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THE PRESSURE METRIC FOR ANOSOV REPRESENTATIONS

MARTIN BRIDGEMAN, RICHARD CANARY, FRANCOIS LABOURIE,
AND ANDRES SAMBARINO

ABSTRACT. Using the thermodynamic formalism, we introduce a notion of
intersection for projective Anosov representations, show analyticity results for
the intersection and the entropy, and rigidity results for the intersection. We
use the renormalized intersection to produce an Out(I')-invariant Riemannian
metric on the smooth points of the deformation space of irreducible, generic,
projective Anosov representations of a word hyperbolic group I' into SL, (R).
In particular, we produce mapping class group invariant Riemannian metrics
on Hitchin components which restrict to the Weil-Petersson metric on the
Fuchsian loci. Moreover, we produce Out(I')-invariant metrics on deformation
spaces of convex cocompact representations into PSL2(C) and show that the
Hausdorff dimension of the limit set varies analytically over analytic families
of convex cocompact representations into any rank 1 semi-simple Lie group.

1. INTRODUCTION

In this paper we produce a mapping class group invariant Riemannian metric
on a Hitchin component of the character variety of representations of a closed sur-
face group into SL,,(R) whose restriction to the Fuchsian locus is a multiple of the
Weil-Petersson metric. More generally, we produce a Out(T")-invariant Riemann-
ian metric on the smooth generic points of the deformation space of irreducible,
projective Anosov representations of a word hyperbolic group I" into SL,,(R). We
use Pliicker representations to produce metrics on deformation spaces of convex
cocompact representations into PSL2(C) and on the smooth points of deformation
spaces of Zariski dense Anosov representations into an arbitrary semi-simple Lie
group.

Our metric is produced using the thermodynamic formalism developed by Bowen
[12, 13], Parry—Pollicott [55], Ruelle [61] and others. It generalizes earlier work done
in the Fuchsian and quasifuchsian cases by McMullen [53] and Bridgeman [9]. In
order to use the thermodynamic formalism, we associate a natural flow U,I" to any
projective Anosov representation p, and show that it is a topologically transitive
metric Anosov flow and is a Holder reparameterization of the geodesic flow UgI’
of I as defined by Gromov. We then see that entropy varies analytically over any
smooth analytic family of projective Anosov homomorphisms of T into SL,,(R).
As a consequence, again using the Pliicker embedding, we see that the Hausdorff
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dimension of the limit set varies analytically over analytic families of convex cocom-
pact representations into a rank one semi-simple Lie group. We also introduce a
renormalized intersection J on the space of projective Anosov representations. Our
metric is given by the Hessian of this renormalised intersection J.

We now introduce the notation necessary to give more careful statements of our
results. Let I be a word hyperbolic group with Gromov boundary d..I". Loosely
speaking, a representation p : I' — SL,,(R) is projective Anosov if it has trans-
verse projective limit maps, the image of every infinite order element is proximal,
and the proximality “spreads uniformly” (see Section 2.1 for a careful definition).
An element A € SL,,,(R) is prozimal if its action on RP(m) has an attracting
fixed point. A representation p : I' — SL,,,(R) is said to have transverse projec-
tive limit maps if there exist continuous p-equivariant maps £ : d.I' = RP(m) and
0 : OxI' = RP(m)* such that if 2 and y are distinct points in 0T, then

() ®0(y) =R™

(where we identify RP(m)* with the Grassmanian of (m — 1)-dimensional vector
subspaces of R™). If v € T has infinite order, p is projective Anosov and 77 is
the attracting fixed point of the action of v on 9T, then £(y7T) is the attracting
fixed point for the action of p(y) on RP(m). Moreover, Guichard and Wienhard
[26, Proposition 4.10] proved that every irreducible representation p : I' — SL,,(R)
with transverse projective limit maps is projective Anosov.

If p is a projective Anosov representation, we can associate to every conjugacy
class [y] of v € T its spectral radius A(~y)(p). The collection of these radii form the
radius spectrum of p. For every positive real number T we define

Rr(p) = {[] | log(A()(p)) < T}

We will see that Rr(p) is finite (Proposition 2.8). We also define the entropy of a
representation by

h(p) = Jim logt(Rr(p)).

If p1 and py are two projective Anosov representations, we define their intersec-
tion by

1
(o1, ps) = lim | ————
(pl PQ) T 500 ﬁ(RT(pl)) [’Y]ERZT(’)O)

We also define the renormalised intersection by

ZEZ?% I(p1, p2).

log(A(v)(p2))
log(A(v)(p1))

J(p1,p2) =

We prove, see Theorem 1.3, that all these quantities are well defined and obtain the
following inequality and rigidity result for the renormalised intersection. Let m, :
SL,»(R) — PSL,,,(R) be the projection map. If p : I' — SL,,(R) is a representation,
let G, be the Zariski closure of p(T').

Theorem 1.1. [INTERSECTION] IfT is a word hyperbolic group and py : T' — SL,,, (R)
and p2 : T' — SL,,, (R) are projective Anosov representations, then

J(p17p2) = 1.
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Moreover, if p1 and po are irreducible, G,, and G,, are connected and J(p1, p2) = 1,
then there exists an isomorphism ¢ : T, (Gp, ) = Tm, (Gp,) such that

¢O7Tm1 Opl :ngop%

We also establish a spectral rigidity result. If p : T' — SL,,(R) is projective
Anosov and v € T, then let L(v)(p) denote the eigenvalue of maximal absolute
value of p(v), so

A()(p) = IL(M(p)]-

Theorem 1.2. [SPECTRAL RIGIDITY| Let I' be a word hyperbolic group and let
p1: T = SLn(R) and pa : T — SL,,,(R) be projective Anosov representations with
limit maps &1 and & such that

L(v)(p1) = L(7)(p2)

for every v in T'. Then there exists g € GL,,,(R) such that g& = &o.

Moreover, if py is irreducible, then gplg_1 = po.

We now introduce the deformation spaces which occur in our work. In section 7,
we will see that each of these deformation spaces is a real analytic manifold. Let us
introduce some terminology. If G is a reductive subgroup of SL,,(R), we say that
an element of G is generic if its centralizer is a maximal torus in G. For example, an
element of SL,,(R) is generic if and only if it is diagonalizable over C with distinct
eigenvalues. We say that a representation p : I' — G is G-generic if the Zariski
closure of p(T') contains a generic element of G. Finally, we say that p € Hom(T', G)
is regular if it is a smooth point of the algebraic variety Hom(T', G).

e Let C(T',m) denote the space of (conjugacy classes of) regular, irreducible,
projective Anosov representations of I' into SL,, (R).

e Let Cy(T', G) denote the space of (conjugacy classes of) G-generic, regular,
irreducible, projective Anosov representations.

We show that the entropy and the renormalised intersection vary analytically
over our deformation spaces. Moreover, we obtain analyticity on analytic families
of projective Anosov homomorphisms. An analytic family of projective Anosov
homomorphisms is a continuous map 3 : M — Hom(T, SL,,,(R)) such that M is an
analytic manifold, 3,, = 8(m) is projective Anosov for all m € M, and m — 5,,(7)
is an analytic map of M into SL,,(R) for all v € I.

Theorem 1.3. [ANALYTICITY]| If T is a word hyperbolic group, then the entropy

h and the renormalised intersection J are well-defined positive, Out(T")-invariant

analytic functions on the spaces C(T',m) and C(I',m) x C(T',m) respectively. More

generally, they are analytic functions on any analytic family of projective Anosov

homomorphisms.

Moreover, let v : (—=1,1) — C(I';m) be any analytic path with values in the de-
formation space, let J,(t) = J(v(0),~(t)) then
2

% J, =0 and & J, >0 (1)

t=0 de? t=0

Theorem 1.3 allows us to define a non-negative analytic 2-tensor on Cy(T, G).
The pressure form is defined to be the Hessian of the restriction of the renormalised
intersection J. Our main result is the following.
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Theorem 1.4. [PRESSURE METRIC] Let I' be a word hyperbolic group and let G be
a reductive subgroup of SL,,(R). The pressure form is an analytic Out(T')-invariant
Riemannian metric on C4(T', G).

If S is a closed, connected, orientable, hyperbolic surface, Hitchin [30] exhibited
a component H,,(S) of Hom(m(S), PSL,,(R))/PGL,,(R) now called the Hitchin
component, which is an analytic manifold diffeomorphic to a ball. Each Hitchin
component contains a Fuchsian locus which consists of representations obtained
by composing Fuchsian representations of 71(.S) into PSLy(R) with the irreducible
representation 7, : PSLa(R) — PSL,,(R). The representations in a Hitchin com-
ponent are called Hitchin representations and can be lifted to representations into
SL,,,(R). Labourie [41] showed that lifts of Hitchin representations are projective
Anosov, irreducible and SL,,(R)-generic. In particular, if p; : m1(S) = PSL,,(R)
are Hitchin representations, then one can define h(p;), I(p1, p2) and J(p1, p2) just
as for projective Anosov representations. Guichard has recently announced a clas-
sification of the possible Zariski closures of Hitchin representations, see Section 11.3
for a statement. As a corollary of Theorem 1.1 and Guichard’s work we obtain a
stronger rigidity result for Hitchin representations.

Corollary 1.5. [HITCHIN RIGIDITY| Let S be a closed, orientable surface and let
p1 € Hm, (S) and pa € Hpm,(S) be two Hitchin representations such that

J(p1,p2) = 1.
Then, either
e my =my and p1 = p2 in Hpy, (S), or
o there exists an element p of the Teichmiiller space T (S) so that p1 = Tm, (p)
and py = Tin, (p).

In section 11.4 we use work of Benoist [5, 6] to obtain a similar rigidity result for
representations which arise as monodromies of strictly convex projective structures
on compact manifolds with word hyperbolic fundamental group. We will call such
representations Benoist representations.

Each Hitchin component lifts to a component of C,(m1(S), SL;,» (R)). As a corol-
lary of Theorem 1.4 and work of Wolpert [68] we obtain:

Corollary 1.6. [HITCHIN COMPONENT]| The pressure form on the Hitchin compo-
nent is an analytic Riemannian metric which is invariant under the mapping class
group and restricts to the Weil-Petersson metric on the Fuchsian locus.

The same naturally holds for Hitchin components of representations into PSp(n, R),
SO0(n,n 4+ 1) and Ga,9, since they embed in Hitchin components of representations
into PSL(n,R). Labourie and Wentworth [46] have announced an explicit formula
(in term of the Hitchin parametrisation) for the pressure metric along the Fuchsian
locus.

Li [48] has used the work of Loftin [50] and Labourie [43] to exhibit a metric
on H3(S), which she calls the Loftin metric, which is invariant with respect to the
mapping class group, restricts to a multiple of the Weil-Petersson metric on the
Fuchsian locus and such that the Fuchsian locus is totally geodesic. She further
shows that a metric on H3(S) constructed earlier by Darvishzadeh and Goldman
[24] restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus.
Kim and Zhang [39] introduced a mapping class group invariant Kéhler metric on
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the Hitchin component H3(S) for SL(3, R), which Labourie [45] generalized to the
Hitchin components associated to all real split simple Lie groups of rank 2.

If T is a word hyperbolic group, we let C.(T', PSL2(C)) denote the space of (conju-
gacy classes of) convex cocompact representations of I' into PSL2(C). In Section 2.3
we produce a representation, called the Pliicker representation, v : PSLo(C) — SL,, (R)
(for some m), so that if p € C.(T',PSL2(C)), then « o p is projective Anosov. The
deformation space C..(I', PSL2(C)) is an analytic manifold and we may define a renor-
malised intersection J and thus a pressure form on C.(I', PSL2(C)). The following
corollary is a direct generalization of Bridgeman’s pressure metric on quasifuchsian
space (see [9]).

Corollary 1.7. [KLEINIAN GROUPS] Let ' be a torsion-free word hyperbolic group.
The pressure form gives rise to a Out(T)-invariant metric on the analytic manifold
Cc(T, PSL2(C)) which is Riemannian on the open subset consisting of Zariski dense
representations. Moreover,

(1) If T does not have a finite index subgroup which is either a free group or a
surface group, then the metric is Riemannian at all points in C.(T', PSL2(C)).

(2) If T is the fundamental group of a closed, connected, orientable surface,
then the metric is Riemannian off of the Fuchsian locus in C.(T', PSLy(C))
and restricts to a multiple of the Weil-Petersson metric on the Fuchsian
locus.

If G is a rank one semi-simple Lie group, then work of Patterson [56], Sullivan
[66], Yue [69] and Corlette-Tozzi [20] shows that the entropy of a convex cocompact
representation p : I' — G agrees with the Hausdorff dimension of the limit set of
p(T'). We may then apply Theorem 1.3 and the Pliicker representation to conclude
that that the Hausdorff dimension of the limit set varies analytically over analytic
families of convex cocompact representations into rank one semi-simple Lie groups.

Corollary 1.8. [ANALYTICITY OF HAUSDORFF DIMENSION| If T is a finitely gen-
erated group and G is a rank one semi-simple Lie group, then the Hausdorff dimen-
sion of the limit set varies analytically on any analytic family of convex cocompact
representations of I' into G. In particular, the Hausdorff dimension varies analyti-

cally over C.(T', PSLy(C))

One may further generalize our construction into the setting of virtually Zariski
dense Anosov representations into an arbitrary semi-simple Lie group G. A rep-
resentation p : I' — G is virtually Zariski dense if the Zariski closure of p(I') is a
finite index subgroup of G. If T' is a word hyperbolic group, G is a semi-simple Lie
group with finite center and P is a non-degenerate parabolic subgroup, then we let
Z(T; G, P) denote the space of (conjugacy classes of ) regular virtually Zariski dense
(G, P)-Anosov representations of " into G. The space Z(T'; G, P) is an analytic orb-
ifold, see Proposition 7.3, and we can again use a Pliicker representation to define
a pressure metric on Z(T'; G, P). If G is connected, then Z(T'; G, P) is an analytic
manifold.

Corollary 1.9. [ANOSOV REPRESENTATIONS] Suppose that T is a word hyperbolic
group, G is a semi-simple Lie group with finite center and P is a non-degenerate par-
abolic subgroup of G. Then there exists an Out(I')-invariant analytic Riemannian

metric on the orbifold Z(T'; G, P).
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A key tool in our proof is the introduction of a flow U,I" associated to a projective
Anosov representation p. Let p : ' — SL,,,(R) be a projective Anosov representation
with limit maps £ and 6. Let F' be the total space of the principal R-bundle over
RP(m) x RP(m)* whose fiber at the point (z,y) is the space of norms on the line
&(z). There is a natural R-action on F which takes a norm u on z to the norm
e 'u. Let F, be R-principal bundle over

05T = 0. T X 0T\ {(,2) | 2 € DT}

which is the pull back of F' by (£,60). The R-action on F gives rise to a flow on
F,. (An analogue of this flow was first introduced by Sambarino [63, 62] in the
setting of projective Anosov irreducible representations of fundamental groups of
closed negatively curved manifolds.)

We then show that this flow is metric Anosov and is a Holder reparameterization
of the Gromov geodesic flow UpI" of I'. Moreover, this flow encodes the spectral radii
of elements of p(T"), i.e. the period of the flow associated to (the conjugacy class of )
an element v € I'islog A(y)(p). (Metric Anosov flows are a natural generalization of

Anosov flows in the setting of compact metric spaces and were studied by Pollicott
[57).)

Theorem 1.10. [GEODESIC FLOW| The action of I' on F, is proper and cocompact.
Moreover, the R action on U,I' = F,/T" is a topologically transitive metric Anosov
flow which is Holder orbit equivalent to the geodesic flow Ugl'.

Theorem 1.10 allows us to make use of the thermodynamic formalism. We show
that if f, is the Holder function regulating the change of speed of U,I' and UgI’,
then ®, = —h(p)f, is a pressure zero function on UoI'. Therefore, we get a mapping

T C(T,m) — H(Ugl),

called the thermodynamic mapping, from C(T', m) into the space H(UoT") of Livsic co-
homology classes of pressure zero Holder functions on UgT'. Given any [p] € C(T', m),
there exists an open neighborhood U of [p] and a lift of T|¢y to an analytic map of
U into the space P(UoI") of pressure zero Holder functions on Upl'. Our pressure
form is obtained as a pullback of the pressure 2-tensor on P(UoI") with respect to
this lift.

Remarks and references: Anosov representations were introduced by Labourie
[41] in his study of Hitchin representations, and their theory was further developed
by Guichard and Wienhard [26]. Benoist [5, 6, 7] studied holonomy maps of strictly
convex projective structures on closed manifolds which he showed were irreducible
representations with transverse projective limit maps, hence projective Anosov.
Sambarino [62, 63, 64] introduced a flow, closely related to our flow, associated
to a representation with transverse projective limit maps and used it to prove the
continuity of the associated entropy on a Hitchin component. Pollicott and Sharp
[58] applied the thermodynamic formalism and work of Dreyer [23] to show that a
closely related entropy gives rise to an analytic function on any Hitchin component.

Our metric generalizes Thurston’s Riemannian metric on Teichmiiller space which
he defined to be the Hessian of the length of a random geodesic. Wolpert [68]
proved that Thurston’s Riemannian metric was a multiple of the more classical
Weil-Petersson metric. Bonahon [11] gave an interpretation of Thurston’s metric in
terms of the Hessian of an intersection function. Burger [16] previously studied the
intersection number for convex cocompact subgroups of rank 1 simple Lie groups
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and proved a strong version of Theorem 1.1 in this setting (see also Kim [37]).
The study of geometric properties of surfaces using the thermodynamic formalism
originated in Bowen [14]. Using a Bowen-Series coding and building on work of
Bridgeman and Taylor [10], McMullen [53] gave a pressure metric formulation of
the Weil-Petersson metric on Teichmiiller space. Bridgeman [9] developed a pres-
sure metric on quasifuchsian space which restricts to the Weil-Petersson metric on
the Fuchsian locus. Our Theorem 1.4 is a natural generalization of Bridgeman’s
work into the setting of projective Anosov representations, while Corollary 1.7 is a
generalization into the setting of general deformation spaces of convex cocompact
representations into PSLy(C).

Corollary 1.8 was established by Ruelle [60] for quasifuchsian representations,
i.e. when I' = m1(S) and G = PSL2(C), and by Anderson and Rocha [2] for
function groups, i.e. when I' is a free product of surface groups and free groups and
G = PSLy(C). Previous work of Tapie [67] implies that the Hausdorff dimension of
the limit set is a C! function on C'-families of convex cocompact representations of
I" into a rank one Lie group G. Tapie’s work was inspired by work of Katok, Knieper,
Pollicott and Weiss [35, 36] who established analytic variation of the entropy for
analytically varying families of Anosov flows on closed Riemannian manifolds. Our
Theorem 1.2 is related to the marked length spectrum rigidity theorem of Dal’Bo-
Kim [21].

Coornaert—Papadopoulos [19] showed that if T is word hyperbolic, then there is
a symbolic coding of its geodesic flow UgI'. However, this coding is not necessarily
one-to-one on a large enough set to apply the thermodynamic formalism. Therefore,
word hyperbolic groups admitting projective Anosov representations represent an
interesting class of groups from the point of view of symbolic dynamics.

Acknowledgements: We thank Bill Goldman, Alex Lubotzky, Francois Ledrap-
pier, Olivier Guichard, Frédéric Paulin, Jean-Francois Quint, Hans-Henrik Rugh,
Ralf Spatzier, Matthew Stover and Amie Wilkinson for helpful discussions. We
thank the referee for many useful comments which improved the exposition. This
research was begun while the authors were participating in the program on Ge-
ometry and Analysis of Surface Group Representations held at the Institut Henri
Poincaré in Winter 2012.
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2. ANOSOV REPRESENTATIONS

In this section, we recall the theory of Anosov representations. We begin by
defining projective Anosov representations and developing their basic properties.
In section 2.3, we will see that any Anosov representation can be transformed, via
post-composition with a Pliicker representation, into a projective Anosov represen-
tation, while in section 2.4 we will study properties of irreducible projective Anosov
representations.
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2.1. Projective Anosov representations. A representation p : I' — SL,,(R)
is projective Anosov if it has transverse projective limit maps and the associated
flat bundle over its Gromov geodesic flow has a contraction property we will define
carefully below.

Definition 2.1. Let I' be a word hyperbolic group and p be a representation of I' in
SL,,(R). We say p has transverse projective limit maps if there exist p-equivariant
continuous maps & : oo’ = RP(m) and 0 : 0o — RP(m)* such that if x # y, then

§(x) ®0(y) = R™.

Conventions: Denote by RP(m) the projective space of R™. We will often identify
RP(m)* with the Grassmannian Gry,_1(R™) of (m — 1)-dimensional subspaces of
R™ via ¢ — ker ¢. The action of SL,,(R) on RP(m)* consistent wth this identifi-

cation is
1

g-p=pog .

