 = 1 + 1 \rightarrow (a^{2^{1}-1})^{2^{1}} \times a^{2^{1}-1} = a^{2^{2}-1}$$

$$3 = 2 + 1 \rightarrow (a^{2^{2}-1})^{2^{1}} \times a^{2^{1}-1} = a^{2^{3}-1}$$

$$6 = 3 + 3 \rightarrow (2^{2^{3}-1})^{2^{3}} \times a^{2^{3}-1} = a^{2^{6}-1}$$

$$7 = 6 + 1 \rightarrow (2^{2^{6}-1})^{2^{1}} \times a^{2^{1}-1} = a^{2^{7}-1}$$

: :

$$116 = 58 + 58 \quad \rightarrow \quad \left(2^{2^{58}-1}\right)^{2^{58}} \times a^{2^{58}-1} = a^{2^{116}-1}$$
$$232 = 116 + 116 \quad \rightarrow \quad \left(2^{2^{116}-1}\right)^{2^{116}} \times a^{2^{116}-1} = a^{2^{232}-1}$$

and $a^{-1} = \left(a^{2^{232}-1}\right)^2_{18/39}$

Quadratic solver

The solution of an equation in y

$$y^2+y=c$$
 with $c\in \mathbb{F}_{2^m}$ s.t. $\mathit{Tr}(c)=0$ (where $\mathit{Tr}(c)=\sum_{i=0}^{m-1}c^{2^i}$)

is given by the Half-Trace (if m is odd):

$$y = HT(c) = \sum_{i=0}^{\frac{m-1}{2}} c^{2^{2i}}$$

Indeed, we have

$$HT(c)^{2} + HT(c) = \sum_{i=0}^{\frac{m-1}{2}} c^{2^{2i+1}} + \sum_{i=0}^{\frac{m-1}{2}} c^{2^{2i}}$$
$$= c^{2^{m}} + Tr(c)$$

• We precompute

$$tab[i][u_3u_2u_1u_0] = HT(t^{4i}(u_3t^3 + u_2t^2 + u_1t + u_0))$$

for all $0 \le i < m/4$.

• We use the linearity: $HT(c_1 + c_2) = HT(c_2) + HT(c_1)$

• We precompute

$$tab[i][u_3u_2u_1u_0] = HT(t^{4i}(u_3t^3 + u_2t^2 + u_1t + u_0))$$

for all $0 \le i < m/4$.

• We use the linearity: $HT(c_1 + c_2) = HT(c_2) + HT(c_1)$

	c ₁₁ c ₁₀ c ₉ c ₈	c ₇ c ₆ c ₅ c ₄	c ₃ c ₂ c ₁ c ₀
--	---	---	---

• We precompute

$$tab[i][u_3u_2u_1u_0] = HT(t^{4i}(u_3t^3 + u_2t^2 + u_1t + u_0))$$

for all $0 \le i < m/4$.

• We use the linearity: $HT(c_1 + c_2) = HT(c_2) + HT(c_1)$

• We precompute

$$tab[i][u_3u_2u_1u_0] = HT(t^{4i}(u_3t^3 + u_2t^2 + u_1t + u_0))$$

for all $0 \le i < m/4$.

• We use the linearity: $HT(c_1 + c_2) = HT(c_2) + HT(c_1)$

• We precompute

. . .

$$tab[i][u_3u_2u_1u_0] = HT(t^{4i}(u_3t^3 + u_2t^2 + u_1t + u_0))$$

for all $0 \le i < m/4$.

• We use the linearity: $HT(c_1 + c_2) = HT(c_2) + HT(c_1)$

Timings Core i7 SB (ratios vs multiplication)

Ratios for arithmetic operations

Outline

1 Overview of elliptic curve cryptography

2 Implementation of \mathbb{F}_{2^m} arithmetic

4 Scalar multiplication

Elliptic curves over binary fields

The formulas for point doubling and point addition are :

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a \\ y_3 = (x_1 + x_3)\lambda + x_3 + y_1 \end{cases} \text{ with } \begin{cases} \lambda = \frac{y_1 + y_2}{x_1 + x_2} \text{ if } P_1 \neq P_2 \\ \lambda = \frac{y_1}{x_1} + x_1 \text{ if } P_1 = P_2 \end{cases}$$

Elliptic curves over binary fields

The formulas for point doubling and point addition are :

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a \\ y_3 = (x_1 + x_3)\lambda + x_3 + y_1 \end{cases} \text{ with } \begin{cases} \lambda = \frac{y_1 + y_2}{x_1 + x_2} \text{ if } P_1 \neq P_2 \\ \lambda = \frac{y_1}{x_1} + x_1 \text{ if } P_1 = P_2 \end{cases}$$