We will also assume throughout this paper that our word hyperbolic group does

not have a finite index cyclic subgroup. Since all the word hyperbolic groups we

study are linear, Selberg’s Lemma implies that they contain finite index torsion-free
subgroups.

Gromov [25] defined a geodesic flow UpI" for a word hyperbolic group — that we
shall call the Gromov geodesic flow — (see Champetier [17] and Mineyev [54] for
details). He defines a proper cocompact action of I" on 95T x R which commutes
with the action of R by translation on the final factor. The action of I" restricted to
Dso'? is the diagonal action arising from the standard action of I' on 9o I'. There
is a metric on 9, I'? x R, well-defined up to Holder equivalence, so that I' acts by
isometries, every orbit of the R action gives a quasi-isometric embedding and the
geodesic flow acts by Lipschitz homeomorphisms. The flow on

Uol = 0,.T@ x R
descends to a flow on the quotient
Uol' = 8,3 x R/T.

In the case that M is a closed negatively curved manifold and I = 71 (M), UgI" may
be identified with T'M in such a way that the flow on Uyl is identified with the
geodesic flow on T'M. Since the action of I' on 0,I'? is topologically transitive,
the Gromov geodesic flow is topologically transitive.

If p: T — SL,,(R) is a representation, we let E, be the associated flat bundle
over the geodesic flow of the word hyperbolic group Ugl'. Recall that

E, =Ugl x R™/T
where the action of v € T’ on R™ is given by p(v). If p has transverse projective
limit maps £ and 6, there is an induced splitting of £, as
E,=E¢0
where = and © are sub-bundles, parallel along the geodesic flow, of rank 1 and
m — 1 respectively. Explicitly, if we lift = and © to sub-bundles = and © of the

bundle UoD’ x R™ over Uy, then the fiber of = above (z,y,t) is simply &(z) and
the fiber of © is 6(y).
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The R-action on U;l:‘ extends to a flow {ﬁt}teR on UAO-l:‘ x R™ (which acts trivially
on the R™ factor). The flow {J)t}teR descends to a flow {¢;}+cr on E, which is
a lift of the geodesic flow on Ugl'. In particular, the flow respects the splitting
E,==Z@0.

In general, we say that a vector bundle E over a compact topological space whose
total space is equipped with a flow {¢;}icr of bundle automorphisms is contracted
by the flow if for any metric ||.|| on E, there exists o > 0 such that if v € E, then

61 @)1 < gloll

Observe that if bundle is contracted by a flow, its dual is contracted by the inverse
flow. Moreover, if the flow is contracting, it is also uniformly contracting, i.e. given
any metric, there exists positive constants A and c¢ such that

gt (v)]| < Ae™*J]
for any v € F.

Definition 2.2. A representation p : T' — SL,,(R) with transverse projective
limit maps is projective Anosov if the bundle Hom(0, Z) is contracted by the flow

{wt}tER-

In the sequel, we will use the notation ©* = Hom(©,R). The following alterna-
tive description will be useful.

Proposition 2.3. A representation p : ' — SL,,(R) with transverse projective
limit maps & and 0 is projective Anosov if and only if there exists tg > 0 such that
for all Z € UpT', v € 25 \ {0} and w € Oz \ {0},

Noe @ 1 o]l
T @@ = 2l

Proof. Given a projective Anosov representation p : I' = SL,,,(R) and a metric ||.||
on E,, let tg > 0 be chosen so that

1
198, ()] < §||77||~

foralln e E@O*. If Z € UgI', v € Ez \ {0} and w € Oz \ {0}, then there exists
n € Hom(Oz,Zz) = (E® ©*)z such that n(w) =wv and ||n]| = ||v||/||w]]. Then,

(2)

tbee () I llvll
<Y ()l < 5 || | ==
[[ebro (w)| ol [Jwl]
The converse is immediate. O

Furthermore, projective Anosov representations are contracting on =.

Lemma 2.4. If p: T — SL,,(R) is projective Anosov, then {i;}ier is contracting
on Z.
Proof. Since the bundle = ® ©* is contracted, so is

Q = det(Z® 0*) = 220D @ det(0").

One may define an isomorphism from = to det(©)* by taking w to the map o —
Vol(u A «). Since det(©)* is isomorphic to det(0©*), it follows that €2 is isomorphic
to Z¥™. Thus Z is contracted. O
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It follows from standard techniques in hyperbolic dynamics that our limit maps
are Holder. We will give a proof of a more general statement in Section 6 (see [41,
Proposition 3.2] for a proof in a special case).

Lemma 2.5. Let p be a projective Anosov representation, then the limit maps &
and 0 are Holder.

If v is an infinite order element of I', then there is a periodic orbit of UyI’
associated to . If 4T is the attracting fixed point of v on O, I and v~ is its other
fixed point, then this periodic orbit is the image of (y7,77) x R. Inequality (2)
and Lemma 2.4 applied to the periodic orbit of UpIl' associated to v imply that
p(7) is proximal and that &(yT) is the eigenspace associated to the largest modulus
eigenvalue of p(y). Similarly, £(y7) is the repelling hyperplane of p(v). It follows
that the limit maps ¢ and @ are uniquely determined by p (see also [26, Lemmas
3.1 and 3.3]).

Let L(7)(p) denote the eigenvalue of p(y) of maximal absolute value and let
A(7y)(p) denote the spectral radius of p(7), so A(7)(p) = [L(7)(p)|- If S is a fixed
generating set for I' and v € I', then we let [(vy) denote the translation length of
the action of v on the Cayley graph of I with respect to S; more explicitly, I(v) is
the minimal word length of any element conjugate to . Since the contraction is
uniform and the length of the periodic orbit of Upl' associated to ~ is comparable
to (), we obtain the following uniform estimates:

Proposition 2.6. If p : I' = SL,,(R) is a projective Anosov representation, then
there exists 6 € (0,1) such that if v € T' has infinite order, then L(v)(p) and
(L(y™1)(p))~! are both eigenvalues of p(vy) of multiplicity one and

1
p(7) =L(M)(P)py + my + ———0
N ECES IO
where
e p, is the projection on {(y) parallel to 6(y~),

© 4y =py,
e m,=Ao(1—qy—py) and A is an endomorphism of 0(y~) NO(y+) whose
spectral radius is less than

3" DA (p).
Moreover, we see that p is well-displacing in the following sense:

Proposition 2.7. [DISPLACING PROPERTY] If p : I' — SL,,(R) is a projective
Anosov representation, then there exists constants K >0 and C > 0, and a neigh-
borhood U of py in Hom(T',SL,,(R)) such that that for every v € T and p € U we
have

1
() = C < log(A()(p)) < Kl(v)+C, (3)
Proposition 2.7 immmediately implies:

Proposition 2.8. For every real number T, the set

Rr(p) = {[v] [1og(A(7)(p)) < T}

is finite.
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Remark: Proposition 2.6 is a generalization of results of Labourie [41, Proposition
3.4], Sambarino [63, Lemma 5.1] and Guichard-Wienhard [26, Lemma 3.1]. Propo-
sition 2.7 is a generalization of a result of Labourie [44, Theorem 1.0.1] and a special
case of a result of Guichard-Wienhard [26, Theorem 5.14]. See [22] for a discus-
sion of well-displacing representations and their relationship with quasi-isometric
embeddings.

2.2. Anosov representations. We now recall the general definition of an Anosov
representation and note that projective Anosov representations are examples of
Anosov representations.

We first recall some notation and definitions. Let G be a semi-simple Lie group
with finite center and Lie algebra g. Let K be a maximal compact subgroup of G
and let 7 be the Cartan involution on g whose fixed point set is the Lie algebra of
K. Let a = ag be a maximal abelian subspace contained in {v € g : T7v = —v}.

For a € a, let M be the connected component of the centralizer of exp a which
contains the identity, and let m denote its Lie algebra. Let E) be the eigenspace of
the action of a on g with eigenvalue A\ and consider

‘I‘l+ = @E)\,
n = @E)\,

A<0
so that

g=mon on". (4)

Then n™ and n~ are Lie algebras normalized by M. Let P* the connected Lie
subgroups of G whose Lie algebras are p* = m@n*. Then P and P~ are opposite
parabolic subgroups. We will say that P* is non-degenerate if p™ does not contain
a simple factor of g.

We may identify a point ([X], [Y]) in G/P*xG/P~ with the pair (Ad(X)PT, Ad(Y)P™)
of parabolic subgroups. The pair (Ad(X)P*, Ad(Y)P™) is transverse if their inter-
section Ad(X)PT N Ad(Y)P~ is conjugate to M.

We now suppose that p : I' — G is a representation of word hyperbolic group
Iand €7 : 9., = G/PT and ¢~ : T — G/P~ are continuous p-equivariant maps.
We say that €T and £ are transverse if given any two distinct points z,y € Os T,
T (x) and £ (y) are transverse. The G-invariant splitting described by Equation
(1) then gives rise to bundles over Uol. Let N " and N, , be the bundles over Uol'
whose fibers over the point (x,y,t) are

A€ (y))n" and Ad(E"(@)n".

There is a natural action of I' on N p+ and N , » where the action on the fiber is
given by p(T'), and we denote the quotient bundles over UoI' by N\ and NV. We
may lift the geodesic flow to a flow on the bundles Vf and NV~ which acts trivially
on the fibers.

Definition 2.9. Suppose that G is a semi-simple Lie group with finite center, P™
is a parabolic subgroup of G and I' is a word hyperbolic group. A representation
p: T — G is (G,PT)-Anosov if there exist transverse p-equivariant maps

Y0 = G/PT and € : 0T — G/P~
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so that the geodesic flow is contracting on the associated bundle ./\/pJr and the inverse
flow is contracting on the bundle ./\/,;.

We now recall some basic properties of Anosov representations which were es-
tablished by Labourie, [41, Proposition 3.4] and [44, Theorem 6.1.3], and Guichard-
Wienhard [26, Theorem 5.3 and Lemma 3.1]. We recall that an element g € G is
prozimal relative to P if ¢ has fixed points 27 € G/P* and 2~ € G/P~ so that =
is transverse to z~ and if x € G/PT is transverse to = then lim,, o ¢"(z) = 2.

Theorem 2.10. Let G be a semi-simple Lie group, P a parabolic subgroup, T' a
word hyperbolic group and p: T — G a (G,P™)-Anosov representation.

(1) p has finite kernel, so T is virtually torsion-free.
(2) p is well-displacing, so p(T') is discrete.
(3) If v € T has infinite order, then p(7y) is prozimal relative to PT

In this language, projective Anosov representations are exactly the same as
(SL,,,(R), P*)-Anosov representations where P is the stabilizer of a line in R™.

Proposition 2.11. Let PT be the stabilizer of a line in R™. A representation
p: T = SLu,(R) is projective Anosov if and only if it is (SL,,,(R), PT)-Anosov.
Moreover, the limit maps & and 6 in the definition of projective Anosov representa-
tion agree with the limit maps £ and £~ in the definition of a (SL,, (R), PT)-Anosov
representation.

Proof. 1f p is projective Anosov with limit maps £ and 6, one may identify SL,,(R)/P~
with RP(m) and SL,,(R)/P~ with RP(m)* so that, after letting £+ = £ and £~ = 0,
N} is identified with Hom(©, =) and N is identified with Hom(Z, ©).

The same identification holds if p is (SL;,,(R),P™)-Anosov with limit maps £
and £7. O

2.3. Pliicker representations. Guichard and Wienhard [26] showed how to ob-
tain a projective Anosov representation from any Anosov representation by post-
composing with a Pliicker representation. We first recall the following general
result.

Theorem 2.12. [GUICHARD-WIENHARD [26, Prop. 4.3]] Let ¢ : G — SL(V) be a
finite dimensional irreducible representation. Let x € P(V) and assume that

P={g€G:d(g)(x) =x}
is a parabolic subgroup of G with opposite parabolic Q. If T’ is a word hyperbolic
group, then a representation p : T' — G is (G, P)-Anosov if and only if ¢ o p is
projective Anosouv.
Furthermore, if p is (G,P)-Anosov with limit maps £T and £, then the limit
maps of ¢ o p are given by € = Bo&T and 0 = 3* o &~ where B : G/P — P(V) and
B*: G/Q — P(V*) are the maps induced by ¢.

The following corollary is observed by Guichard-Wienhard [26, Remark 4.12].
We provide a proof here for the reader’s convenience. The representation given in
the proof will be called the Pliicker representation of G with respect to P.

Corollary 2.13. [GUICHARD-WIENHARD]| For any parabolic subgroup P of a semi-
simple Lie group G with finite center, there exists a finite dimensional irreducible
representation « : G — SL(V') such that if T is a word hyperbolic group and p : T — G
is a (G, P)-Anosov representation, then « o p is projective Anosov.
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Moreover, if P is non-degenerate, then ker(a) = Z(G) and o is an immersion.

Proof. In view of Theorem 2.12 it suffices to find a finite dimensional irreducible
representation v : G — SL(V') such that «(P) is the stabilizer (in «(G)) of a line in
V.

Let A*W denote the k-th exterior power of the vector space W. Let n = dimnt =
dimn~ and consider a : G — SL(A™g) given by

a(g) = A" Ad(g).

One may readily check that the restriction of a to V' = (a(G) - A"n™) works.

If P is non-degenerate, then ker(ay ) is a normal subgroup of G which is contained
in P, so ker(a|y) is contained in Z(G) (see [59]). Since Z(G) is in the kernel of the
adjoint representation, we see that ker(aly) = Z(G). Since «|y is algebraic and
Z(G) is finite, it follows that «|y is an immersion. O

If G has rank one, then it contains a unique conjugacy class of parabolic sub-
groups. A representation p : I' — G is Anosov if and only if it is convex cocompact
(see [26, Theorem 5.15]). We then get the following.

We recall that the topological entropy of a convex cocompact representation
p: ' = G of a word hyperbolic group into a rank one semi-simple Lie group is
given by

(o) = Jim log (#{[3] ld(p(x) < T),

where d(p(y)) denotes the translation length of p(v). We obtain the following im-
mediate corollary.

Corollary 2.14. Let G be a rank one semi-simple Lie group, let T' be a word

hyperbolic group and let o : G — SL(V') be the Pliicker representation. There exists

K >0, such that if p: T — G is convex cocompact, then a o p is projective Anosov

and hp)

P

h(aop) = 7

Proof. Let Ag : G — ag be the Jordan projection of G. Since ag is one dimensional,
we can identify it with R by setting Ag(g) = d(g).

Denote by x, € ag the highest (restricted) weight of the representation « (see,

for example, Humphreys [32]). By definition, one has A(a(g)) = xa(d(g)), for every
g € G. Hence, since ag is one dimensional, one has

Ala(p(v))) = Kd(p(v)) (5)

for every vy € I
It follows immediately that

h(aop) = %p)
O

2.4. Irreducible representations. Guichard and Wienhard [26, Proposition 4.10]
proved that irreducible representations with transverse projective limit maps are
projective Anosov (see also [41] for hyperconvex representations).

Proposition 2.15. [GUICHARD-WIENHARD] If T is a word hyperbolic group, then
every irreducible representation p : T' — SL,,(R) with transverse projective limit
maps is projective Anosouv.
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It will be useful to note that if p : T' — SL,,(R) is projective Anosov and
irreducible, then £(05I") contains a projective frame for RP(m). We recall that a
collection of m+1 elements in RP(m) is a projective frame if every subset containing
m elements spans R™. We first prove the following lemma.

Lemma 2.16. Letp : T' — SL,,,(R) be a representation with a continuous p-equivariant
map & : Dol — RP(m), then the preimage E~H(V) of a vector subspace V. C R™ is
either OsoI' or has empty interior on O L.

Proof. Choose {z1,...,2p} C 01 so that {{(x1),...,&(xp)} spans the vector sub-
space (£(0xTI")) spanned by &(0xT).
Suppose that £1(V) = {z € 0..I" : £(x) € V} has non-empty interior in 9T
Choose v € T so that v~ & {x1,...,7,} and v belongs to the interior of £~1(V).
Since y"*(z;) — T for every ¢ € {1,...,p}, if we choose n large enough, then
4™(z;) is contained in the interior of € ~1(V), so £(y"x;) € V. Since {£(y™(x1)), ..., (7™ (xp))}
still spans (£(0xT)), we see that (£(0xT")) C V, in which case E71(V) = 0. O

The following generalization of the fact that every irreducible projective Anosov
representation admits a projective frame will be useful in Section 11.

Lemma 2.17. Let p; : I' — SL,(R) and p2 : T — SL,,(R) be representa-
tions with continuous equivariant limit maps & and & such that dim (& (0xT)) =
dim (§2(0-cI")) = p. Then there exist p+ 1 distinct points {zo,...,xp} in Ol such
that

{&(x0),- .- & (xp)} and {&2(x0), - .., &2 (p)}
are projective frames of (§1(0x0T)) and (£2(0scT)) respectively.

Proof. We first proceed by iteration to produce {z1,. .., z,} so that {&i(z1), ..., & (zp)}
and {&a2(x1), ..., &2(xp)} generate
V ={(&(0T)) and W = (£(001)) .
Assume we have found {x1, ..., 2} so that {& (z1), ..., & (xx)  and {&(x1), ..., & (zk)}
are both linearly independent. Define
Vi = ({&1(01), . &aan)}) and Wi = ({&x(a1), .. Ea(an)})
By the previous lemma, if k < p, then & *(V4) and & ' (Wy) have empty interior,

so their complements must intersect. Pick
e €& (Vi) N & (Wa)"

This process is complete when k = p.
It remains to find xy. For each ¢ =1,...,p, let

Ul = ({&(z1), - &)} \ {&(z)})
and

U7 = ({&(21),..., &2(zp)} \ {&2(2)}) -

Then, choose
xo € mffl(Uil)c né(U7)°.
One easily sees that {xo,...,z,} has the claimed properties. O

If p: T — SL,,(R) is projective Anosov and irreducible, then (£(0,.I")) = R™
(since (£(0s0T")) is p(T')-invariant), so Lemma 2.17 immediately gives:
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Lemma 2.18. If p : T' — SL,,,(R) is an irreducible projective Anosov representa-
tion with limit maps & and 0, then then there exist {xo,...,Tm} C Ol so that
{&(x0), ..., &(am)} is a projective frame for RP(m).

We will also need the following lemma which was explained to us by J.-F. Quint.

Lemma 2.19. [QUINT| If A is an irreducible subgroup of SL,,(R) that contains
a prozimal element, then the Zariski closure G of A is a semi-simple Lie group
without compact factors whose center Z(G) C {£I}.

Proof. Since G acts irreducibly on R™, it is a reductive group. Moreover, since G
contains a proximal matrix, one easily sees that attracting lines of proximal matrices
in G span R™, and that each attracting line of a proximal matrix in G is invariant
under Z(G). Therefore, Z(G) C {1}, so G is a semi-simple Lie group.

Let K be the maximal normal connected compact subgroup of G, and let H be
the product of the non-compact Zariski connected, simple factors of G. Then H and
K commute and HK has finite index in G.

Consider now a proximal element g € G. Replacing g by a large enough power,
we can assume that g = hk for some h € H and k € K. Since all eigenvalues of k
have modulus 1 and k£ and h commute, we conclude that h is proximal. So we can
assume that g € H.

Since g and K commute, the attracting line of ¢ is fixed by K, and, since K is
connected, each vector of this attracting line is fixed by K. Let W be the vector
space of K-fixed vectors on R™, then W is G-invariant , since K is normal in G, and
nonzero. Since G is irreducible, W = R™ and so K = {I}. O

Proposition 2.6 and Lemma 2.19 together have the following immediate conse-
quence.

Corollary 2.20. Let p : T' — SL,,,(R) be an irreducible projective Anosov repre-
sentation, then the Zariski closure G, of p(I') is a semi-simple Lie group without
compact factors such that Z(G,) C {£I}.

2.5. G-generic representations. Let G be a reductive subgroup of SL,,(R). We
recall that an element in G is generic if its centralizer is a maximal torus in G. We
say that a representation p : I' — SL,,,(R) of T' is G-generic if p(T') C G and the

Zariski closure p(I') ~ of p(T") contains a G-generic element.
We will need the following observation.

Lemma 2.21. If G is a reductive subgroup of SL,,,(R) and p : I' — G is a G-generic
representation, then there exists v € I' such that p(7y) is a generic element of G.

Proof. We first note that the set of non-generic elements of G is Zariski closed in
G, so the set of generic elements is Zariski open in G. Therefore, if the Zariski
closure of p(T") contains generic elements of G, then p(T') must itself contain generic
elements of G. O

3. THERMODYNAMIC FORMALISM

In this section, we recall facts from the thermodynamic formalism, as developed
by developed by Bowen [12, 13], Parry—Pollicott [55], Ruelle [61] and others, which
we will need in our work. In section 3.5, we will describe a variation of a construction
of McMullen [53], which produces a pressure form on the space of pressure zero
functions on a flow space. Our pressure metric will be a pull-back of this form.
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3.1. Holder flows on compact spaces. Let X be a compact metric space with
a Holder continuous flow ¢ = {¢; }ier without fixed points.

3.1.1. Flows and parametrisations. Let f: X — R be a positive Holder continuous
function. Then, since X is compact, f has a positive minimum and for every z € X,
the function k¢ : X x R — R, defined by k¢(z,t) = fg f(@sz)ds, is an increasing
homeomorphism of R. We then have a map ay : X x R — R that verifies

ap(z,rf(z,t) = ke, ap(z,1) =t, (6)

for every (z,t) € X x R,
The reparametrization of ¢ by f, is the flow ¢/ = {(b{}teR on X, defined by
¢ (z) = Pay(z,) (), for all t € R and = € X.

3.1.2. Livsic-cohomology classes. Two Holder functions f,g : X — R are Livsic-
cohomologous if there exists V : X — R of class C! in the flow’s direction such
that

f@) —gle) = 5| V(gu(x)).

Then one easily notices that:

(1) If f and g are LivSic cohomologous then they have the same integral over
any ¢-invariant measure, and

(2) If f and g are both positive and Liviic cohomologous, then the flows ¢f
and @9 are Holder conjugate.

3.1.3. Periods and measures. Let O be the set of periodic orbits of ¢. If a € O then
its period as a {¢] } periodic orbit is

p(a)
/ F(de())ds
0

where p(a) is the period of a for ¢ and x € a. In particular, if ga is the probability
measure invariant by the flow and supported by the orbit a, and if

then
p(a)
(6l ) = / F(¢u(2))ds and p(a) = (1)

In general, if p is a ¢-invariant measure on X and f : X — R is a Holder function,
we will use the notation

wlp)= [ fan
X
Let 4 be a ¢-invariant probability measure on X and let ¢/ be the reparametriza-
tion of ¢ by f. We define f.u by
—~ 1

fou= Wf-/h
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The map p +— ﬂ induces a bijection between ¢-invariant probability measures
and ¢f-invariant probability measures. If §/ is the unique ¢ ¢ invariant probability
measure supported by a, then §/ = f.6,. In particular, we have

(31g) = el @

a
(0al )

3.1.4. Entropy, pressure and equilibrium states. If p is a ¢-invariant probability
measure on X, then we denote by h(¢, u), its metric entropy. The Abramov formula
[1] relates the metric entropies of a flow and its reparameterization:

—~ 1
(O F) = T (3)
Let M? denote the set of ¢-invariant probability measures. The pressure of a
function f : X — R is defined by

P(6,f)= sup (h<¢,m>+ /. fdm). 9)

memMe
In particular,
htop(¢) = P(¢7 O)

is the topological entropy of the flow ¢.
A measure m € M? on X such that

P(6, f) = h(é,m) + /X fdm,

is called an equilibrium state of f.
An equilibrium state for the function f = 0 is called a measure of mazximal
entropy.

REMARK: The pressure P(¢, f) only depends on the LivSic cohomology class of
I

The following lemma from Sambarino [63] is a consequence of the definition and
the Abramov formula.

Lemma 3.1. (Sambarino [63, Lemma 2.4]) If ¢ is a Hélder continuous flow on a
compact metric space X and f : X — R is a positive Hélder continuous function,
then

P(¢,—hf)=0
if and only if h = hiop(¢”).
Moreover, if h = hiop(¢') and m is an equilibrium state of —hf, then f/r\n s a
measure of mazimal entropy for the reparameterized flow ¢7 .

3.2. Metric Anosov flows. We shall assume from now on that the flow {¢;}icr
is a topologically transitive metric Anosov flow on X.

We recall that a flow {¢}+cr on a metric space X is topologically transitive if
given any two open sets U and V in X, there exists ¢t € R so that ¢:(U) NV is
non-empty.

Let X be metric space. Let £ be an equivalence relation on X. We denote by L,
the equivalence class of x and call it the leaf through x, so that we have a partition
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of X into leaves
X =]z,
yey
where Y is the collection of equivalence classes of L. Such a partition is a lamination
if we can for every x in X, an open neighbourhood O, of z, two topological spaces U
and K, a homeomorphism v, = (v},12) called a chart from O, to U x K satisfying

T T
the following conditions
o forall z,w € O, NO,,

vp(w) = v,(2) = v, (w) =v,(2),
e we have that w £ z if and only if there exists a sequence w;, i € {1,...n}
with w; = w and w,, = z, such that w;11 € O,,, and V}Ui (w;) = V}Ui (Wig1)-

A plague open set in the chart corresponding to v is a set of the form v (O x {z0})
where & = v(yo, 20) and O is an open set in U containing yo. The plague topology
on L, is the topology generated by the plaque open sets. A plaque neighborhood of
x is a neighborhood for the plaque topology on L.

We say that two laminations £ and £’ define a local product structure, if for
any point x in X there exist plaque neighborhoods U and U’ of x in £ and L’
respectively, and a map v : U x U" — X, which is an homeomorphism onto an open
set of X, such that v is both a chart for £ and for £’.

Assume now we have a flow {¢; }+cr on X. If £ is a lamination invariant by {¢;},
we say that L is transverse to the flow, if for every x in X, there exists a plaque
neighborhood U of x in L,, a topological space K, € > 0, and a chart

v:UxK x(—€€) = X,

such that
or(v(u, ky8)) = v(u, k, s +1t).

If £ is tranverse to the flow, we define a new lamination, called the central lamina-
tion with respect to £, denoted by L€, by letting = L y if and only if there exists s
such that ¢s(x) Ly.

Finally, a {¢;} invariant lamination £ is contracted by the flow, if there exists
to > 0 such that for all x € X, there exists a chart v, : U x K — V of an open
neighborhood V' of z, such that if

z=vg(u, k), and y=v,(v, k),
then for all ¢t > ¢y
1
A(60(2), 6:) < 2d(z.1).

Definition 3.2. [METRIC ANOSOV FLOW]| A flow {¢t}ter on a compact metric
space X is metric Anosov, if there exist two laminations, LT and L™, transverse
to the flow, such that

(1) (L£+, L) defines a local product structure,

(2) (L™, L) defines a local product structure,

(3) LT is contracted by the flow, and

(4) L~ is contracted by the inverse flow.
Then LT, L=, L€, L7¢ are respectively called the stable, unstable, central stable
and central unstable laminations.
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REMARK: In the language of Pollicott [57], a metric Anosov flow is a Smale flow:
the local product structure of (£, £7¢) is what he calls the map

() {(z,y) € X x X : d(x,y) <e} = X.

3.2.1. Livsic’s Theorem. Livsic [49] shows that the Livsic cohomology class of a
Holder function f: X — R is determined by its periods:

Theorem 3.3. Let f : X — R be a Hdlder continuous function, then (§,|f) =0
for every a € O if and only if f is Livsic cohomologous to zero.

3.2.2. Coding. We shall say that the triple (3, 7,7) is a Markov coding for ¢ if ¥ is
an irreducible two-sided subshift of finite type, the maps 7 : ¥ — X and r : ¥ — R%.
are Holder-continuous and verify the following conditions: Let o : ¥ — X be the
shift, and let 7 : ¥ x R — ¥ x R be the homeomorphism defined by

Pz, t) = (ox,t — r(x)),
then
i) the map IT : ¥ x R — X defined by II(z,t) = ¢¢(mw(x)) is surjective and
r-invariant,
ii) consider the suspension flow 0" = {0} }+cr on (X x R)/#, then the induced
map IT: (X x R)/# — X is bounded-to-one and, injective on a residual set

which is of full measure for every ergodic invariant measure of total support
of 0.

REMARK: If a flow ¢ admits a Markov coding, then every reparametrization ¢/
of ¢ also admits a Markov coding, simply by changing the roof function r.

We recall, see Remark 3.2, that a metric Anosov flow is a Smale flow. One then
has the following theorem of Bowen [12, 13] and Pollicott [57].

Theorem 3.4. A topologically transitive metric Anosov flow on a compact metric
space admits a Markov coding.

3.3. Entropy and pressure for Anosov flows. The thermodynamic formalism
of suspensions of subshifts of finite type extends thus to topologically transitive
metric Anosov flows. For a positive Holder function f : X — Ry and T € R, we
define

Ry(f) ={a € O|{blf) <T}.
Observe that Ry (f) only depends on the cohomology class of f.

3.3.1. Entropy. For a topologically transitive metric Anosov flow Bowen [12] (see
also Pollicott [57]) showed:

Proposition 3.5. The topological entropy of a topologically transitive metric Anosov
flow & = {@+}ter on a compact metric space X is finite and positive. Moreover,

hop(6) = Jim ~logt {a €O pla) < T},

In particular, for a nowhere vanishing Holder continuous function f,

hy = Jim o (Rr(f) = huop(@))

is finite and positive.
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3.3.2. Pressure. The Markov coding may be used to show the pressure of a Holder
function g : X — R is finite and that there is a unique equilibrium state of g. We
shall denote this equilibrium state as my.

Theorem 3.6. [BOWEN-RUELLE [15],POLLICOTT [57]] Let ¢ = {¢pi}ier be a
topologically transitive metric Anosov flow on a compact metric space X and let
g : X — R be a Holder function, then there exists a unique equilibrium state mg
for g. Moreover, if f : X — R is a Holder function such that my = mg, then f —g
is Livsic cohomologous to a constant.

The pressure function has the following alternative formulation in this setting
(see Bowen—Ruelle [15]):

1
= 1 — <5a‘g>
P(¢,g) = Jim 7 log EZR (1)6 ' (10)
a€Rp

3.3.3. Measure of maximal entropy. We have the following equidistribution result
of Bowen [12] (see also Pollicott [57]).

Theorem 3.7. A topologically transitive metric Anosov flow ¢ = {d1}er on a
compact metric space X has a unique probability measure pgy of mazximal entropy.
Moreover,

1 —~
e = lim | ——— Oa | - 11
* 7 e | BR7(1) ae;(l) (11)

The probability measure of maximal entropy for ¢ is called the Bowen—Margulis
measure of ¢.

3.4. Intersection and renormalised intersection.

3.4.1. Intersection. Let ¢ = {d+}+er be a topologically transitive metric Anosov
flow on a compact metric space X. Consider a positive Holder function f : X — R
and a continuous function g : X — R. We define the intersection of f and g as

I(f,9) = / ?duw,

where /145 is the Bowen-Margulis measure of the flow ¢f. We also have the following
two alternative ways to define the intersection

— jm 1 (0alg)
I(f7 g) - T1—>oo uRT(f) ae;(f) <5a|f> (12)

f g dm,hff
0) = g (13)
where hy is the topological entropy of ¢f, and m_y, ;.7 is the equilibrium state of
—hy.f. The first equality follows from Theorem 3.7 and Equation (7), the second
equality follows from the second part of Lemma 3.1.
Since (d,|f) depends only on the Livsic cohomology class of f and (d,|g) depends
only on the Livsic cohomology class of g, the intersection I(f,g) depends only on
the Livsic cohomology classes of f and g.
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3.4.2. A lower bound on the renormalized intersection. For two positive Holder
functions f,g : X — Ry define the renormalized intersection as

I(f.9) = ,’j—jl(f, 9),

where hy and hy are the topological entropies of ¢7 and ¢9. Uniqueness of equilib-
rium states together with the definition of the pressure imply the following propo-
sition.

Proposition 3.8. If ¢ = {¢: }ier is a topologically transitive metric Anosov flow
on a compact metric space X, and f : X — Ry and g : X — Ry are positive Holder
functions, then

I(f.9) 2 1.
Moreover, J(f,g) =1 if and only if hyf and hgg are Livsic cohomologous.

Proof. Since P(¢, —hyg) = 0,

hg/gdm > h(¢p,m)

for all m € M®? and, by Theorem 3.6, equality holds only for m = M_p,q, the
equilibrium state of —h,g. Applying the analogous inequality for m_p, s, together
with Abramov’s formula (8) and Lemma 3.1, one sees that

hyg /gdm—hf.f > h(p,m_p,.5) = hf/fdm—hf.fa

which implies that J(f,g) > 1.
If J(f,9) = 1, then m_p, 4 = m_p,; and thus, applying theorem 3.6, one sees
that hyg — hyf is LivSic cohomologous to a constant c. Thus,

0= P((bv _hgg) - P((b? _hff - C) = P((bv _hff) —Cc= —¢C.
Therefore, hyg and hyf are LivSic cohomologous. O
3.5. Variation of the pressure and the pressure form. McMullen [53] intro-
duced a pressure metric on the space of Livsic cohomology classes of pressure zero
Holder functions on a shift space . In this section, we use his construction to

produce a pressure form, and associated semi-norm, on the space of pressure zero
Holder functions on our flow space X.

3.5.1. First and second derivatives. For g a Holder continuous function with mean
zero (i.e. [ g dmy =0), we define the variance of g with respect to f as

- 2
Var(g,my) = lim i/ (/0 g(gbs(x))dS) dmy(z),

T—oo T

where m; is the equilibrium state of f. Similarly, for two mean zero Hélder con-
tinuous functions g and h, we define the covariance of g and h with respect to f

T T
Covlg. humy) = lim 7. | ( / g<¢s<w>>ds> ( / h<¢>s<x>>ds> dmy(z).
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Since my is invariant with respect to flow ¢;, we may rewrite this as

T
Cov(g, hmy) = lim [ g() ( /. h<¢s<x>>ds> dimy ().

We shall omit the background flow in the notation of the pressure function and
simply write

P() =P(9,).
Proposition 3.9. (PARRY-PoLLICOTT [55, Prop. 4.10,4.11], RUELLE [61]) Sup-
pose that ¢ = {¢+ }rer s a topologically transitive metric Anosov flow on a compact
metric space X, and f: X = R and g : X — R are Hélder functions. If my is the
equilibrium state of f, then
(1) The function t — P(f + tg) is analytic,
(2) The first derivative is given by

OP(f +tg) :/gdm
a | I
(3) If [ gdmys =0 then
PP(f+tg)|
— » = Var(g,my),

(4) If Var(g,my) = 0 then g is Livsic cohomologous to zero.

3.5.2. The pressure form. Let C"(X) be the set of real valued Holder continuous
functions on X. Define P(X) to be the set of pressure zero Hélder functions on X,
ie.

P(X)={2ecC"(X):P(®)=0}.
The tangent space of P(X) at @ is the set

TP (X) = kerdeP = {g cCM(X)| /gqu, = o}

where mg is the equilibrium state of ®. Define the pressure semi-norm of g € TeP(X)

as
2 V&I‘(g, m@)
R
me
One has the following computation.

Lemma 3.10. Let ¢ = {d1}ier be a topologically transitive metric Anosov flow

on a compact metric space X. If {®4}ie(—1,1) is a smooth one parameter family

contained in P(X), then

. ‘.I.)() qu>

ol = J ®odma, °.

0l = g

Proof. As P(®;) = 0 by differentiating twice we get the equation
D2P((I)0)((i)0, (1)0) + DP((I)0)((I)0) =0= Var(fbo, m<p0) + /éodﬂ’b@o.

Thus . ..
Var(fbo,mq>) o fq)o dT)’L.:p0

fq)o qu>0 N fq)o qu’ol

@0l =



24 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

We then have the following relation, generalizing Bonahon [11], between the
renormalized intersection and the pressure metric.

Proposition 3.11. Let ¢ = {¢+}ter be a topologically transitive metric Anosov
flow on a compact metric space X. If {fy : X — Ry }ie(—1,1) 95 a one-parameter
family of positive Hélder functions and ®, = —hy, f; for allt € (—1,1), then
82
a2

I(fo, fr) = ||®o]/p-
0

t=

Proof. By Equation (13) and the definition of the renormalised intersection, we see
that

f (I)t qu>0
J(fo, ft) = 57—
(fo, ft) T 0 dima,
Differentiating twice and applying the previous lemma, one obtains
(92 f (.I.)Q qu> .
— J =0 = |||
o2 o (fovft) f(I)O qu)() H OHP
which completes the proof. 0

So, the pressure semi-norm arises naturally from the pressure form p which is
the symmetric 2-tensor on TP (X) given by the Hessian of Jg = J(®, ). One may
compute that if f, g € TeP(X), then

plf.g) = - S50 10e)

f(I)dm.:p

3.6. Analyticity of entropy, pressure and intersection. We now show that
pressure, entropy and intersection vary analytically for analytic families of positive
Holder functions.

Proposition 3.12. Let ¢ = {¢1}ier be a topologically transitive metric Anosov
flow on a compact metric space X. Let {f, : X — R}luep and {g, : X — R}yen
be two analytic families of Holder functions. Then the function

ur— P(fn)

is analytic. Moreover, if the family {fu}uep consists of positive functions then the
functions

are both analytic.

Proof. Since the pressure function is analytic on the space of Holder functions (see
Parry-Pollicott [55, Prop. 4.7] or Ruelle [61, Cor. 5.27]) the function u +— P(fy,) is
analytic.
Since the family {f,}uep consists of positive functions, Proposition 3.9 implies
that
d

d
—|  P(-tf,) =
i, (=tfu)

! . P(—hyfu—(t—hy)fu) = —/fudm,hufu < 0.

Thus an application of the Implicit Function Theorem yields that u — h, is ana-
lytic.
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We also get that

(uavat) = P(_thU+tgv)7

At

is analytic. But, applying Proposition 3.9 again,
d
dt

P(_hufu +tgv) = /gv dm—hufu'
t=0

Thus the function (u,v) — [ g, dm_p, s, is analytic. Similarly (taking g, = fu.),
the function w +— [ f, dm_y,y, is analytic. Thus, we get, by Equation (13) that

— f gvdmfhufu

(u,v) = I(fu, 90) = ff dm_n, s )

is analytic.

4. THE GEODESIC FLOW OF A PROJECTIVE ANOSOV REPRESENTATION

In this section, we define a flow (U,T', {¢: }+cr) associated to a projective Anosov
representation p : I' = SL,,,(R). We will show that U,I" is a Holder reparameteriza-
tion of the geodesic flow UpI' of the domain group I', so it will make sense to refer
to U,I" as the geodesic flow of the representation.

Let F be the total space of the bundle over

RP(m)® =RP(m) x RB(m)* \ {(U,V) | U ¢ V},
whose fiber at the point (U, V') is the space
MU, V) ={(u,v) [ueU, veV, (u) =1}/ ~,

where (u,v) ~ (—u,—v) and RP(m)* is identified with the projective space of the
dual space (R™)*. Notice that u determines v, so that F' is an R-bundle. One may
also identify M(U, V') with the space of norms on U.

Then F' is equipped with a natural R-action, given by

(U, V, (u,v)) = (U, V, (e'u, e~ "v)).

If p: T — SL,(R) is a projective Anosov representation and £ and 6 are the
associated limit maps, we consider the associated pullback bundle

Fy=(&0)F

over 9, which inherits an R action from the action on F. The action of I on
oo extends to an action on E,. If we let

Ul = F,/T,

then the R-action on F, descends to a flow {¢:}+cr on U,I', which we call the
geodesic flow of the representation.

Proposition 4.1. [THE GEODESIC FLOW| If p : T' — SL,,(R) is a projective Anosov
representation, then the action of I' on F), is proper and cocompact. Moreover, the
flow {¢i}ier on U,I' is Hélder conjugate to a Hélder reparameterization of the
Gromov geodesic flow on Ugl' and the orbit associated to [7], for any infinite order
primitive element v € T', has period A(p)(7y).
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We produce a I'-invariant Holder orbit equivalence between UAO-l:‘ and [}, which
is a homeomorphism. Recall that UoI’ = 9, I'® x R and that Upl'/T = UgT'. Since

the action of I' on Ugl is proper and cocompact, it follows immediately that U,I’
is Holder conjugate to a Holder reparameterization of the Gromov geodesic flow on
Uol.

Proposition 4.2. If p: T' = SL,,,(R) is a projective Anosov representation, there
ezists a I'-equivariant Holder orbit equivalence
v: lj;f — F,
which is a homeomorphism.
Let E, be the flat bundle associated to p on Ugl'. Recall that E, splits as
, =Z2@0.

Let {9+ }+cr be the lift of the geodesic flow on UoI to a flow on E,. We first observe
that we may produce a Holder metric on the bundle = which is contracting on all
scales.