A point doubling requires: 1 Inv, 2 Mul, 1 Squ and 8 Add ;
A point addition requires: 1 Inv, 2 Mul, 1 Squ and 9 Add;

Elliptic curves over binary fields

The formulas for point doubling and point addition are :

$$\begin{cases} x_3 = \lambda^2 + \lambda + x_1 + x_2 + a \\ y_3 = (x_1 + x_3)\lambda + x_3 + y_1 \end{cases} \text{ with } \begin{cases} \lambda = \frac{y_1 + y_2}{x_1 + x_2} \text{ if } P_1 \neq P_2 \\ \lambda = \frac{y_1}{x_1} + x_1 \text{ if } P_1 = P_2 \end{cases}$$

A point doubling requires: 1 Inv, 2 Mul, 1 Squ and 8 Add ;
A point addition requires: 1 Inv, 2 Mul, 1 Squ and 9 Add;

Opposite of P = (x, y) is -P = (x, x + y)

Projective coordinates

• Lopez-Dahab projective coordinates.

$$P = (X_P : Y_P : Z_P) \text{ with } \begin{cases} x_P = \frac{X_P}{Z_P} \\ y_P = \frac{Y_P}{Z_P^2} \end{cases}$$

Projective coordinates

• Lopez-Dahab projective coordinates.

$$P = (X_P : Y_P : Z_P) \text{ with } \begin{cases} x_P = \frac{X_P}{Z_P} \\ y_P = \frac{Y_P}{Z_P^2} \end{cases}$$

• The coordinates $(X_{2P} : Y_{2P} : Z_{2P})$ of 2P are computed as:

$$\left\{ \begin{array}{l} X_{2P} = X_{P}^{4} + b \cdot Z_{P}^{4} \\ Y_{2P} = bZ_{P}^{4} \cdot Z_{2P} + X_{2P} \cdot \left(aZ_{2P} + Y_{P}^{2} + bZ_{P}^{4}\right) \\ Z_{2P} = X_{P}^{2} \cdot Z_{P}^{2} \end{array} \right.$$

Projective coordinates

• Lopez-Dahab projective coordinates.

$$P = (X_P : Y_P : Z_P) \text{ with } \begin{cases} x_P = \frac{X_P}{Z_P} \\ y_P = \frac{Y_P}{Z_P^2} \end{cases}$$

• The coordinates $(X_{2P} : Y_{2P} : Z_{2P})$ of 2P are computed as:

$$\begin{cases} X_{2P} = X_{P}^{4} + b \cdot Z_{P}^{4} \\ Y_{2P} = bZ_{P}^{4} \cdot Z_{2P} + X_{2P} \cdot (aZ_{2P} + Y_{P}^{2} + bZ_{P}^{4}) \\ Z_{2P} = X_{P}^{2} \cdot Z_{P}^{2} \end{cases}$$

- Other interesting coordinates systems:
 - Kim-Kim (2006) $(X, Y, Z, T) \cong (X/Z, Y/T)$,
 - ► Lambda-projective coordinates (Oliveira *et al.* 2013) $(X, L, Z) \cong (X/Z, L/Z(X/Z) + (X/Z)^2).$

Point halving

• Point doubling Q = 2P:

$$Q = (u, v) \text{ from } P = (x, y)$$

$$\lambda = x + y/x, \qquad (1)$$

$$u = \lambda^2 + \lambda + a, \qquad (2)$$

$$v = x^2 + u(\lambda + 1). \qquad (3)$$

Point halving

• Point doubling Q = 2P:

Q = (u, v) from P = (x, y) $\lambda = x + y/x, \qquad (1)$ $u = \lambda^2 + \lambda + a, \qquad (2)$

$$v = x^2 + u(\lambda + 1). \tag{3}$$

• Point halving $P = \frac{1}{2}Q$: we compute x, y in terms of u, v as follows:

- we solve (2): $\lambda^2 + \lambda = u + a \rightarrow \lambda$ (Quadratic solver);
- we solve (3): $x^2 = v + u(\lambda + 1) \rightarrow x$ (Square root);
- we get y with (1): $y = \lambda x + x^2$.

Point halving

• Point doubling Q = 2P:

Q = (u, v) from P = (x, y) $\lambda = x + y/x, \qquad (1)$ $u = \lambda^2 + \lambda + a, \qquad (2)$

$$v = x^2 + u(\lambda + 1). \tag{3}$$

• Point halving $P = \frac{1}{2}Q$: we compute x, y in terms of u, v as follows:

• we solve (2): $\lambda^2 + \lambda = u + a \rightarrow \lambda$ (Quadratic solver);

• we solve (3):
$$x^2 = v + u(\lambda + 1) \rightarrow x$$
 (Square root);

• we get y with (1): $y = \lambda x + x^2$.