Lemma 4.3. There exists a Holder metric 7° on the bundle = and B > 0 such that
for all t > 0 we have,

1/):(7'0) < e B0,
Proof. Let 7 be any Holder metric on =. Since p is projective Anosov, Lemma 2.1
implies that there exists tg > 0 such that
1

¢f0(7)<17-

Choose 3 > 0 so that 2 < /%0 < 4 and, for all s, let 7, = 1*(7). Let

S
to
7'0:/ o7, ds.
0

Notice that 7¥ has the same regularity as 7. If ¢ > 0, then

to
(%) = o1y 5 ds
0

t+to
= eiﬁt/ ePir, du. (16)
t

Now observe that

t+to t+to ¢
/ G du = 7° +/ Pl du —/ ePir, du
t t[% 0
= 70 +/ ey (ePtoyy (1) — 7) du (17)
0
But 5
to
eﬂtowfo(T) < 64 T < T.

Thus

t+to
/ M, du < 70,
t

and the result follows from Inequality (16). O
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Proof of Proposition /.2 Let 7° be the metric provided by Lemma 4.3 and let /3
be the associated positive number. Let Z denote the line bundle over 9, I'® x R
which is the lift of 2. Notice that 7° lifts to a Holder metric 7° on Z. Our Holder
orbit equivalence

7:0:T® xR — F,
will be given by
v(z,y,t) = (2,9, (u(z, y,t),v(z,y,1))) ,

where 70, (u(@,y,t)) = 1 and 7{,  , is the metric on the line {(2) induced by

the metric GO by regarding &(x) as the fiber of Z over the point (z,y,t). The fact
that ;7% < 79 for all ¢ > 0 implies that # is injective. Since 7° is Holder and
T'-equivariant, v is also Holder and I'-equivariant.

It remains to prove that r is proper. We will argue by contradiction. If o is
not proper, then there exists a sequence {(Zn,Yn,tn) nen leaving every compact
subset of T x R, such that {#(2p, Yn, tn) }nen converges to (z,y, (u,v)) in F,.
Letting 7(Zn, Yn, tn) = (T, Yn, (tn, vy)), we see immediately that

lim z, =z, lim y, =y, and lim (u,,v,) = (u,v).
n—oo n—oo n—roo

Writing ﬂ(xnu Yn, 0) = (J,'n, Yn, (’&nu ﬁn)) and ﬂ(xu Y, 0) = (,T, Y, (’&, 'f))), we obtain, by
the continuity of the map v,

lim (i, 0n) = (4, 9).

n—oo
If ¢t > 0, then
7:0 U): (7:01 0 )
~(m’y’t) = ~0( v < e Pt
T(wxyxo) T(I7y70)
In particular,
wlwn) | s, (18)
(v ] din)

Without loss of generality, either t, — oo or ¢, — —oo. If t, — oo, then by
Inequality (18),
0= fim (U1 n)
n—o00 (v | Uy)
on the other hand,
li {21Un) _ 0]
t=o0 (v ] dn) (v ]a)
We have thus obtained a contradiction. Symmetrically, if ¢,, — —oo, then

i L) (ol
P T T 7

which is again a contradiction.

The restriction of 7 to each orbit {(z,y)} x R is a proper, continuous, injection
into the fiber of F, over (x,y) (which is also homeomorphic to R). It follows that
the restriction of 7 to each orbit is a homeomorphism onto the image fiber. We
conclude that 7 is surjective and hence a proper, continuous, bijection. Therefore,
U is a homeomorphism. This completes the proof of Proposition 4.2.

In order to complete the proof of Proposition 4.1, it only remains to compute the
period of the orbit associated to [y] for an infinite order primitive element v € T.
Since p is projective Anosov, Proposition 2.6 implies that p(v) is proximal, &(yT)
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is the attracting line and 0(y~) is the repelling hyperplane. If v € £(yT) and
v € 0(y~) one sees that

p(7)(u) = L(7)(p) u and p(y)(v) = v.

Thus, (v*,77, (u,v)) and

1

(WJF, 7, L) (p)u, m?}) = ¢log(A('y)(p))(7+7 7, (u,v))

project to the same point on U,I'. (Recall that

(L i) ~ (Lo

—
oK
in M(£(yT),0(y7)).) Since ~ is primitive, this finishes the proof. O

5. THE GEODESIC FLOW IS A METRIC ANOSOV FLOW

In this section, we prove that the geodesic flow of a projective Anosov represen-
tation is a metric Anosov flow:

Proposition 5.1. [ANosov] If p : T' — SL,,,(R) is a projective Anosov repre-
sentation, then the geodesic flow (U,T',{¢:}icr) is a topologically transitive metric
Anosov flow.

The reader with a background in hyperbolic dynamics may be convinced by the
following heuristic argument: essentially the splitting of an Anosov representation
yields a section of some (product of) flag manifolds and the graph of this section
should be thought as a Smale locally maximal hyperbolic set; then the result follows
from the “fact” that the restriction of the flow on such a set is a metric Anosov
flow. However, the above idea does not exactly work, and moreover it is not easy
to extricate it from the existing literature in the present framework. Therefore, we
give a detailed and ad-hoc construction, although the result should be true in a
rather general setting.

The topological transitivity of (U,I", {¢¢ }+er) follows immediately from the topo-
logical transitivity of the action of I' on 95, I'2. We define a metric on the geodesic
flow in Section 5.1, introduce the stable and unstable leaves in Section 5.2, explain
how to control the metric along the unstable leaves in Section 5.3 and finally pro-
ceed to the proof in Section 5.4. A more precise version of Proposition 5.1 is given
by Proposition 5.7.

5.1. The geodesic flow as a metric space. Recall that F' is the total space of
an R-bundle over RP(m)?) whose fiber at the point (U, V) is the space
MU, V) ={(u,v) J[ue U, veV, (vuy=1}/~.

Since RP(m)? < RP(m) x RP(m)*, any Euclidean metric on R™ gives rise to a
metric on F' which is a subset of

RP(m) x RP(m)* x ((Rm X (Rm)*) /+1).
The metric on F' pulls back to a metric on F,. A metric on F, obtained by this

procedure is called a linear metric. Any two linear metrics are bilipschitz equivalent.
The following lemma allows us to use a linear metric to study FJ,.
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Lemma 5.2. There exists a I'-invariant metric dg on F, which is locally bilipschitz
equivalent to any linear metric.

The I'-invariant metric dy descends to a metric on U,I' which we will also call
do and is defined for every x and y in F}, by

do(?T(.’L‘), m(y)) = inf (‘Ta W(y))v
yel
where 7 is the projection F, — U,I.

Proof. We first notice that all linear metrics on F), are bilipschitz to one another,
so that it suffices to construct a metric which is locally bilipschitz to a fixed linear
metric d.

Let V' be an open subset of F}, with compact closure which contains a closed
fundamental domain for the action of I' on F,. Since the action of I' on F), is
proper, {V, = (V) },er is a locally finite cover of F,,. Let {dy = v*d}cr be the
associated family of metrics on F),. Since each element of I' acts as a bilipschitz
automorphism with respect to any linear metric, any two metrics in the family
{dy = v*d} er are bilipschitz equivalent.

We will use this cover and the associated family of metrics to construct a
I-invariant metric on F,. A path joining two points x and y in F, is a pair of
tuples

P = ((207 St Zﬂ)v (’707 cee ;'Yn))y

where (29,...,2,) is an n-tuple of points in F, and (7o,...,7Vs) is an n-tuple of
elements of I' such that

erx=zxcV,andy=2,€V,,
o foralln>i>0,z€V,,_, NV,,.

The length of a path is given by

n—1
1
UP) = D) (Z dny, (2 zit1) + dwﬂ(zi, Zi-i-l))
i=0

We then define
do(z,y) = inf{¢(P) | P joins x and y}.
It is clear that dp is a I'-invariant pseudo metric. It remains to show that dy is a

metric which is locally bilipschitz to d.
Let z be a point in F,. Then there exists a neighborhood Z of z so that

A={v|VyNnZ#0},
is a finite set. Choose a@ > 0 so that
Uz ldy(z2)<a} c 2
yEA
Let K be chosen so that if o, 3 € A, then d, and dg are K-bilipschitz. Finally, let
Q@
W= m {:v | dy(z,2) < 10—K}
yEA

By construction, if  and y belong to W, then for all v € A,

(@]
dy(z,y) < K
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Let = be a point in W. Let P = ((20,.-.,21), (Y0,---,7n)) be a path joining x
to a point y.
If there exists j such that v; &€ A, then
11-; 1

é(P) 2 o Z d'yl Zi— 1;21

1 (i

1

WV

dv] 1 217 Zz—i—l))

=0

WV

_1\%0, %5 ) _K (dw 1(Z ZJ)) - dwf1(20=z))

1 « «

> (a =)

2K 10K 5K’

If v; € A for all j, then the triangle inequality and the definition of K immedi-
ately imply that for all v € A,

(20)

1
UP) > Edv(x,y). (21)
Inequalities (20) and (21) imply that
1. «
do(z,y) = 7 inf (g,dy(x,y)) >0, (22)
hence dp is a metric. Moreover, if z,y € W, then by inequalities (22) and (19),
1
do(e,) > o (2,3). (23)
By construction, and taking the path Py = ((z,y), (7,7)) with v in A, we also get
do(z,y) < £(Po) = dy(,y). (24)

As consequence of inequalities (23) and (24), do is bilipschitz on W to any d. with
v € A.
Since d is bilipschitz to d, for any v € A, we see that dy is bilipschitz to d on W.
Since z was arbitrary, it follows that dj is locally bilipschitz to d. O

5.2. Stable and unstable leaves. In this section, we define the stable and un-
stable laminations of the geodesic flow F,. Let

Z = (x()vy()a (U‘Oa UO))
be a point in Fj,.
(1) The unstable leaf through Z is
E} = {(x7y07 (U,Uo)) | S 8OOF, u e 5(.’[]), <’U0|’LL> = 1}
The central unstable leaf through Z is
[';c = {(@ 90, (w,v)) [ 2 € x0T, (u,v) € M(&(2),0(v0))}
= Ja(Lz).

teR
(2) The stable leaf through Z is

E} = {(l’o,y, (’U,Q,’U)) | RS aOol—‘a v e e(y)v <’U|’U,0> = 1}
The central stable leaf through Z is
£y = {(z0,y,(u,0)) | y € DT, (u,0) € M(£(20), 0(y))}
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= U (L)

teR

Observe that £} is homeomorphic to d.I' \ {z¢} and £, is homeomorphic to

Fool"\ {y0}-

The following two propositions are immediate from our construction.
Proposition 5.3. [INVARIANCE| If v € T and t € R, then
+ + + +
Ll =7 (£z) and Ly z) = P (£7)-

Proposition 5.4. [PRODUCT STRUCTURE] The (two) pairs of lamination (L, LT°)
define a local product structure on F,, and hence on U,I'.

Remark: Throughout this section, we abuse notation by allowing {¢: }+er to de-
note both the flow on U,I" and the flow on F), which covers it and letting L+ denote
both the lamination on F}, and the induced lamination on U,I.

5.3. The leaf lift and the distance. In this section we introduce the leaf lift and
show that it helps in controlling distances in F},.
We first define the leaf lift for points in the bundle F. Let A = (U, V, (ug,vo))

be a point in F. We observe that there exists a unique continuous map, called the
leaf lift from

04 ={w e RP(m)* | UNker(w) = {0}}.
to (R™)*\ {0}) /£ 1 such that w is taken to £, 4 such that
Qua €w,  (Qu,alug) = 1. (25)

In particular, €2, 4 = vo. Observe that at this stage the leaf lift coincides with the
classical notion of an affine chart.
The following lemma records immediate properties of the leaf lift .

Lemma 5.5. Let ||.|[1 be a Fuclidean norm on R™ and dy the associated metric on
RP(m)*. If A = (z,y, (u,v)) € F, then there exist constants K1 > 0 and a1 > 0
such that for wg,wy € RP(m)*

o Ifdi(w;i,y) < i, fori=0,1, then
[[Qwy, 4 — Quyalln < Kidy (wo, wr),
o If||Qu;a— Qyalll <oq fori=0,1, then
dy (wo, w1) < Ki[[Quwo,a — Quy a1
If Z = (z,y, (uo,v0)) € F, and W = (z,w, (ug,v)) € L}, then we define the leaf
lift
ww,z = L (w),(6(@).6* (1), (uosv0)) = V-

The following result allows us to use the leaf lift to bound distances in F),

Proposition 5.6. Let dy be a I'-invariant metric on F, which is locally bilipschitz
equivalent to a linear metric and let Z — ||.||z be a T'-invariant map from F, into
the space of Euclidean metrics on R™. There exist positive constants K and « such
that for any Z € F, and any W € L,

e ifdy(W,Z) < a, then

|ww,z —wzz||, < Kdo (W, Z), (26)
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o if HWW.,Z _wZ»ZHZ < «a then
do (W, Z) < K ||lww,z —wzz|| ,- (27)

Proof. Since I acts cocompactly on F), and both dg and the section ||.|| are I'-invariant,
it suffices to prove the previous assertion for Z in a compact subset R of F,. Ob-
serve first that dyp is uniformly C-bilipschitz on R to any of the linear metrics dyz
coming from ||.||z for Z in R for some constant C.

Lemma 5.5 implies that, for all Z € R, there exist positive constants K, and
az such that if Wo, Wy € L, N O, then

o If dy (W;,Z) < ay for i = 0,1, then
|wwo.z —wwi 2| , < Kzdo (Wo, Wh),
o If HWW1'7Z — waZHZ < ayz fori=0,1, then

do (Wo, W1) < Kz||wwo,z —ww, 2| -

Since R is compact, one may apply the classical argument which establishes that
continuous functions are uniformly continuous on compact sets, to show that there
are positive constants K and a which work for all Z € R. (]

5.4. The geodesic flow is Anosov. The following result completes the proof of
Proposition 5.1

Proposition 5.7. [ANOSOV PROPERTY]| Let p : I' — SL,,,(R) be a projective Anosov
representation, and let L+ be the laminations on U,L' defined above. Then there
exists a metric on U,I', Holder equivalent to the Hélder structure on U,I', such that

(1) LT is contracted by the flow,
(2) L is contracted by the inverse flow,

We first show that the leaf lift is contracted by the flow.

Lemma 5.8. There exists a I'-invariant map Z — ||.||z from F, into the space of
Euclidean metrics on R™, such that for every positive integer n, there exists to > 0
such that if t > to, Z € F,, and W € E} then

1
|ouw).60(2) = Wouz002) ||, (2) S galwmz w2zl (28)

The following notation will be used in the proof.

e For a vector space A and a subspace B C A, let
Bt ={we€ A" | B C ker(w)}.
e We consider the I'-invariant splitting of the trivial R™-bundle
F,xR"=2¢6

— where Z is the line bundle over F, such that the fiber above (z,y, (u, v))
is given by £(z) and

— © is a hyperplane bundle over F » with fiber 6(y) above the point
(z,y, (u,v)) € F,.
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Proof. Suppose that Z = (z,y, (ug,vo)) and W = (z,w, (ug,v)) € L, then by the
definition of the leaf lift
(ww,z —wz,z)(uo) = 0,
and thus
Ww,z = Qw,z +wz,z,
where aw z € £(z)*. Then

bi(ww,z) = di(aw,z) + di(wz,z)-
We choose a I'-invariant map from F), into the space of Euclidean metrics on R™
so that for all Y € F,
vy [y = 1.

Then
1
Wo(2),0¢(2) = m% (wz.z),

hence
o} (CYW,Z)

= T W, (2),6.(2)
: [ée(wz.2)|l,, 2 6:(2),64(2)

Woy (W), (Z

It follows that
B B B ol Y
é:(W),+(2) $:(2):0¢(2) |l ¢, (2) Hgbt(wzﬁz)um(z)

Since p is projective Anosov, and (U,I', {¢: }ier) is a Holder reparameterization of
(UoI', {4t }1er), there exists t; > 0 so that for all Z € F, and for all ¢ > t;, if
vEé% andwEé%,then

6 oy 1 1ol
o,z < 2l

Thus, since aw,z € é% and wgz z € (:)JZ-, for all n € N and ¢ > nty, we have

1 [lawz]
s (W),60(2) = Wou2),002) g, (2) < ?m

Since aw,z = ww,z — wz,z and szyzHZ = 1, the previous assertion yields the
result with tg = nt;. [l

We are now ready to establish Proposition 5.7.

Proof of Proposition 5.7: Let K and « be as in Proposition 5.6. Choose n € N so
that . -
2—n§1 and 2—n§§ (29)
Let ¢y be the constant from Lemma 5.8 with our choice of n.
Suppose that Z € F,, W € L}, t >ty and do(W, Z) < . Then, by Inequality
(26),
HwW7Z—wZ7ZH ngo(VV,Z) (30)
By Lemma 5.8,

1
o w).6002) = Wou 2,002l gy 2y < T llowsz — w22 - (31)
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In particular, combining Equations (30), (31) and (29),

Wi (w60 (2) = Wi (20,002 | 5, () < %KQ <o (32)
Thus, using Inequality (27),
do(pr (W), 64(2)) < K|ws,(w).61(2) = Wor(2).01(2) || ) (33)
Combining finally Equations (30), (31), (33) and (29), we get that

K? 1
Ao(61 (W), 64(2)) < o do(W, Z) < 5oV, Z) (31)
for all t > tg.
Therefore LT is contracted by the flow on F.

Let us now consider what happens in the quotient U,I' = F,/T". For any Z € F,
and € > 0, let
LE(Z)=LENB(Ze).
and let
K.(2) =117 (L} (Z) x £ (Z) x (—<,6)).
where II7 is the product structure of Proposition 5.4. By Proposition 4.1, there
exists €g > 0 such that for all y € '\ {1} and Z € F,,

’Y(Keo(X)) NKe = 0.

Let € € (0,min{ey/2,a}) and Z € U,I. Choose Z € F, in the pre image of Z,
then inequality (34) holds for the flow on U,I" for points in the chart which is the
projection of K (Z). Therefore, L1 is contracted by the flow on U,T.

A symmetric proof holds for the central unstable leaf.

6. ANALYTIC VARIATION OF THE DYNAMICS

In order to apply the thermodynamic formalism we need to check that if { py, }ueas
is an analytic family of projective Anosov representations, then the associated limit
maps and reparameterizations of the Gromov geodesic flow may be chosen to vary
analytically, at least locally. Our proofs generalize earlier proofs of the stability of
Anosov representations, see Labourie [41, Proposition 2.1] and Guichard-Wienhard
[26, Theorem 5.13], and that the limit maps vary continuously, see Guichard-
Wienhard [26, Theorem 5.13]. In the process, we also see that our limit maps
are Holder.

We will make use of the following concrete description of the analytic structure
of Hom(T", G). Suppose that I" is a word hyperbolic group, hence finitely presented,
and let {g1,...,9m} be a generating set for I". If G is a real semi-simple Lie group,
then Hom(I', G) has the structure of a real algebraic variety. An analytic family
B : M — Hom(I', G) of homomorphisms of I' into G is a map with domain an ana-
lytic manifold M so that, for each 4, the map 8; : M — G given by 8;(u) = B(u)(g:)
is real analytic. If G is a complex Lie group, we may similarly define complex ana-
lytic families of homomorphisms of a complex analytic manifold into Hom(T", G).

We first show that the limit maps of an analytic family of Anosov homomor-
phisms vary analytically. We begin by setting our notation. If & > 0, X is a com-
pact metric space and D and M are real-analytic manifolds, then we let C*(X, M)
denote the space of a-Holder maps of X into M and let C% (D, M) denote the space
of real analytic maps of D into M. If D and M are complex analytic manifolds,
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we will abuse notation by letting C¥(D, M) denote the space of complex analytic
maps.

Theorem 6.1. Let G be a real (or complex) semi-simple Lie group and let P be
a parabolic subgroup of G. Let {py}ucp be a real (or complex) analytic family of
homomorphisms of I" into G parameterized by a real (or complex) disk D about 0.
If po is a (G, P)-Anosov homomorphism with limit map & : 0T’ — G/P, then there
exists a sub-disk Do of D (containing 0), o > 0 and a continuous map

& : Dy x 0" = G/P
with the following properties:

(1) If u € Dy, then py is a (G, P)-Anosov homomorphism with a-Hdélder limit
map &y : Ol — G/P given by &,(-) = &(u, ).

(2) If x € 0T, then & : Do — G/P given by & = &(-, ) is real (or complex)
analytic

(3) The map from DooT' to C¥ (Do, G/P) given by x +— &, is a-Holder.

(4) The map from Dy to C*(0scT', G/P) given by u — &, is real (or complex)
analytic.

Given a projective Anosov representation p : I' — SL,,,(R), we constructed a ge-
odesic flow U,I" which is a reparameterization of the Gromov geodesic flow UgI'. In
Section 6.3, we show that given a real analytic family of projective Anosov repre-
sentions, one may choose the parameterizing functions to vary analytically.

Proposition 6.2. Let {py}uep be a real analytic family of projective Anosov ho-
momorphisms of T into SL,,,(R) parameterized by a disk about 0. Then, there exists
a sub-disk Do about 0 and a real analytic family {f, : UsT' — R}uep, of positive
Hoélder functions such that the reparametrization of Ugl' by fy is Hélder conjugate
to U, I' for all u € Dy.

We first observe that the real analytic case of Theorem 6.1 follows from the
complex analytic case, which we will establish in Section 6.2. If G is a real semi-
simple Lie group and P is a parabolic subgroup of G, we let G and P® be the
complexification of G and P. Observe that a (G, P)-Anosov representation is au-
tomatically a (G®, P%)-Anosov representation. On a sub-disk D; of D, containing
0, one may extend {pu}uep, to a complex analytic family {p.},cpc of homo-
morphisms of I' into G® defined on the complexification D¢ of D;. The map
€ : DS x 05T — G®/PC provided by the complex analytic case of Theorem 6.1
restricts to a map &|p, : Do X OsI' = G/P with the desired properties. Notice that
the real analyticity in properties (2) and (4) follows from the fact that restrictions
of complex analytic functions to real analytic submanifolds are real analytic.

6.1. Transverse regularity. In this section, we set up our notation and establish
a version of the C"-section Theorem of Hirsch-Pugh-Shub [29, Theorem 3.8] which
keeps track of the transverse regularity of the resulting section. Our version of
Hirsch, Pugh and Shub’s result will be the main tool in the proof of Theorem 6.1.

Definition 6.3. [TRANSVERSELY REGULAR FUNCTIONS| Let D be a real (or com-
plex) disk, let X be a compact metric space and let M be a real (or complex) analytic
manifold. A continuous function f: D x X — M is transversely real (or complex)
analytic if
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(1) For every x € X, the function f, : D — M given by f.(-) = f(-,z) is real
(or complex) analytic, and
(2) The function from X to C¥(D, M) given by x — f, is continuous.

Furthermore, we say that f is a-Holder (or Lipschitz) transversely real (or complex)
analytic if the map in (2) is a-Hélder (or Lipschitz).

If we replace M with a C* manifold, we can similarly define a-Holder (or Lips-
chitz) transversely C* functions by requiring that the maps in (1) are C* and that
the map in (2) from X to C?(D, M) is a-Holder (or Lipschitz) for all p < k,

Similarly, we define transverse regularity of bundles in terms of the transverse
regularity of their trivializations.

Definition 6.4. [TRANVERSALLY REGULAR BUNDLES] Suppose that the fiber of a
bundle m: E — D x X is a real (or complex) analytic manifold M and that D is
a real (or complex) disk. We say that E is transversely real (or complex) analytic
if it admits a family of trivializations of the form {D x U, x M} (where {Uy} is
an open cover of X ) so that the the corresponding change of coordinate functions
are transversely real (or complex) analytic. We similarly say m: E — D x X s
a-Holder (or Lipschitz) transversely real (or complex) analytic if it admits a family
of trivializations which are a-Hélder (or Lipschitz) transversely real (or complex)
analytic.

In this case, a section of E is a-Hélder (or Lipschitz) transversely real (or com-
plex) analytic, if in any of the trivializations the corresponding map to M is -
Hélder (or Lipschitz) transversely real (or complex) analytic.

Clearly, if M is a C*-manifold, we can similarly define a-Hélder (or Lipschitz)
transversely C* bundles and sections.
We are now ready to state our version of the C"-Section Theorem.

Theorem 6.5. Let X be a compact metric space and let M be a complex analytic
(or C%) manifold. Suppose that  : E — D x X is a Lipschitz transversely com-
plex analytic (or C*) bundle with fibre M and D is a complex (or real) disk. Let
f: X — X be a Lipschitz homeomorphism and let F' be a Lipschitz transversely
complex analytic (or C*) bundle automorphism of E lifting id x f.
Suppose that oq is a section of the restriction of E over {0} x X which is fixed by

F and that F contracts along oy. Then there exists a neighborhood U of 0 in D, a
positive number o > 0, an a-Holder transversely complex analytic (or C*) section
n over Do x X and a neighborhood B of n(U x X) in 71 (U x X) such that

(1) F fizesn,

(2) F contracts E along n,

(3) nl{oyxx = o0, and

(4) if v: U x X — E is a section so that v(U x X) C B and v is fized by F,

then v = 1.

We recall that if U is a subset of D, then a section o over U x X is fixed by F if
F(o(u,z)) = o(u, f(x)). In such a case, we further say that F' contracts along o if

there exists a continuously varying fibrewise Riemannian metric || - || on the bundle
E such that if

DfFU(u,w) : To’(u,m)ﬂ_l(ua I) - To’(u,f(m))ﬂ_l(uv f(CC))
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is the fibrewise tangent map, then
HDfFa(u,x)” <1

We will derive Theorem 6.5 from the following version of the C"-section theorem
which is a natural generalization of the ball bundle version of the C"-section theorem
in Shub [65, Theorem 5.18].

Theorem 6.6. [FIXED SECTIONS| Let X be a compact metric space equipped with
a Lipschitz homeomorphism f : X — X. Suppose that m : W — D x X is a
Lipschitz transversely complex analytic (or C*) Banach space bundle, D is a com-
plex (or real) disk, B C W is the closed ball sub-bundle of radius r, and F is a
Lipschitz transversely complex analytic (or C*) bundle morphism of B lifting the
homeomorphism id X f: D x X — X.

If F contracts B, then there exists a unique a-Holder transversely complex ana-
lytic (or CF) section n of B which is fized by F (for some a > 0).

Notice that we have not assumed that F' is either linear or bijective.

Proof. Let o be the zero section of B. Observe that ¢ has the same regularity as
W and is thus transversally complex analytic (or C%).

We first assume that 7 : W — D x M is a Lipschitz transversely C*-bundle.
The existence of a unique continuous fixed section 7 is a standard application of
the contraction mapping theorem. Explicitly, for all (u,z) € D x X, we let

1, 2) = Tim F" (o (u, /7 (x). (35)

We must work harder to show that 7 is a-Hoélder transversely complex analytic
(or C*). We first assume that W is transversely C* —and so is o and obtain the
CF-regularity of 7. For any p € N, let I'” be the Lipschitz Banach bundle over
X whose fibers over a point € X is the Banach space I'? of CP-sections of the
restriction of W to D x {z}. Let BP be the sub-bundle whose fiber B? over z is
the set of those sections with values in B.

Notice that each fiber B? can be identified with C?(D x {z}, By) where By is a
closed ball of radius r in the fiber Banach space. Let F? be the bundle automor-
phism of I',, given by

[FPW)](u, 2) = F(v(u, f~(x))).
We can renormalise the metric on D, so that all the derivatives of F' of order n
(with p > n > 1) along D are arbitrarily small. Thus after this renormalisation the
metric on D, F? is contracting, since F is contracting. We now apply Theorem 3.8
of Hirsch-Pugh-Shub [29] (see also Shub [65, Theorem 5.18]) to obtain an invariant
a-Holder section w. By the uniqueness of fixed sections, we see that

n(u, ) = w(x)(u)
for all 1 < p < k. It follows that 7 is a-Hélder transversely C*.

Now suppose that D is a complex disk and 7 : E — D x X is Lipschitz trans-
versely complex analytic bundle. We see, from the above paragraph, that there
exists a unique a-Holder transversely C* section n;, for all k. By the uniqueness 7
is independent of k and we simply denote it by 7. Then, by Formula (35), for all
v € X, Npxfay is a C*-limit of a sequence of complex analytic sections for all k,
hence is complex analytic itself. It follows that n is a-Ho6lder transversely complex
analytic. (I
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We now notice that one may identify a neighborhood of the section o¢ in the
statement of Theorem 6.5 with a ball sub-bundle of a vector bundle.

Lemma 6.7. Let 7 : E — D x X be a transversely complex analytic (or C*) bundle
over D x X, D is a complex (or real) disk about 0, and o is a section of E defined
over {0} x X. Then there exists

(1) a neighborhood U of zero in D,
(2) a transversely complex analytic (or C*) closed ball bundle B of radius R in
a complex (or real) vector bundle F,
(3) a transversely complex analytic (or C*) bijective map from B to a neigh-
borhood of the graph of oy so that
e the graph of oo = ol{oyxx is in the image of the graph of the zero
section,
e the fibrewise metric on B coincides along oo with the fiberwise metric

on F.

Proof. We first give the proof in the case that o is defined over D x X. Let Z be the
transversely complex analytic (or C*) vector bundle over D x X so that the fibre
over the point (u, z) is given by Ty, ) (7 (u, 2)). We equip Z with a Riemannian
metric coming from E and let B(r) be the closed ball sub-bundle of radius r > 0.

Using the trivializations, we can find, after restricting to an open neighborhood
U of 0in D,

e a finite cover {O; }1<i<n of X,

e an open neighborhood W of the graph of o,

e transversely holomorphic (or C*-diffeomorphic) bundle maps ¢; defined on
Wlywo, With values in Z|;, . so that for all (u,x) € U x O;

oi(o(u,x)) = OETU(uym)(w_l(u,x))
Dl od = Id. (36)

Let {1 }1<i<n be a partition of unity on X subordinate to {O;}1<i<n and, for each
i, let ¢; : W — [0, 1] be obtained by composing the projection of W to X with ;.
One may then define ® : W — Z by letting

=Y it
=1

Since @[AJl is constant in the direction of D, ® is transversely holomorphic (or C*-
diffeomorphic),

®(o(u,x)) =0 and DI & =Td.

It then follows from the implicit function theorem, that one may further restrict U
and W so that ® is a transversely holomorphic (or C*-diffeomorphic) isomorphism
of W with B(r) for some r.

If o is only defined on {0} x X, it now suffices to extend the section oy to a
section o defined over U x X where U is a neighborhood of 0 in D. Composing 7
with the projection o : D x X — X, we may consider the bundle mo o7 : £ — X.
Then o¢ is a section of m5 o 1. We now apply the result of the previous paragraph,
in the case where the disk is 0-dimensional, to identify, in a complex analytic (or
C*) way, a neighborhood of the graph of oy with a ball bundle B in a vector bundle
F over X.
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Now 7 restricts to a bundle morphism from rom : B — X tomy : D x X — X
which is a fiberwise complex analytic (or C*) submersion and whose fiberwise
derivatives vary continuously. Let W be a linear sub-bundle of F, so that if W,
and F,, are the fibers over x € X, then

T(Tril(ovx)) & W, = F,.

Thus, after further restricting B, m becomes a fiberwise complex analytic (or C*)
injective local diffeomorphism from W N B to D x X whose fiberwise derivatives
vary continuously.

Applying the Implicit Function Theorem (with parameter), we obtain a neigh-
borhood U of 0 and a map o : U x X — B which is fiberwise complex analytic (or
C*) and whose fiberwise derivatives vary continuously, so that 7 o ¢ = Id. Thus &
is the desired section of F. O

Theorem 6.5 now follows from Theorem 6.6 and Lemma 6.7.

Proof of Theorem 6.5: Let V be the complex (or real) vector bundle provided by
Lemma 6.7. We know that HD(J;D(I)FH < 1 for all z in X. After further restraining
U and choosing r small enough, we may assume by continuity that for all y in B(r),
[DJF|| < K < 1.

After further restricting U, we may assume that for all w € U and = € X, we
have

|F(o(u,2)) — o, f@)] < (1— K)r,

In particular, if y € B(r) is in the fiber over (u, z),

[E () —ou, f)| < [[F(y) = Flo(u,))]
+IF (o (u, 2)) = o(u, f(2))]|
< Kr+(1-K)r=r.

Thus F maps B(r) to itself and is contracting. We can therefore apply Theorem
6.6 to complete the proof of Theorem 6.5. O

In the proof of Theorem 6.1, we will also need to use the fact that transverse reg-
ularity of a continuous function f : D x X — M implies regularity of the associated
map of D into C*(X, M).

Let X be a compact metric space and let M be a complex analytic (or C*)
manifold. If U is an open subset of M and V is a relatively compact open subset
of X, then let

W(U,V) = {g € C*(X, M) | (V) € U}.
We will say that a map f from D to C*(X, M) is complex analytic (or C* ) if for any
U and V as above and any complex analytic function ¢ : U — C (or C* function
¢ : U — R), the function f? defined on f~* W(U,V)), by

f(x) = ¢o f(a)lv,
with values in C%(V,C) (or C%(V,R)) is complex analytic (or C*). Recall that the
function f? is complex analytic if and only if it has a a C-linear differential at each
point, see, for example, Hubbard [31, Thm. A5.3].

The following lemma shows that an a-Holder transversely complex analytic map
from D x X to M gives rise to a complex analytic map from D to C*(X, M). The
proof is quite standard so we will omit it, see Hubbard [31, Prop. A5.9] for a very
similar statement.



40 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

Lemma 6.8. Suppose that D is a complex (or real) disk, M is a complex analytic
(or C*) manifold, X is a compact metric space and f: D x X — M is a-Holder
transversely complex analytic (or C*), then the map f from D to C*(X, M) given
by u — f, where fu(-) = f(u,-) is complex analytic (or C¥~1).

6.2. Analytic variation of the limit maps. We are now ready for the proof of
Theorem 6.1 in the complex analytic case. Given a complex analytic family of rep-
resentations which contains an Anosov representation, we construct an associated
bundle where we can apply the results of the previous section to produce a family
of limit maps.

Let G be a complex Lie group and let P be a parabolic subgroup. Let {py }uep
be a complex analytic family of homomorphisms of I" into G parameterized by a
complex disk D about 0 so that pg is (G, P)-Anosov.

We construct a G/P-bundle over D x UgI'. Let

A=Dx UAOT“ x G/P
which is a G/P-bundle over D x 0;]?‘. Then v € I" acts on A, by

y(u, 2, [g]) = (u,v(x), [pu(7)g])

and we let
A=AJT.

The geodesic flows on ljgf and Ugl' lift to geodesic flows {\ilt}teR and {\ilt}teR
on A and A. (The flow {¥,},er acts trivially on the D and G/P factors.)

Since pg is (G, P)-Anosov there exists a section og of A over {0} xUoI". Concretely,
if & : 0o’ = G/P is the limit map, we construct an equivariant section &g of A
over {0} x UoT of the form

(Oa (Ia yvt)) - (Oa (Ia y,t),éo(x)).

The section ¢y descends to the desired section oy of A over {0} x UgT'. One may
identify the bundle over {0} x Uol’ with fiber To ()7~ *(0, ) with AV, . Since the
geodesic flow lifts to a flow on A , whose inverse flow is contracting, the inverse
flow {®_;}icr is contracting along og(Uel).

Theorem 6.5 then implies that there exists a sub-disk D; C D containing 0,
a > 0, and an a-Holder transversely complex analytic section 7 : D x Ugl' — A
that extends oy, is fixed by {®; }+cr and so that the inverse flow {®_; };cr contracts
along 7. (More concretely, Theorem 6.5 produces, for large enough ¢y, a section
fixed by ®_;, so that ®_;, contracts along . One may then use the uniqueness
portion of the statement to show that 7 is fixed by &, for all ¢.) We may lift 7 to
a section 7 : Dy X U(\)T‘ — A which we may view as a map 77 : D; x lj(\)f‘ — G/P.

We next observe that 7j(u, (z,y,t)) does not depend on either y or ¢t. Since
7 is flow-invariant, 7j(u,(x,y,t)) does not depend on ¢. Fix u € D; and let
T Ul — G/P be given by 7,(-) = 7(u,-). Let 7 be an infinite order element
of I' whose associated orbit in Ugl" has period ¢, and let d be an arbitrary metric
on G/P. Since {®_;}.cr is contracting along 7, there exists a constant kg > 0 such
that if {p,} is a sequence in G/P with d(7,(v",77,0),pn) < ko for all n, then

Jim d(7, (v, 77, 0),9" (pn)) = lim d(u(Y" (7,77, —nty)), 7" (pn)) = 0. (37)
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Given z € 04T, there exists t, € R, so that, if d denotes a I'-invariant metric on
Uol', then
lim d(y"(v",77,0), (7", 2tz +nt,)) = 0.

n—oo
Therefore,
lim d((yv",77,0),y "(v", 2 t: + nty)) = 0.

n—roo

Applying (37) with p, = (v~ "(v", 2, t. + nt,)), we see that
Jim (7 (v, 77,00, (" (7T, 2,82 + nty) = 0.
Since 7, is ['-equivariant, this implies that
Jim d(7u(v",77,0),7u(v", 2,82 + nty)) = 0.
Since 7, (77, 2,t) does not depend on ¢, we finally obtain that
i, (v5,97,0)) =7y, (v 2,1))

for any z € 0", u € Dy and t € R. Since, fixed points of infinite order elements
are dense in 0, I" and 7] is continuous, we see that 7j(u, (z,y,t)) does not depend on
y or t.

Therefore, we obtain a transversely complex analytic map

€: Dy x 0o — G/P

which extends . The map ¢ satisfies properties (2) and (3), since £ is a-Holder
transversely complex analytic, while property (4) follows from Lemma 6.8.

It remains to prove that we may restrict to a sub disk Dy of D so that if u € Dy,
then p,, is (G, P)-Anosov with limit map &,. Let Q be a parabolic subgroup of G
which is opposite to P. Then there exists a Lipschitz transversely complex analytic
G/Q-bundle A" over D x UoI" and we may lift the geodesic flow to a flow {®}} on A’.
Since pg is (G, P)-Anosov, there exists a map 0y : 0sI' — G/Q which gives rise to a
section o, of A" over {0} x UpI" such that the flow is contracting on a neighborhood
of o{({0} x UgI'). We again apply Corollary 6.5 to find an o/-Hélder (for some
o’ > 0) transversely complex analytic flow invariant section ' : Dy x UgT' — A’
that extends oy, for some sub-disk Dy of D which contains 0, such that the flow
{W!},cr contracts along 1'(Da x Upl'). The section 7' lifts to a section of 7/ of A’
which we may reinterpret as a map 7’ : Dy X Ul — G/Q so that 7' (u, (x,y,t))
depends only on u and 3. So we obtain an o/-Hélder transversely complex analytic
map

9D2X800F—>G/Q

which restricts to #y. Since &y and 6, are transverse, we may find a sub-disk Dy
of D1 N Dy so that &, and 6, are transverse if u € Dy. It follows that if u € Dy,
then p, is (G, P)-Anosov with limit maps &, and 6,,. This completes the proof of
Theorem 6.1 in the complex analytic case.

Remark: Notice that the same proof applies to a C*-family {p,}uep of repre-
sentations of a hyperbolic group I' into a real semi-simple Lie group G such that pg
is (G, P)-Anosov. It produces a sub-disk Dy and a a-Holder transversely C* map
€ : Dy x 0’ = G/P so that if u € Dy, then p, is (G, P)-Anosov with limit map
Eu-
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6.3. Analytic variation of the reparameterization. We now turn to the proof
of Proposition 6.2.

Let {py : T — SL,(R)}uep be a real analytic family of projective Anosov
representations and let D® be the complexification of D. We may extend {pu }uep
to a complex analytic family {p, : T' = SL;,,(C) },c pc of homomorphisms. Theorem
6.1 implies that, after possibly restricting D®, there exists a a-Holder transversely
complex analytic map

€: D% x 9,,T — G /PC = CP(m)

such that if v € DC, then p, is Anosov with respect to the parabolic subgroup
PC, which is the stabilizer of a complex line, with limit map &,. (We call such
representations complex projective Anosov.)

We construct a Lipschitz transversely complex analytic C™-bundle W over
DC x UgT which is the quotient of W€ = DC x UgI’ x C™ associated to the family
{putuepc. We can then lift the Gromov geodesic flow on UyI" to a Lipschitz trans-
versely complex analytic flow {¥;};cg on WC. Since the functions in the partition
of unity for our trivializations of WC are constant in the the D direction, we have:

Proposition 6.9. After possibly further restricting D, the bundle W€ is equipped
with a Lipschitz transversely complex analytic 2-form w of type (1,1) such that

T(u,v) = w(u,v) + w(v,u),
is Hermitian.

Let LC be the (complex) line sub-bundle of W determined by ¢, i.e. LT is the

quotient of the line sub-bundle of WE whose fiber over (u, (z,y,t)) € DC x Ul
is the complex line &,(z). Then, LC is a a-Holder transversely complex analytic
line bundle over D x UgI'. Since each p, is complex projective Anosov with limit
map &,, LC is preserved by the flow {¥;};cr. We restrict w and 7 to L® (and still
denote them by w and 7).

Since L€ is a line bundle, we can consider the function

a:D®xUl' = C
such that
w(u, z)(v,v) = a(u, )7 (u, ) (v, v).
whenever v is in the fiber of L® over (u,x). Concretely.
w(v,v)
2R(w(v,v))
for any non-trivial v in the fiber over (u,x).