• A halving requires:

1Quadratic Solver, 1Square Root, 2M and 1S.

Cost of point operations

	Doubling	Halving	Mixed	Doubling
	Doubling	Taiving	addition	+ mixed add.
Affine	2M + 1S + 1I	QS+SR+S+2M	2M + 1S + 1I	4M + 2S + 2I
Lopez-Dahab	4M + 4S	-	9M + 5S	13M +10S
Kim-Kim	4M + 5S	-	8M + 5S	12M +10S
Lambda Proj.	4M + 4S	-	8M + 2S	10M +6S

Outline

1 Overview of elliptic curve cryptography

- 2 Implementation of \mathbb{F}_{2^m} arithmetic
- 3 Elliptic curve arithmetic
- 4 Scalar multiplication

The Scalar Multiplication Algorithm : Double-and-add

• Let
$$k = (k_{\ell-1}, ..., k_1, k_0)_2 \in \mathbb{N}, P \in E(\mathbb{F}_{2^m})$$

 $k \cdot P = (\sum_{i=0}^{\ell-1} 2^i k_i) \cdot P$
 $= (k_0 + 2(k_1 + 2(k_2 + 2(... + 2k_{\ell-1})...)))) \cdot P$
 $= (k_0 \cdot P + 2(k_1 \cdot P + 2(k_2 \cdot P + 2(... + 2(k_{\ell-2} \cdot P + 2(k_{\ell-1} \cdot P))...))))$

The Scalar Multiplication Algorithm : Double-and-add

• Let
$$k = (k_{\ell-1}, ..., k_1, k_0)_2 \in \mathbb{N}, P \in E(\mathbb{F}_{2^m})$$

 $k \cdot P = (\sum_{i=0}^{\ell-1} 2^i k_i) \cdot P$
 $= (k_0 + 2(k_1 + 2(k_2 + 2(... + 2k_{\ell-1})...))) \cdot P$
 $= (k_0 \cdot P + 2(k_1 \cdot P + 2(k_2 \cdot P + 2(... + 2(k_{\ell-2} \cdot P + 2(k_{\ell-1} \cdot P))...)))$

• This can be performed with the following algorithm :

1:
$$Q \leftarrow O$$

2: for $i = \ell - 1$ down to 0 do
3: $Q \leftarrow 2 \cdot Q$
4: if $k_i = 1$ then
5: $Q \leftarrow Q + P$
6: end if
7: end for
8: return Q

Improvements of *Double-and-add* with NAF and NAF_w .

• NAF makes k sparser: let $k \in [0, 2^{\ell}[$ satisfying $k = 2^{i} - 1$, then

$$(k)_2 = \underbrace{111...1}_{i \text{ times}}$$
 and we can write : $(k)_{NAF} = \underbrace{100...00 - 1}_{i+1 \text{ digits}}$.

• This representation decreases the average number of non-zero digits from $\ell/2$ to $\ell/3$.

Improvements of *Double-and-add* with NAF and NAF_w .

• NAF makes k sparser: let $k \in [0, 2^{\ell}[$ satisfying $k = 2^{i} - 1$, then

$$(k)_2 = \underbrace{111...1}_{i \text{ times}}$$
 and we can write : $(k)_{NAF} = \underbrace{100...00 - 1}_{i+1 \text{ digits}}$.

- This representation decreases the average number of non-zero digits from $\ell/2$ to $\ell/3$.
- NAF_w further reduces the average number of non-zero digits down to $\ell/(w+1)$ using larger digits :

$$\{-2^{w-1}+1,...,-5,-3,-1,0,1,3,5,...,2^{w-1}-1\}.$$

• Complexity of scalar multiplication over $E(\mathbb{F}_{2^m})$:

	nb. of doublings	nb. of additions
Double-and-add	l	$\ell/2$
NAF Double-and-add	l	ℓ/3
NAF _w Double-and-add	l	$\ell/(w+1) + 2^{w-2}$

(Double, Halve)-and-add parallel scalar multiplication

Recode with NAF_w
$$k = \sum_{i=0}^{\ell} k'_i 2^i$$

Double-and-add
 $R \leftarrow \mathcal{O}$
//Precomputation:
 $P_i = iP$ for $i \in \{1, 3, \dots, 2^{w-1} - 1\}$
for $i = \ell$ down to 0 do
 $R \leftarrow 2 \cdot R$
if $k'_i \neq 0$ then
 $R \leftarrow R + \operatorname{sign}(k_i)P_{|k_i|}$
endif
endfor
return(R)