We observe that a is a-Holder transversely real analytic. If U is an open subset
of UgD" in one of our trivializing sets, we can construct a non-zero section

V:DxU— L®

a(u,z) =

which is a-Holder transversely complex analytic. Then
w(V,V): D" xU = C
is a-Holder transversely complex analytic. Lemma 6.8 implies that the map from

D€ to C%(U,C) given by u — w(V(u,-),V(u,-)) is complex analytic. Therefore,
the map from D® to C*(U,R) given by u — R(w(V (u,-),V (u,-))) is real analytic.
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It follows that the map from D® to C*(U,C) given by u — a(u,-) is real analytic
since
_ w(V)
o = AR V)
Since = was arbitrary the map from D® to C%(UoI',C) given by u — a(u, ) is real
analytic. Similarly, a itself is a-Holder transversely real analytic.
If we define, for all ¢, the map

hy : D€ x Uyl = C

so that

Viw = hw,
then, we may argue, just as above, that h; is a-Holder transversely complex analytic.
Lemma 6.8 guarantees that the map from D€ to C'B(UOI‘, C) given by u — he(u, )

is complex analytic.
Ift e R,

Uir () = 2R(Viw(-)) = 2R(he()w(:)) = 2R (a(-)he(-)) G().

We define k:(-) = R(aht)(-) and note that ¥;T = k;7. Then, k; is a-Holder trans-
versely real analytic and the map from D® to C*(UoT', R) given by u — kq(u, ) is
real analytic (since it is the real part of a product of a real analytic and a complex
analytic function).

We apply the construction of Lemma 4.3 to produce an a-Holder transversely
real analytic metric 70 on L such that

vy (TO) < e Ptr0,

for some 8 > 0 and all ¢ > 0. Concretely,

t() t()
0 = / e Wi (r)ds = </ Pk ds) G
0 0

for some appropriately chosen ¢y > 0.
We define, for all ¢, K; : D¢ x UgI' = R by

to+t g
K, — o—ptde ks ds
foto ePsky ds
One then checks that
Ui (7)) = K;7r°
for all t. Then, for each u € D¢ we define f, : UgI' = R, by setting

GO MR () -1
Ful) = ot (w,-,0) = ﬁ+f()t°eﬁsks(.) ds’

Then, since u — k;(u, -) is real analytic for all ¢, our formula for f, guarantees that
the map from D® to C?(Upl',R) given by u — f, is real analytic. Therefore, the
restriction of this map to the real submanifold D is also real analytic.

To complete the proof of Proposition 6.2 we will show that, for each u € D,
the periods of the reparameterization of UgI" by f, and the periods of U, I' agree.
Livsic’s Theorem 3.3 then implies that the reparameterization of Ugl' by f, is
Holder conjugate to U, I' as desired.



44 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

Foru € D, let j, : UoI'xR be given by j, (-, t) = log K¢(u, -). We can differentiate
the equality
ju('7 l+ S) = ]u(\I}s()a t) + ]u(a S)

with respect to t and evaluate at ¢ = 0 to conclude that

fu('7 S) = fu(\I}s()v O)'

In particular, for any ¢,

/0 (u(Wa().0)ds = ju(-,1).

Let v € I and let = € UpI" be a point on the periodic orbit associated to v (which
is simply the quotient of (y*,77) x R C Upl'). If ¢, is the period of the orbit of
UoI" containing x, then

efofv fu(\ys(u,z))dsTO(x, u) _ \IIIWTO(’U? CL‘) _ 61\(Pu7’Y)TO(u7 CL‘),
SO
t’Y
/ Fu (0, (u,2))ds = A(p, )
0

is the period of the reparameterization of the flow UgI" by f,, which agrees with the
period of the orbit in U, I" associated to v (see Proposition 4.1). This completes
the proof of Proposition 6.2.

Remark: Notice that a simpler version of the above proof establishes that given
a C* family of projective Anosov representations, one may, at least locally, choose
the reparameterization functions to vary C*=1.

7. DEFORMATION SPACES OF PROJECTIVE ANOSOV REPRESENTATIONS

In this section, we collect a few facts about the structure of deformation spaces
of projective Anosov representations of I' into SL,,(R) and their relatives.

7.1. Irreducible projective Anosov representations. We first observe that
our deformation spaces C(I'ym) and C4(I',G) are real analytic manifolds. Let

C(T';m) C Hom(T', SL,,,(R)) denote the set of regular, irreducible, projective Anosov
representations and let

C(T,m) = C(T',m)/SL (R).
If G is a reductive subgroup of SL,,(R), then we similarly let C,(I', G) € Hom(T', G)
denote the space of G-generic, regular representations which are irreducible and
projective Anosov when viewed as representations into SL,,(R). Let

Cy(T,G) =Cy(I',G)/G.

Proposition 7.1. Suppose that T" is a word hyperbolic group. Then

(1) The deformation spaces C(I',m) and Cy4(T, SL,,(R)) have the structure of a

real analytic manifold compatible with the algebraic structure on Hom(T', SL,, (R))
(2) If G is a reductive subgroup of SL,,(R), then C4(T', G) has the structure of a

real analytic manifold compatible with the algebraic structure on Hom(I', G).
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Proof. We may regard Hom(T", SL,,,(R)) as a subset of Hom(T", SL,,(C)). We first
notice that an irreducible homomorphism in Hom(T', SL,,(R)) is also irreducible
when regarded as a homomorphism in Hom(T', SL,,,(C)). Lubotzky and Magid ([51,
Proposition 1.21 and Theorem 1.28]) proved that the set of irreducible homomor-
phisms form an open subset of Hom(T", SL,,,(C)), so they also form an open subset of
Hom(T', SL,,(R)). Results of Labourie [41, Prop. 2.1] and Guichard-Wienhard [26,
Theorem 5.13] imply that the set of projective Anosov homomorphisms is an open
subset of Hom (T, SL,,,(R)) (see also Proposition 6.1). Therefore, C(I',m) is an open
subset of Hom(T", SL,,(R)). Since the former consists of regular homomorphisms, it
is an analytic manifold.

Lubotzky-Magid ([51, Theorem 1.27]) also proved that SL,,(C) acts properly
(by conjugation) on the set of irreducible representations in Hom(T', SL,,(C)). It
follows that SL,,(R) acts properly on C(I',m). Schur’s Lemma guarantees that the
centralizer of an irreducible representation is contained in the center of SL,,(R).
Therefore, PSL,, (R) acts freely, analytically and properly on the analytic manifold
C(T,m), so its quotient C(T',m) is also an analytic manifold.

Since the set of G-generic elements of G is an open G-invariant subset of G, we
may argue exactly as above to show that 59 (T', G) is an open subset of Hom(T', G)
which is an analytic manifold. The action of G/Z(G) on @(F, G) is again free,

analytic and proper, so its quotient Cy4(I', G) is again an analytic manifold. (]

If p € C(T',m), then one may identify T,C(I',m) with the space Z}(T', s, (R))
of cocycles and one may then identify T, C(I',m) with the cohomology group
H)(T,sl,(R)) (see [51, 33]). In particular, the space B} (T, sl (R)) is identified
with the tangent space of the SL,,(R)-orbit of p. Similarly, if p € aq(F, G), we
identify T,Cy(T', G) with Z!(T', g) and T1,Cy(T, G) with H (T, g). More generally, if
p is an irreducible representation in Hom(T', G), the tangent vector to any analytic
path through p may be identified with an element of Z}(T', g) (see [33, Section 2]).

A simple calculation in cohomology gives that irreducible projective Anosov rep-
resentations of fundamental groups of 3-manifolds with non-empty boundary are
regular. These include free groups and fundamental groups of closed surfaces.

Proposition 7.2. If T is isomorphic to the fundamental group of a compact ori-
entable 3-manifold M with non empty boundary, then C(T',m) is the set of conjugacy
classes of irreducible projective Anosov representations.

Proof. Let T' = 1 (M) where M is a compact orientable 3-manifold with non-empty
boundary. It suffices to show that the open subset of Hom(T, SL,,(R)) consisting
of irreducible projective Anosov homomorphisms consists entirely of regular points.
We recall that pp € Hom(T', SL,,(R)) is regular if there exists a neighborhood U of
po so that dim(Z} (M, g)) is constant on U and the centralizer of any representation
p € U is trivial [51].

If pg is projective Anosov and irreducible, we can take U to be any open neigh-
borhood of py consisting of irreducible projective Anosov representations. Since
p € U is irreducible, Schur’s Lemma guarantees that the centralizer of p(I") is the
center of SL,,(R). Moreover, if p € U, then

dim(H)) (M, g)) — dim(H} (M, g)) + dim(H} (M, g)) = x(M) dim(G).
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0. By Poincaré duality, dim(H (M, g)) =

Since the centralizer is trivial, dim(Hp (M, g)) =
= 0, the long exact sequence for relative

dim(H)(M,0M,g)). Since dlm(HO(M 9)
homology implies that dim(H, O(M OM,g)) =

0. Thus,
dim(H, (M, g)) = —x(M) dim(G).
Therefore, dim(Z)(M,g)) = (1 — x(M))dim(G) for all p € U, so p is a regular
point. (I

7.2. Virtually Zariski dense representations. We recall that if I' is a word
hyperbolic group, G is a semi-simple Lie group with finite center and P is a non-
degenerate parabolic subgroup, then Z(I'; G, P) is the space of (conjugacy classes
of) regular virtually Zariski dense (G, P)-Anosov representations of T' into G. We
will prove that Z(T'; G, P) is a real analytic orbifold.

Proposition 7.3. Suppose that T' is a word hyperbolic group, G is a semi-simple
Lie group with finite center and P is a non-degenerate parabolic subgroup of G. Then
Z(T; G, P) is a real analytic orbifold.

Moreover, if G is connected, then Z(I';G,P) is a real analytic manifold.

Proof. Let Hom™ (T, G) be the set of regular homomorphisms. By definition, Hom* (T, G)
is an open subset of Hom(I', G) and hence it is an analytic manifold, since it is the
set of smooth points of a real algebraic variety. Results of Labourie [41, Prop.
2.1] and Guichard-Wienhard [26, Theorem 5.13] again imply that the set of (G, P)-
Anosov homomorphisms is open in Hom*(I', G). The main difficulty in the proof is
to show that the set Z (T; G, P) of virtually Zariski dense Anosov homomorphisms
is open in Hom™(T", G) and hence an analytic manifold.

Once we have shown that Z (T; G, P) is an analytic manifold, we may complete
the proof in the same spirit as the proof of Proposition 7.1. We observe that if
p € Z(I';G,P) then its centralizer is finite, since the Zariski closure of p(I') has
finite index in G. Then, G/Z(G) acts properly and analytically on ZN(F; G, P) with
finite point stabilizers, so the quotient Z(I';G,P) is an analytic orbifold. If G°
is the connected component of G, then the Zariski closure of any representation
p € 2(1"; G,P) contains G, so the intersection of the centralizer of p with G° is
simply Z(G) N G°. Therefore, Z(T'; G,P)/G is an analytic manifold. In particular,
if G is connected, Z(T'; G, P) is an analytic manifold.

We complete the proof by showing that the set of virtually Zariski dense (G, P)-
Anosov homomorphisms is open in Hom* (T, G). If not, then there exists a sequence
{pm}men of (G,P)-Anosov representations which are not virtually Zariski dense
converging to a virtually Zariski dense (G, P)-Anosov representation pg.

Since G has finitely many components, p;, *(G%) has bounded finite index for all
n. Since I is finitely generated, it contains only finitely many subgroups of a given
index, so we may pass to a finite index subgroup I'g of I so that p,, () is contained
in the identity component G° of G for all n. Since each p,|r, is (G, P)-Anosov and
po(To) is also virtually Zariski dense, we may assume for the remainder of the proof
that G is the Zariski closure of G°.

Let Z,, be the Zariski closure of Im(p,) and let 3, be the Lie algebra of Z,.
Consider the decomposition of the Lie algebra g of G

P

g:@gi,

i=1
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where g; are simple Lie algebras. Let G; = Aut(g;). We consider the adjoint repre-
sentation Ad : G — Aut(g). Let H be the subgroup of G consisting of all g € G so
that Ad(g) preserves the factors of g. Then H is a finite index, Zariski closed sub-
group of G. Hence, with our assumptions, H = G. Therefore, we get a well-defined
projection map m; : G — G;. If p is the Lie algebra of P, then p = @_, p;, where
p; is a Lie subalgebra of g;. Let P; be the stabilizer of p; in G;. Then we also obtain
a G-equivariant projection, also denoted 7,

7 : G/P = Gi/Pi = Gp; C Gldim(p,)(8i)

where Grgim(p,)(g:) is the Grassmanian space of dim(p;)-dimensional vector spaces
m g;.

If &, : 0o’ = G/P is the limit map of p,, m; 0 &, is a p,-equivariant map from
Ol to G;/P;. If m; o &, is constant, then p,(I') would normalize a conjugate of
pi. So, if m; 0 &, is constant for infinitely many n, then po(I') would normalize a
conjugate of p;,which is impossible since po(T') is Zariski dense and P; is a proper
parabolic subgroup of G;. Therefore, we may assume that m; o £, is non-constant
for all ¢ and all n. Since I' acts topologically transitively on 0-I", we then know
that the image must then be infinite. Therefore, for all ¢ and n,

dim(1; (3n)) > 0. (38)

We may thus assume that {3, } converges to a proper Lie subalgebra 3¢ which is
normalized by po(T") with

dim(30) > 0. (39)

Since pg is virtually Zariski dense, 3o must be a strict factor in the Lie algebra g of
G. Thus, after reordering, we may assume that

q
50=Pa (40)
=1

For n large enough, 3, is thus a graph of an homomorphim

P
Jnido—=h= @ gi-
i=q+1

Since there are only finitely many conjugacy classes (under the adjoint repre-
sentation) of homomorphisms of 3¢ into h, we may pass to a subsequence such
that

fo= Ad(gn) o foo Thys
where fy is a fixed isomorphism from an ideal bh; in 30 to an ideal b in b, g, is
the projection from 30 to h; and g, € Ha where H; is the subgroup of G whose Lie
algebra is b;.

Let Zy be the subgroup of G whose Lie algebra is 30 and consider A; = exp az,,
where az, is a Cartan subspace of 309, and let Ay = expapn,, where the Cartan
subspace an, is chosen so that fo(my, (A1)) = Ag. Considering the Cartan de-
composition Hy = KAgK of Hy where K is a maximal compact subgroup, we
may write g, = kpanc, with a, € Ay and k,,c, € K. Moreover we may write
Ad(epn) = fo(Ad(dy)), where d,, lies in a fixed compact subgroup of Hy. Thus, if
u € agz,, since Az is commutative, we have

Fu(Ad(d; " )u) = Ad(gn) fo(Ad(dy " )u) = Ad(kn) fo(w).
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We may extract a subsequence so that that {k, }nen and {d,, }nen converge respec-
tively to kg and dy. Therefore,

{(Ad(dg "), Ad(ko) fo(u)) | u € az,} C 50,
which contradicts the fact that 3o = @7, g;- This contradiction establishes the

fact that the set of Anosov, virtually Zariski dense regular homomorphisms is open,
which completes the proof. O

We record the following observation, established in the proof of Proposition 7.3
which will be useful in the proof of Corollary 1.9.

Proposition 7.4. Suppose that I' is a word hyperbolic group, G is a semi-simple
Lie group with finite center and P is a non-degenerate parabolic subgroup of G. Then

Z(T;G,P)/G° is an analytic manifold.

7.3. Kleinian groups. Let C.(T', PSL3(C)) be the set of (conjugacy classes of) con-
vex cocompact representations of I" into PSL2(C)). We say that a convex cocompact
representation p in PSLy(C) is Fuchsian if its image is conjugate into PSL2(R). Since
every non-elementary Zariski closed, connected subgroup of PSLy(C) is conjugate
to PSL2(R), we note that p € C.(I',PSL2(C)) is Zariski dense unless p is virtually
Fuchsian, i.e. there exists a finite index subgroup of p(I') which is conjugate into
PSL2(R) (see also Johnson-Millson [33, Lemma 3.2]). Notice that if p is virtually
Fuchsian, then p(T") contains a finite index subgroup which is isomorphic to a free
group or a closed surface group.

Bers [8] proved that C.(T', PSL2(C)) is a complex analytic manifold. which has
real dimension —6x(T") if T' is torsion-free. (See also Kapovich [34, Section 8.8]
where a proof of this is given in the spirit of Proposition 7.1.) We summarize these
results in the following proposition.

Proposition 7.5. Let I' be a word hyperbolic group. Then
(1) Co(T, PSL3(C)) is a smooth analytic manifold.
(2) p € Cc(T',PSL2(C)) is Zariski dense if and only if p is not virtuallyFuchsian.
(3) IfT is torsion-free, then C.(T', PSL2(C)) has dimension —6x(T).

7.4. Hitchin components. Let S be a closed orientable surface of genus at least 2
and let 7,,, : PSL2(R) — PSL,,(R) be an irreducible homomorphism. If p : 71 (S) —
PSLy(R) is discrete and faithful, hence uniformizes S, then 7,,0p is called a Fuchsian
representation. A representation p : m1(S) — PSL,,(R) that can be deformed into
a Fuchsian representation is called a Hitchin representation. Lemma 10.1 of [41]
implies that all Hitchin representations are irreducible.

Let H,,,(S) be the space of Hitchin representations into PSL,,(R) and let
Each H,,(S) is called a Hitchin component and Hitchin [30] proved that H,,(S) is
an analytic manifold diffeomorphic to R(m”=DIX(S)I,

One may identify the Teichmiiller space 7 (S) with Hz(S). The irreducible rep-
resentation gives rise to an analytic embedding that we also denote 7,, of T(S)
into the Hitchin component H,,(S) and we call its image the Fuchsian locus of the
Hitchin component.

Each Hitchin representation lifts to a representation into SL,,(R). Labourie [41]
showed that all lifts of Hitchin representations are irreducible and (SL,,(R), B)-
Anosov where B is a minimal parabolic subgroup of SL,,(R). In particular, lifts
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of Hitchin representations are projective Anosov. Moreover, Labourie [41] showed
that the image of every non-trivial element of m1(S) under the lift of a Hitchin
representation is diagonalizable with distinct eigenvalues. In particular, every lift
of a Hitchin representation is SL,, (R)-generic, so is contained in C,(m1(S), SL,,,(R)).
Moreover, notice that distinct lifts of a given Hitchin representation must be con-
tained in distinct components of C4(m1(S), SL, (R)).

We summarize what we need from Hitchin and Labourie’s work in the following
result.

Theorem 7.6. Every Hitchin component lifts to a component of the analytic man-

ifold Cy(m1(S), S (R)).

8. THERMODYNAMIC FORMALISM ON THE DEFORMATION SPACE OF PROJECTIVE
ANOSOV REPRESENTATIONS

In Section 8.1, we show that entropy, intersection and renormalized intersection
vary analytically over C(T", m), then in section 8.2 we construct the thermodynamic
mapping of C(I',m) into the space of Livsic cohomology classes of pressure zero
functions on UpI" and use it to define the pressure form on C(I', m) and Cy(T', G).

8.1. Analyticity of entropy and intersection. Let I' be a word hyperbolic
group admitting a projective Anosov representation. By Proposition 5.7, the Gro-
mov geodesic flow on Upl" admits a Holder reparametrization which turns it into
a topologically transitive metric Anosov flow. Since the Gromov geodesic flow is
only well defined up to reparametrization, we choose a fixed Holder reparametriza-
tion which gives rise to a topologically transitive metric Anosov flow, and use the
corresponding flow, denoted by ¥ = {14 }+cr, as a background flow on UgT.

Let p: T — SL,,(R) be a projective Anosov representation. By Proposition 4.1,
the geodesic flow (U,I', {¢: }ier) of p is Holder conjugate to a Holder reparametriza-
tion of the flow {44 }+cr. Periodic orbits of {¢+}+cr are in one-to-one correspondence
with conjugacy classes of infinite order elements of I'. The periodic orbit associated
to the conjugacy class [y] has period A(p)(7).

If p: T' — SL,,(R) is projective Anosov, let f, : U)I' — R be a Holder function
such that the reparameterization of UgI" by f, is Hoélder conjugate to U,I'. Livsic’s
theorem 3.3 implies that the correspondence p — f, is well defined modulo Livsic
cohomology and invariant under conjugation of the homomorphism p. Therefore,
we may define

h(pl) = h(fpl)v (41)
I(plap2) = I(fplvfpz)v and (42)
o) = s b) = 1Mo, ). (43)

for projective Anosov representations p; : I' — SL,,(R) and py : ' — SL,,(R).
These quantities are well defined and agree with the definition given in the In-
troduction. Proposition 7.3.1 implies that

W(fp) = Jim_ = logh(Ry(p))



50 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

while equation (12) implies that

e [y s
Wi o) = B0\ Smr o)) MG%:(M log(A(7)(p1))

Proposition 6.2 implies that if {p,}uep is an analytic family of of projective
Anosov homomorphisms defined on a disc D, then we can choose, at least locally,
the map u — f,, to be analytic. Proposition 3.12 then implies that entropy,
intersection and renormalized intersection all vary analytically.

Proposition 8.1. Given two analytic families {py tuep and {ny bvep: of projective
Anosov homomorphisms, the functions u — h(py), (u,v) = I(py,n,) and (u,v) —
J(pu,nw) are analytic on their domains of definition.

Combining Propositions 3.8, 3.9 and 3.11 one obtains the following.

Corollary 8.2. For every pair p; : IT' = SL,,,(R) and pa : T' — SL,,(R) of projective
Anosov representations, one has

J(p17p2) = 1.
If J(p1,p2) = 1, then there exists a constant ¢ > 1 such that

APl (7)6 = Apz (’7)

for every v € T.
Moreover, if {p:} is a smooth one parameter family of projective Anosov repre-
sentations and { fi} is an associated smooth family of reparametrizations, then
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22 J(po,pt) =0

t=0

if and only if
0

E (hptft)

t=0

is Livsic cohomologous to 0.

8.2. The thermodynamic mapping and the pressure form. If p € C(T',m)
and f, is a reparametrization of the Gromov geodesic flow giving rise to the geodesic
flow of p, we define @, : UpI' = R by

Dy () = =h(p) f,(x)-
Lemma 3.1 implies that ®, € P(UoT'). Let H(UoT') be the set of Livsic cohomology

classes of pressure zero function, we saw that the class of @, in H(UoI") only depends
on p. We define the thermodynamic mapping to be

C(I'ym H(Upl
S R

By Proposition 6.2, the thermodynamic mapping is “analytic” in the following
sense: for every representation p in the analytic manifold C(I',m), there exists a
neighborhood U of p in C(T', m) and an analytic mapping from U to P(UpI') which
lifts the thermodynamic mapping.

We use the thermodynamic mapping to define a 2-tensor on our deformation
spaces.
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Definition 8.3. [PRESSURE FORM]| Let {py }uers be an analytic family of projective
Anosov homomorphims parametrized by an analytic manifold M. If z € M, we

define J, : M — R by letting
J.(u) = J(pz; pu)-
The associated pressure form p on M is the 2-tensor such that if v,w € T, M, then
p(v,w) = DT, (v, w).

Notice that, by Corollary 8.2, the pressure form is non-negative.

In particular, we get pressure forms on C(I',m) and on C(I',G) when G is a
reductive subgroup of SL,,(R). Since J is invariant under the action of conjugation
on each variable, these pressure forms descend to 2-tensors, again called pressure
forms, on the analytic manifolds C(I', m) and Cy(T', G).

9. DEGENERATE VECTORS FOR THE PRESSURE METRIC

In this section, we analyze the norm zero vectors for the pressure metric. If T’
is a word hyperbolic group, « is an infinite order element of I' and {py }yens is an
analytic family of projective Anosov homomorphisms parameterized by an analytic
manifold M, one may view L(a) as an analytic function on M where we abuse
notation by letting L(a)(u) = L(a)(py) denote the eigenvalue of p, () of maximal
modulus. The following is the main result of the section.

Proposition 9.1. LetT" be a word hyperbolic group and let G be a reductive subgroup
of SLin(R). Suppose that {p, : T' — Gluep is an analytic family of projective
Anosov G-generic homomorphisms defined on a disc D with associated pressure
form p. Suppose that z € D, v € T,D and

p(v,v) = 0.
Then, for every element o of infinite order in T,
D.L(a)(v) = 0.

9.1. Log-type functions. We begin by showing that if v is a norm zero vector,
then each L(«) is of log-type Kat v for some fixed K.

Definition 9.2. We say that an analytic function f has log-type K at v € T, M,
if f(u) #0 and

Dylog(|f[)(v) = Klog(|f(u)]),
and is of log-type if it is of log-type K for some K.

Lemma 9.3. Let {py}uenm be an analytic family of projective Anosov homomor-
phims parametrized by an analytic manifold M and let p be the associated pressure
form. If v e T,M and

p(v,v) =0,
then there exists K € R such that if « is any element of infinite order in I, then
L(«) is of log-type K at v.

Proof. Consider a smooth one parameter family {u}se(—1,1) in M such that uy = 2
and ug = v. Let ps = py, and let fs = f,. where {f,.} is a smooth family of
reparametrizations obtained from Proposition 6.2. We define, for all s € (—1,1),

O, =9, = _h(ps)fs;
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By Corollary 8.2, d, is Livsic cohomologous to zero. In particular, the integral of
dy is zero on any ¢s-invariant measure. Thus for any infinite order element a € T’
one has

(64|®0) = 0.
By definition, ®; = —h(ps)f,. and thus
<6a|(1)s> = _h(ps) IOgA(Oé)(’U,S).
It then follows that

o s A0@)] ) AGEN@)] (e loeh@)w)|

« ds s=0 ds s=0 ds 5=0
Applying the chain rule we get

[ dh(ps) dlog(A () (us)

0= (2| Y tor(ata)u)) + hip) ( EGEA] )
It follows that setting
_ 1 d(h(ps))
BT T as |y

we get that for all a« € T,

D.log(A@)(v) = 51| (oB(Aa)(p) = Klog (A(a)(2)
Since A(«) = |L(«)], L(«) has log-type K at v. O

9.2. Trace functions. Recall, from Proposition 2.6, that if « is an infinite order
element of T and p is a projective Anosov representation in C(I',m), then we may
write

pl) = L(@) (p)p(p(e) + mip(e) + =y alo(e)

where

(1) L(c)(p) is the eigenvalue of p(a) of maximum modulus and p(p(«)) is the
projection on &(a™) parallel to 6(a™)
(2) L(a™1)(p) is the eigenvalue of p(a~!) of maximal modulus and q(p(c)) is
the projection onto the line £(a™) parallel to #(a™), and
(3) the spectral radius of m(p(a)) is less than 6" A(a)(p) for some § = §(p) €
(0,1) which depends only on p.
It will be useful to define

1
r(p(a)) = m(p(a)) + Wq(p(a))

which also has spectral radius less than 6*(®)A(a)(p).

If {pu }uep is an analytic family of projective Anosov G-generic homomorphisms
defined on a disc D and « and [ are infinite order elements of I', we consider the
following analytic functions on D:

T(Oz,ﬁ): U = Tr(pu(a)pu(ﬁ))
Tp(a),B): ur— Tr(p(pu(a))pu(B)),
T(p(a),p(B)) : ur— Tr(p(pul(a))P(pu(B))),
T(p(a),r(B) : ur Tr(p(pu(a))r(pu(B))),
T(r(a),p(B) : ur Tr(r(pu(a))p(pu(B))),
T(r(a),x(B)) : ur Tr(r(pu(a))r(pu(B)))-
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We say that two infinite order elements of I" are coprime if they have distinct fixed

points in dx.I" (i.e. they do not share a common power).
We then have

Proposition 9.4. Let {py}uep be an analytic family of projective Anosov homo-
morphisms defined on a disc D. If a and B are infinite order, coprime elements of
I', then

L(a"f5")

and

Moreover, if L(7y) has log-type K at v € T, D for all infinite order v € I', then
both T(p(a),p(B)) and T(p(«), 8) have log-type K at v.

We say that a family {f,}nen of analytic functions defined on a disk D decays

atve T,D if

lim f,(z) =0 and lim D,f,(v) =0.

n—oo n—oo
The following observation will be useful in the proof of Proposition 9.4.
Lemma 9.5. Let G be an analytic function that may be written, for all positive
integers n, as

G =Gn(14 hy,),

where G, has log-type K and {hp}nen decays at v € T, M, then G has log-type K.

Proof. Notice that

D, log(G)(v) = Dylog(Gy)(v) + Dylog(l + hy)(v)
Dy hy,(v)

We now simply notice that the right hand side of the equation converges to K log G(u)
O

Proof of Proposition 9./: First notice that
T(a" ") = L(a"p")(1 + gn)
where
, — Tilx(a"5")
" Lemp)
Since r(a” 8™)(p,) has spectral radius at most §(p,, )@ #)|L(a”B™)|, (pu) € (0, 1),
and lim,, o £(a" ™) = +00, we see that lim, e gn(pn) = 0 for all p, € C(T',m).

Since {g,} is a sequence of analytic functions, g, decays at v.
On the other hand,

pu(@”B") = L(a)"L(B)"p(a)p(B)+L(a)" p(a)r(8")+L(B)"r(")p(B)+r(a™)r(8"),
SO

T(a", ") = L(@)"L(B)"T(p(a), p(B)(1 + gn)
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where
G = L(e)"T(p(a),x(8")) + L(B)"T(x(a"),p(B)) + T(r(a"),r(8"))
" T(p(@), p(B))L(c)"L(B)"
and again g, decays at v. (Notice that, since a and 3 are co-prime, &, (81) is not

contained in 6,, (o) for any u € D, so T(p(a), p(8)) is non-zero on D.)
Combining, we see that

L{a"f™)(A + gn)
L(a)"L(B)"(1 4 gn)’

which implies, since lim g, = 0 and lim g,, = 0, that

T(p(a), p(8)) = lim %

T(p(a),p(B)) =

Moreover, if L(v) has log-type K at v for all infinite order v € T', then G,, =
% has log-type K, being the ratio of log-type K functions and we may
apply Lemma 9.5 to see that T(p(«a), p(3)) has log-type K.

We similarly derive the claimed facts about T(p(«), 8) by noting that
T(a", 8) =L@"B)(1+ hy)

where
. Tex(a"B)
T Lamp) T
and that
T(a", ) = L(a)"T(p(a), B)(1 + hn)

where

o TE").8)

" Lam)T(p(a), B)

and applying an argument similar to the one above. O

Remark: Dreyer [23] previously established that

Uaioor |

has a finite limit when p is a Hitchin representation.

9.3. Technical lemmas. We will need a rather technical lemma, Lemma 9.7, in the
proof of Lemma 9.8, which is itself the main ingredient in the proof of Proposition
9.1.

We first prove a preliminary lemma, which may be viewed as a complicated
version of the fact that exponential functions grow faster than polynomials. If ag
is a polynomial in ¢ variables and their conjugates, we will use the notation

llas|l = sup{las (21, .-, 2g)[ | |zi = 1}

Lemma 9.6. Let (f1,...,fq) and (01,...,0,) be two g-tuples of real numbers and
let (g1,.-.,94) be a g-tuple of complex numbers, such that

1> fi>-->f,>0.
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Suppose that there exists a strictly decreasing sequence {ps}sen of positive real num-
bers so that p1 <1 and a sequence of complex-valued polynomials {as}sen in q
variables and their conjugates, such that, for all n € N,
q
> nfy R(emig ZM (e, ), (44)
p=1
and there exists N such that

e
D sl as|
s=1

s convergent for alln > N. Then, for allp=1,...,q,

R(gy) =0 if 0,€2nQ,
gp=0 if 6,¢2rQ.

Proof. There exists r € N, so that, for all ¢, either r0; € 2xZ or r0; ¢ 27wQ.

Equation (44) remains true if we replace (61,...,60,) with (r01,...,76,), so we may
assume that either 6; € 27Q or 6; € Z.
Let V be the set of accumulation points of {(e™%1,... e™%) | n € N}. We first

show that if (21,...,2,) € V, then R(g121) = 0. This will sufﬁce to prove our claim
if p =1, since if 0; € 277Z, then z; = 1 and R(g1) = 0. If not, any 2; € S* can arise
in such a limit, so R(z191) = 0 for all z; € S, which implies that g; = 0.
So, suppose that {n,,} is an increasing sequence in N and {(e"%1, ... einmba)}

converges to (#1,...,24). Then either

(1)

R(as(z1,22,...,2¢)) =0
for all s, or
(2) there exists so € N so that

Ao = RN(asy (21, 22,...,24)) # 0,
and for all s < sq
R(as(z1,22,...,24)) = 0.
If (1) holds, then Equation (44) implies

lim 7, R(e™%1g1) + €o(nym) = 0. (45)
m—00
where
q f N
eo(nm)zznm <f_11’) §R( T 0 pg )

Since, lim,, 0o R(e™m%g1) = N(2191) and lim,, 00 €0(n1) = 0, we conclude that

R(z191) = 0.
If (2) holds, then Equation (44) implies that

lim n,,R(z191) + €0(nm) — (MS()) A (1 +e1(nm)) =0

m—0o0 fl
where
le — %(aso mm91 mm02 o ,emmeq)),
1 .
Ams = o <M > (emmel, . .,emme‘?)) , and
m S0
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o0

am) = > Ams (46)
s=so+1

Observe that
lim A, =2y #0

m— 00

If m is large enough that [2,,| > 12| and n,, > N, then

/an—N
|Ap | < 22l B, where B, —|,uS|N||aSH.
MS() 0
Mnm N
Since lim,, o0 Z’J,}L =0and ) -, B, is convergent, lim,_, €1(n,,,) = 0. It then
50

follows that the sequence

G () 0.

is bounded. Thus ps, < f1 and it follows that R(z191) = 0.

Once we have proved that R(z191) = 0 for all (21,...,2,) € V, we may use
the same argument to prove that R(z2g2) = 0 for all (21, 29,...,24) and proceed
iteratively to complete the proof for all p. O

We are now read to prove the technical lemma used in the proof of Lemma 9.8

Lemma 9.7. Let {fp}]_, and {0,}]_, be 2 families of real analytic functions
defined on (—1,1) such that forallt e (—1,1),

1> i) > > [f;(0)] >0 and 6,0)=0

Let {gp}zq,:1 be a family of complex valued analytic functions defined on (—1,1) so
that g4(0) € R\ {0}. For alln € N, let

F—l—f—an 1n0

If there exists a constant K such that for all large enough n,

Then, f,(0) =0

Proof. We first notice that it suffices to prove the lemma in the restricted setting
where f,(t) > 0 for all p and all ¢. In general, we can then replace each f, with fg
and each 0, with 20, and apply the restricted form of the lemma to conclude that
%‘t:o fq2 = 0, which implies that f,(0) = 0. For the remainder of the proof, we

will assume that f,(¢) > 0 for all p and all ¢.
Let g(z) = K(1+ x)log(1 + ). Then g is analytic at 0. Consider the expansion

= E amx™

n>0
with radius of convergence § > 0. Notice that there exists N such that if n > N,

then
q
Z )"19p(0)

l\DIOq
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If n > N, then
q
KF,(0)log(F,(0)) = g <Z fp(O)"%(eme”(O)gp(O))>
p=1
q _ m
= D an <Z fp<0>”%<emf’p<°>gp<o>>> .
m>0 p=1
If we expand this out, for each g-tuple of non-negative integers m = (mq,...,my),

we get a term of the form

am1+”'+mq (Hg:l fp(o)mp)n (
Let

1
Using the equality R(z(w 4+ @)) = 2R(2)R(w) repeatedly, we may rewrite the term
n (47) in the form
3 §R( ( mGl(O) o 76im9q(0))

where H,; is a complex polynomial in ¢ Varlables and their conjugates. Since the
series ) - hi||Hy| is convergent for all n > N, we are free to re-arrange the terms.
We group all terms where the coefficient h,; agrees (of which there are only finitely
many for each value of h;;) and order the resulting terms in decreasing order of
co-efficient to express

K F,(0)log(F, mee (€m0, . emfa)),

where each Hg is a complex polynomlal in ¢ variables and their conjugates and
{hs}sen is a strictly decreasing sequence of positive numbers less than 1. Moreover,
for all n > N the series

o0

> hYH|

s=0

is convergent.

On the other hand,
q ,
Fo(0) =Y nfpR (ei"epgp <% - iép>> - Z FrR(e™or
p=1 p

where all functions on the right hand side are evaluated at 0. Since F,(0) =
KF,(0)log(F,(0)) we see that

q . IS
Z nfﬁ?ﬁ (eingpgp <% + 29p>> = Z h?%(HS (einel, o ,eineq)).
p=1 p s=1

The previous lemma then implies that for all p

o))

Since g,(0) is a non zero real number, f,(0) # 0 and 6,(0) = 0, we get that
£,(0) =0. O
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9.4. Degenerate vectors have log-type zero. Proposition 9.1 then follows from
the following lemma and Lemma 9.3.

Lemma 9.8. Let I' be a word hyperbolic group and let G be a reductive subgroup
of SLin(R). If {putuep is an analytic family of projective Anosov G-generic homo-
morphisms defined on a disc D and L(«) has log-type K at v € T,D for all infinite
order a € T, then D,L(«)(v) =0 for all infinite order o € T

Proof. Notice that if we replace the family {p, } e p by a conjugate family {p!, = gupugs  }ueD
where {gy}uep is an analytic family of elements of SL,,(R), then L(a)(p,) =
L(a)(p),) for all uw € D. Therefore, we are free to conjugate our original family
when proving the result.
By Proposition 2.21, we may choose 5 € T', so that p,(8) is generic. After

possibly restricting to a smaller disk about z, we may assume that p,(/3) is generic
for all w € D. We may then conjugate the family so that p,(8) lies in the same
maximal torus for all u, we can write

q—1

. ~ 1
pu(8") = L(B)"D + 3 Xy (cos(n o, + sin(nd )5,) + [y
p=1

where L(8), L(371), A\,, and 6, are analytic functions of u and

ILB) ()| > [Ar(u)] > [Aa(u)] > - > [Ag-1(u)] > ) 0
for all w € D.
Choose an infinite order element o € I" which is coprime to 5. Proposition 9.4,
implies that, for all n,

T(p(a),f") 1 " (Tr(p(p(a))a))
L(6™)T(p(e), p(53)) = (L(ﬂ)L(ﬂl)) (T(p(a),p(ﬂ))>
" )

5 (i) 0o (i e

has log-type K at v, since the numerator has log-type K at v and the denominator
is a product of two functions which have log-type K at v.

Since « and 8 are coprime and p is projective Anosov, £(57) @ 0(a™) = R™,
so Tr(p(p(a)),q) # 0 (since p(p(a)) is a projection onto the line £(a™) paral-
lel to (a™) and q = q(p(B)) is a projection onto the line £(87)). Similarly,
T(p(a), p(B)) # 0, since £(3*) & B(a) = R™.

Let {us}se(—1,1) be a smooth family in D so that ug = z and iy = v. We now
apply Lemma 9.7, taking

- (us)
fo(s) = )

w(s) = (T(p(a),p(ﬂ))(us) T<p<a>,p<ﬂ>><us>)’

ifp=1,...,¢—1, and taking
fo(s) =

9a(s) = o
! T(p(e), p(B))(us)’
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Oq,(s) = 0.
We conclude from Lemma 9.7 that f, = 0. Thus

D.L(B)(v) - L(B")(2) = —L(B)(2) - D:L(B™")(v). (48)
Since L(B) and L(37!) both have log-type K at v, we get that

Dzl—(ﬁ)(v) - o 5 an Dzl—(ﬁ_l)(v) _ o —1y(,
B grogL)a) and S~ mogLs . )
Combining (48) and (49) we see that
v “Hw
Klog(L(B)(2))) = 2t DB O ey 5-1)2))

L))~ LB (2)

Since log |L(8)(2)| > 0 and log |L(871)(2)| > 0, this implies that K = 0. Therefore,
L(«) has log-type 0 at v for all infinite order « € T', so D,L(«)(v) = 0 for all infinite
order o € I. g

10. VARIATION OF LENGTH AND COHOMOLOGY CLASSES
The aim of this section is to prove the following proposition.

Proposition 10.1. Let I' be a word hyperbolic group and let G be a reductive
subgroup of SL,,(R). Suppose that n : D — Hom(I',G) is an analytic map such
that for each u € D, n(u) = p,, is irreducible, projective Anosov, and G-generic. If
veT,D and

D.L(a)(v) =0
for all infinite order elements o € T, then D.n(v) defines a zero cohomology class

in Hy (T, 9).

We recall that D,n(v) defines a zero cohomology class in Hé(z)(l", g) if and only
if it is tangent to the orbit Gn(z) in Hom(T', G) C G".

Propositions 9.1 and 10.1 together imply that the pressure form is non-degenerate
on C4(T', G). More generally, we obtain the following corollary.

Corollary 10.2. Let I' be a word hyperbolic group and let G be a reductive subgroup
of SL,(R). Suppose thatn : D — C4(T', G) is an analytic map and p is the associated
pressure form on D. Ifv e T.D and

p(v,v) =0,
then D.n(v) defines a zero cohomology class in Hs(z) (T, g).

In the course of the proof of Proposition 10.1 we also obtain the following fact
which is of independent interest.

Proposition 10.3. Suppose that G is a reductive subgroup of SLy, (R) and p € Cy(T', G).
Then the set

{D,L(a) | « infinite order in T},
generates the cotangent space T3Cy(T', G).