(Double, Halve)-and-add parallel scalar multiplication

Recode
$$k = \sum_{i=0}^{\ell} k_i'' 2^{-i}$$

Double-and-add
 $R \leftarrow \mathcal{O}$
//Precomputation:
 $P_i = iP$ for $i \in \{1, 3, \dots, 2^{w-1} - 1\}$
for $i = \ell$ down to 0 do
 $R \leftarrow 2 \cdot R$
if $k_i' \neq 0$ then
 $R \leftarrow R + \operatorname{sign}(k_i)P_{|k_i|}$
endif
endif
endif
endif
 $R \leftarrow \sum_{i=1,3,\dots,2^{w-1}-1} i \cdot R_i$
return(R)
 $R \leftarrow \sum_{i=1,3,\dots,2^{w-1}-1} i \cdot R_i$

(Double, Halve)-and-add parallel scalar multiplication

Recode
$$k = \sum_{i=0}^{\ell-s} k'_i 2^i$$
 + $\sum_{i=0}^{s} k''_i 2^{-i}$
Double-and-add
 $\overline{R \leftarrow \mathcal{O}}$
//Precomputation:
 $P_i = iP$ for $i \in \{1, 3, \dots, 2^{w-1} - 1\}$
for $i = \ell - s$ down to 0 do
 $R \leftarrow 2 \cdot R$
if $k'_i \neq 0$ then
 $R \leftarrow R + \text{sign}(k_i)P_{|k_i|}$
endif
endif
endif
endif
 $endif$
 $R \leftarrow \sum_{i=1,3,\dots,2^{w-1} - 1}$
for $i = 0$ to $\ell - s$ do
 $S \leftarrow \frac{1}{2} \cdot S$
if $k'_i \neq 0$ then
 $R_{|k'_i|} \leftarrow R_{|k'_i|} + \text{sign}(k_i)S$
endif
 $endif$
 $R \leftarrow \sum_{i=1,3,\dots,2^{w-1} - 1} i \cdot R_i$
 $return(R)$

Add the two points

Simple power analysis on scalar multiplication For a scalar $k = (k_{\ell}, \ldots, k_0)_2$ and a point $P \in E(\mathbb{F}_q)$ 0 0 amplitude D D D D D Α D D Α Α Α

Parallelization of the Montgomery ladder (Robert 2013)

Parallelization of the Montgomery ladder (Oliveira (2014))

Parallelization with endomorphism

• Curve endomorphism (curve and group):

$$\begin{aligned} \phi \colon & \mathcal{E}(\mathbb{F}_q) \to \mathcal{E}(\mathbb{F}_q) \\ & (x, y) \mapsto (\phi_x(x, y), \phi_y(x, y)) \end{aligned}$$

and there exists $\gamma_{\phi} \in [0, \operatorname{ord}(P)]$ such shat $\phi(P) = \gamma_{\phi} \cdot P$.

Parallelization with endomorphism

• Curve endomorphism (curve and group):

$$\begin{aligned} \phi \colon & E(\mathbb{F}_q) \to E(\mathbb{F}_q) \\ & (x, y) \mapsto (\phi_x(x, y), \phi_y(x, y)) \end{aligned}$$

and there exists $\gamma_{\phi} \in [0, ord(P)]$ such shat $\phi(P) = \gamma_{\phi} \cdot P$.

Four thread parallelization

Timings: two threads (NIST B233 curve, Core i7 SB)

Montgomery-ladder

NAF_w Double,halve-and-add and parallel

Timings: with endomorphism ($E(\mathbb{F}_{2^{2} \cdot 127})$, Core i7 HW) Oliveira *et al.* (2014) SAC and JCEN.

Conclusion

• New instructions on recent Intel Cores provide significant speed-up:

- PCLMUL,
- PSHUFB,
- Halving.
- New speed records:
 - ► A scalar multiplication over E(F_{2^m}) requires 27 000 clock-cycles (Core i7 Haswell).
 - Better than scalar multiplication over $E(\mathbb{F}_p)$ (\cong 100 000 clock-cycles).
- For further parallelization the limitation might come from: recoding, thread management, final additions.

Thank you!

References

- Parallel Montgomery (Oliveira): Thomaz Oliveira, Diego F. Aranha, Julio López Hernandez, Francisco Rodríguez-Henríquez. *Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without Precomputation.* Selected Areas in Cryptography 2014: 324-344.
- Parallel Montgomery (Robert): C. Negre and J.-M. Robert. New Parallel Approaches for Scalar Multiplication in Elliptic Curve over Fields of Small Characteristic. IEEE TC, to be published.
- Lambda Projective coordinates: Thomaz Oliveira, Julio López, Diego F. Aranha, Francisco Rodríguez-Henríquez. Two is the fastest prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineering 4(1): 3-17 (2014).
- Implemenation of the squaring: Diego F. Aranha, Julio López, Darrel Hankerson. Efficient Software Implementation of Binary Field Arithmetic Using Vector Instruction Sets. LATINCRYPT 2010: 144-161.