Both propositions will be established in section 10.3.
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10.1. Invariance of the cross-ratio. We recall the definition of the cross ratio
of a pair of hyperplanes and a pair of lines. First define

RP(m)™® = {(¢, ¢, u,v) € RP(m)** x RP(m)? : (¢, v) and (¢, u) span R™}.
We then define b : RP(m)®*) — R by

{lu) ($]v)
(elv) (Wlu)’

Notice that for this formula to make sense we must make choices of elements in ¢,
1, u, and v, but that the result is independent of our choices.

If p is a projective Anosov representation with limit curves £ : 9,,I' — RP(m)
and 6 : DT — RP(m)*, we define the associated cross ratio on 9,,T¥), as in [42],
to be

b(p, 1, u,v) =

by (2, y, 2, w) = b(0(x),0(y), £(2), {(w)). (50)

We first derive a formula for the cross-ratio at points associated to co-prime
elements. This formula generalizes the formula in Corollary 1.6 from Benoist [4].

Proposition 10.4. If p : I' — SL,,(R) is a projective Anosov representation and
a and B are infinite order co-prime elements of I, then

b,(a”, 87,87, a™) =T(p(a),p(B)) = lim LL(?:)@'

Proof. Choose at € {(a™),a™ € 8(a™), b+ € {(B1) and b~ € (7). Observe that

IO
p(a)(u) - <a,|a+> +'

for all u € R™. In particular,
(b~[a™)

a)(u)=—>"1""S__ (g7 |u)bT.
PP = o ey (@7l b

Therefore,

(a”[p™) (b~ |a™)

T(p()p(B)) = aJat) (b b b, (o™, 87, 8%, a™).

The last equality in the formula follows immediately from Proposition 9.4. O

As a corollary, we see that if L(«) has log-type zero for all infinite order o € T,
then the cross-ratio also has log-type zero.

Corollary 10.5. LetI' be a word hyperbolic group and let G be a reductive subgroup
of SLin(R). Suppose that {p, : ' = Glyuep is an analytic family of projective
Anosov G-generic homomorphisms parametrized by a disc D. If L(«) has log-type
0 atveT,D for all infinite order o € I, then for all distinct collections of points
T,Y, z2, W € Do, the function

u = bpu(x,y,z,w),

is of log-type 0 at v.
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Proof. Suppose that «, 3 € I" have infinite order. Propositions 9.4 and 10.4 imply
that b,(a™, 87, 87, a™) has log-type 0.
Since pairs of fixed points of infinite order elements are dense in d,.I'® and &,
and 6, vary analytically by Proposition 6.1, we see that
p = bp(.I, ya Za w)a
has log-type 0 for all pairwise distinct x,y, z, w € Ox L. 1

10.2. An useful immersion. We define a mapping from PSL,,(R) into a quotient
W(m) of the vector space M™*1 of all (m + 1) x (m + 1)-matrices and use it to
encode a collection of cross ratios.

Consider the action of the multiplicative group (R \ {0})2™+1) on M™+! given
by

(CL(), ceey Qyp, bo, [P ,bm)(Mi,j) = (aibjMiyj).
We denote the quotient by
W(m) = M™ /(R \ {0})*0"FV.

Given a projective frame F = (xq,...,2,) for RP(m) and a projective frame

F* = (Xo,...,Xm) for the dual RP(m)*, let

e I; be non zero vectors in x;, such that
m
i=0

° XZ be non zero covectors in X; such that
0=> X, (52)
i=0

Observe that z;, respectively )A(l-, are uniquely defined up to a common multiple.
Then, the mapping
pr et PSLy (R) — W(m)
given by
pr et A Xi(A(zy))
is well defined, independent of the choice of z; and X;.

Lemma 10.6. The mapping pr,p+ 18 a smooth injective immersion.

Proof. Since pp p-(A) determines the projective coordinates of the image of the
projective frame (zo,...,%,) by A, up p- is injective.
Let o = pp p-. Let {At}ie(—1,1) be a smooth one-parameter family in PSL,,(R)
such that
A€ Ta,(PSL,,(R)) and Du(A) = 0.

Let {)A(f}te(_m) and {#! }4¢(_1,1) be time dependent families of covectors in X; and
vectors x; respectively, and let
af ; = X[ (Ai(&)).

If Dp(A) = 0, then there exists A; and p; such that

ij = i+ 11505
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Multiplying each X? by e=** and each &! by e #o! has the effect of replacing \;

and p; by A; — Ao and p; — 1o respectively. Thus, we may assume that Ao = pg = 0.
We now use the normalization (51) and (52), to see that

m m
> Nitig =0=" pai;.
i=1 j=1

On the other hand, since the collections of vectors {v; = (a;,;)1<i<m } and {w; = (a;;)1<i<m }
are linearly independent, this implies that A; = p; = 0 for all ¢ and j. O

The following lemma relates the immersion 4 and the cross ratio.

Lemma 10.7. Let {xo,...,@m} and {yo,...,ym} be collections of m + 1 pairwise
distinct points in OsoI'. Suppose that p : T' — SL,,,(R) is projective Anosov with
limit maps & and 6 and that

Fo=(&(x0), -, E(wm)),
F* o= (0(yo)-- -, 0(ym))-

are projective frames for RP(m) and RP(m)*. If a € T, then
e (T (p(@))) = [Dp (i, 2, o), w)]

where z and w are arbitrary points in Oxo L.

Proof. Choose, for each i =0,...,m, ¢; € 0(y;) and v; € £(x;), and choose ¢ € 6(z)
and v € {(w). Then

prre(mm (p())) = [{dila(v;))]

e (é1]a(w,)) (@l0)
i|a(v; v
[b (yi,Z,CY(ZC‘),’U})] = |: - . :| :
! ! (¢ilv) (dla(v;))
The equivalence is given by taking a; = % and b; = m (]

10.3. Vectors with log type zero. Propositions 10.1 and 10.3 follow from Propo-
sition 9.1 and the following lemma.

Lemma 10.8. Let I' be a word hyperbolic group and let G be a reductive subgroup
of SLin(R). Suppose that n: D — Hom(T', G) is an analytic map such that for each
u € D, n(u) = py is irreducible, projective Anosov and G-generic. Suppose that
v € T,D and that D,L(c)(v) =0 for all infinite order o € T'. Then the cohomology
class of Dn(v) vanishes in H}](z) (T, g).

Proof. Let {us}se(—1,1) be a path in D so that up = z and 1 = v. Let py = py,.
By Corollary 10.5,
d
— b,, (x,y, 2z =
dt t:O( Pt( ayv ,U})) O
for any pairwise distinct (x,y, z, w) in JxI.
Lemma 2.18 allows us to choose collections {zo,...,zn} and {yo,...,ym} of
pairwise distinct points in JxI" such that if

Feo= (&(xo), - &(am)),

Fo= (0e(vo), - - - O(ym))-
then Fy and Fy are both projective frames. For some € > 0, F; and F}" are projective
frames for all ¢ € (—¢,€). (We will restrict to this domain for the remainder of the
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argument.) We may then normalize, by conjugating p; by an appropriate element
of SL,,(R), so that F; = Fj for all ¢ € (—¢,€).
Let

Wt = [F, FF © T
Then, by Lemma 10.7,

/Lt(pt(a)) = [bpt (xia 2, a(yj)v U])]
for all a € I'. Therefore,

d
al,, pe(pe(a)) =0.

for all @ € I'. Notice that if x and x* are projective frames, then
tx,Box+ (A) = Ho oy (B~' o A),
for all A, B € SL,,,(R). If we choose C; € SL,,,(R) so that (C;')*(F}) = Fj, then

0 = G| )= G| (lCinta))
= Duyug %_O(Ctopt(a))>

Lemma 10.6 implies that pg is an immersion, so

d
&, (Ctopi(a)) =0
Thus,
d )
Coo s pt(a) + Chop(a) =0. (53)
tli=o
Taking o = id in Equation (53), we see that Cy = 0. Since Cy = I,
d
Bl =0
at|,_, pe()

for all @ € T'. Therefore the cohomology class of Dn(v) vanishes in H717(Z) (T, sl (R)).
Since G is a reductive subgroup of SL,,(R), s[,,R = g @ g*, so Hé(z)(F,g) injects
into H;(Z)(l",sln (R)). Therefore, Dn(v) vanishes in Hs(z)(l", g) as claimed. O

11. RIGIDITY RESULTS

In this section, we establish two rigidity results for projective Anosov represen-
tations. We first establish Theorem 1.2 which states that the signed spectral radii
determine the limit map of a projective Anosov representation, up to the action of
SL,,(R), and that they determine the conjugacy class, in GL,,(R), of an irreducible
projective Anosov representation.

Theorem 11.1. [SPECTRAL RIGIDITY] Let I' be a word hyperbolic group and let
p1: T = SLu(R) and pg : T — SL,,(R) be projective Anosov representations such
that

L(v)(p1) = L(7)(p2)

for all infinite order v € T'. Then there exists g € GL,,,(R) such that g o & = &a.

Moreover, if p1 is irreducible, then ps = gp1g~".
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We next establish our rigidity result for renormalised intersection. If H is a
Lie group, denote by Z(H) its center and by H° the connected component of the
identity. We denote by 7, the projection from SL,,(R) to PSL,,(R). If H C SL,,(R)
denote by PH = m,,,(H) the projectivised group. Finally, if p : T' — SL,,(R) is a
representation, denote by G, the Zariski closure of p(I").

Theorem 11.2. [INTERSECTION RIGIDITY| Let ' be a word hyperbolic group and
let p1 : T = SLyn, (R) and p2 : T — SLy,, (R) be projective Anosov representations
such that

J(p1,p2) = 1.
IfG,, and G,, are connected, then there exists an isomorphism o : G,, /Z(G,,) — Gp, /Z(G,,)
such that
op1 = p2,
where p; : T — G, /Z(G,,) is the composition of p; and the projection of G,, onto
G,./Z(Gy,).

REMARKS:

(1) If either G,, or G,, is not connected, then Theorem 11.2 holds for the finite
index subgroup

Lo =T Npr(Gp,) Npst(Gp,)-

Indeed, each p;|Ty is again projective Anosov (see [26, Cor. 3.4]), and
Corollary 8.2 implies that J(p1|r,, p2|r,) = 1.

(2) Consequently, if G and GJ, are not isomorphic, then Theorem 11.2 implies
that J(p1, p2) > 1.

(3) The representations need not actually be conjugate if J(p1,p2) = 1. Let p:
m1(S) = PSL2(R) be a Fuchsian representation and let 73, : PSL2(R) — PSLy(R)
be the irreducible representation, then

J(rnop,Tmop) =1

but 7, o p and 7, o p are not conjugate if n # m.

11.1. Spectral rigidity. Our spectral rigidity theorem will follow from Proposi-
tion 10.4 and work of Labourie [42].

Recall, from Section 10.1, that we defined the cross ratio b of a pair of hyper-
planes and a pair of lines. Then, given a projective Anosov representation p with
limit maps & and 60, we defined a cross ratio b, on 0o I'™ by letting

by (2, y, 2, w) = b(0(x),0(y), £(2), £(w)). (54)

Labourie [42, Theorem 5.1] showed that if p is a projective Anosov representation
with limit map &, then the dimension dim (£(0xI")) can be read directly from the
cross ratio b,. (In [42], Labourie explicitly handles the case where I' = m(5),
but his proof generalizes immediately.) Consider SY the set of pairs (e,u) =
(€0 -5 €p,Ug, ... Up) Of (p+ 1)-tuples in Jo. I such that e; # e; # up and u; #
u; # eg when j >4 > 0. If (e,u) € S¥, he defines

X, (€,u) = if}gto(bp(eu €0, Uj, Uo))-
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Lemma 11.3. If p: T' — SL,,(R) is projective Anosov, then
dim (£(0I")) = inf{p € N : Xf)p =0} —1.
Lemma 4.3 of Labourie [42] extends in our setting to give:

Lemma 11.4. If p; : T' = SL,,,(R) and p2 : T' — SL,(R) are projective Anosov
and b,, = b,,, then there ezists g € GL,,(R) such that g o &1 = &s.
Moreover, if py is irreducible, then g (mm, o p1) 9=t = 7m0 pa.

Proof. Lemma 11.3 implies that
dim (£1(95cT)) = dim (§2(9eeT)) = p-
Choose {zg,...,2p} C O so that

{51(1‘0), N 751 (J,'p)} and {fg(l‘o), N ,fg(xp)}

are projective frames for (£1(0xI")) and (£2(0xT")) (see Lemma 2.17).

Choose ug € &1(mo) and {e1,...,0p} C (R™)* such that ¢; € 61(x;) and
¢i(ug) = 1. One may check that {¢1,...,¢p} is a basis for (61(0-I')) . Complete
{¢1,...,p} to a basis

Bi={¢1,.- -, 0p,Ppt1, - Pm}
for (R™)* such that ¢;((£1(0xI"))) = 0 for all ¢ > p. For y € 0T, the projective
coordinates of &1 (y) with respect to the dual basis of B are given by
(pil&1(y)) (#1luo)
(il y) s =
b plal s T2 N ) Caduo)
which reduces to

by, (@1, 21,Y,20), ..., bp, (Tp, 21,9, 20),0,...,0].

Now choose vy € &a2(xo) and {¢1,...,1,} such that ¢; € O2(x;) and ¥;(vo) = 1.
One sees that {11,...,9,} is a basis of (§2(0scI')) . One can then complete {91, ..., ¥}
to a basis

By = {wla---udjpva-i-lv-'-vwm}
for (R™)* such that 1;({2(0-I"))) = 0 for all ¢ > p. One checks, as above, that if
y € Oool, then the projective coordinates & (y) with respect to the dual basis of Bo
are given by
[bp, (1,21, Y, 0), - ., bpy (Tp, 21, Y, 20), 0, ..., 0].

We now choose g € GL,,,(R) so that gp; = 1; for all 4. It follows from the fact
that b, (z;, x1,y,z0) = by, (@i, 21, Y, o) for all i < p, that go & = &a.

Assume now that p; is irreducible, so that p = m. Lemma 2.17 implies that there
exists a (m+1)-tuple (zo, . .., Zy) of points in Jo T such that F = (&1 (x0), ..., &1(2m))
is a projective frame for RP(m) and F* = (61 (z9), ..., 01(zm)) is a projective frame
for RP(m)*. Thus, using the notation of Lemma 10.7, we have that, given arbitrary
distinct points z, w € Ox I,

HE, F* (7Tm (pl (7))) = [bpl (Iiv 2, FY('rj)v U})]
Similarly
pr,p- (97 T (2(1)9) = Horgrs (Tm(p2(7))) = [bps (@i, 2,7(25), w)]
Thus, since b,, =b,,,

pr, = (p1(7)) = pr, (g p2(7)9)-
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Since pp py is injective, see Lemma 10.6, it follows that

g(mtmop1) g™t =m0 pa.

We can now prove our spectral rigidity theorem:

Proof of Theorem 11.1: Consider two projective Anosov representations p; : I' — SL,,,(R)
and py : I' = SL,, (R) such that L(y)(p1) = L(7)(p2) for all v € I'. Suppose that «
and [ are infinite order, co-prime elements of I". Proposition 10.4 implies that

L L)
n—oo L(a)(p1)"L(B)(p1)"
L L) ()
n—oe L(a )(Pz) L(B)(p2)"
= P2(ﬂ y +7ﬂ+)'

Since pairs of fixed points of infinite order elements of I' are dense in 9., T'(?) [25]
and b,, and b,, are continuous, we see that b,, =Db,,.

Lemma 11.4 implies that there exists g € GL,,(R) such that go & = &. If py is
irreducible, then Lemma 11.4 guarantees that g (7, 0 p1) g~! = 7 0 pa, SO

bPl(ﬁ_aa_aa+aﬂ+) =

T © (9p19™") = T © pa.

Notice that if A and B are proximal matrices such that 7(A4) = w(B) and that the
eigenvalues of A and B of maximal absolute value have the same sign, then A = B.
Therefore, if « is any infinite order element of T, gpa(a)g~t = pi(a). It follows
that gpag~' = p1 as claimed. 0

11.2. Renormalized intersection rigidity. Theorem 11.2 follows from Corollary
2.20, Corollary 8.2 and Corollary 11.6 below, which is a consequence of a deep result
of Benoist [3].

If G is a real-algebraic semi simple Lie group, let ag be a Cartan subspace of the
Lie algebra g of G and let aG be a Weyl Chamber. Let ug : G — aG be the Jordan
projection.

Let

(a8)* ={p € ag: plag >0},
If ¢ lies in the interior int(al)* of (al)*, then if v € al and ¢(v) = 0, then v = 0.

For a subgroup A of G the limit cone £ of A is the smallest closed cone in aé
that contains

{u(g) : g € A}.

Benoist [3] proved that Zariski dense subgroups have limit cones with non-empty
interior.

Theorem 11.5. [BENOIST] If A is a Zariski dense subgroup of a connected real-
algebraic semi-simple Lie group G, then £a has non empty interior.

Benoist’s theorem implies the following corollary, which was explained to us by
J.-F. Quint. This corollary is a stronger version of a result of Dal’Bo-Kim [21] (see
also Labourie [47, Prop. 5.3.6]).
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Corollary 11.6. [QUINT| Suppose that A is a group, G, and G, are center-
free connected real-algebraic semi-simple Lie groups without compact factors, and
p:A—=G,andn: A — G, are Zariski dense representations. If there exist o1 € int(aép)

and @2 € int(aéﬂ)* such that for all g € A one has

*

e1(pc,(p(9)) = p2(ue, (1(9)))

L1 A — A extends to an isomorphism G, — G,).

then nop~
Proof. Let H be the Zariski closure of the image of the product representation
pxn:A—G,xG,, defined by g — (pg,ng). Since the equation

v1(ue, (91)) = p2(1c, (92)) (55)
holds for every pair (g1,92) € p x n(A), Benoist’s [3] Theorem 11.5 implies that
the same relation holds for every pair (¢g1,¢92) € H.

The group HN(G, x{e}) is a normal subgroup of G, it is hence (up to finite index)
a product of simple factors. Equation (55) implies that for all (g,e) € HN(G, x {e})
necessarily one has ¢1(ug,g) = 0. Since 1 (v) > 0 for all v € agp — {0}, one has
pG,(g9) = 0. This implies that H N (G, x {e}) is a normal compact subgroup of
G,. Since G, does not have compact factors and is center free one concludes that
HN (G, x e) = {e}.

The same argument implies that HN ({e} x G;;) = {e} and hence H is the graph
of an isomorphism extending n o p~*. 0

11.3. Rigidity for Hitchin representations. O. Guichard [27] has announced a
classification of the Zariski closures of lifts of Hitchin representations.

Theorem 11.7. [GUICHARD]| If p : m(S) — SL,,(R) s the lift of a Hitchin repre-
sentation and H is the Zariski closure of p(m1(S)), then
e If m = 2n is even, H is conjugate to either 1,,(SL2(R)), Sp(2n,R) or
SLap, (R).
o Ifm=2n+1 is odd and m # 7, then H is conjugate to either 1, (SL2(R)),
SO(n,n 4+ 1) or SLap41(R).
e Ifm =1, then H is conjugate to either 77(SL2(R)), G2, SO(3,4) or SL7(R).
where T, : SLa(R) — SL,, (R) is the irreducible representation.

Notice in particular, that the Zariski closure of the lift of a Hitchin represen-
tation is always simple and connected. We can then apply our rigidity theorem
for renormalized intersection to get a rigidity statement which is independent of
dimension in the Hitchin setting.

Corollary 11.8. [HITCHIN RIGIDITY| Let S be a closed, orientable surface and let
p1 € Hin, (S) and pa € Hun, (S) be two Hitchin representations such that

J(p1,p2) = 1.
Then,
e cither my = ma and p1 = p2 in Hum,, (5),
e or there exists an element p of the Teichm/f%ller space T(S) so that py =
Ty (p) and pz = Tm, (p).

Observe that the second case in the corollary only happens if both p; and ps are
Fuchsian.
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Proof. In order to apply our renormalized intersection rigidity theorem, we will
need the following analysis of the outer automorphism groups of the Lie algebras of
Lie groups which arise as Zariski closures of lifts of Hitchin representations. This
analysis was carried about by Giindogan [28] (see Corollary 2.15 and its proof).

Theorem 11.9. [GUNDOGAN [28]] Let Out(g) be the group of exterior automor-
phism of the Lie algebra g. Then, if n > 0,

(1) If g = slany2(R), then Out(g) is isomorphic to (Z/2Z)* and is generated
by X — —X*' and conjugation by an element of GLay12(R).

(2) If g = slant1(R), then Out(g) is isomorphic to Z/27Z and is generated by
X — —X".

(3) If g = so(n,n+ 1,R), then Out(g) is isomorphic to Z/2Z and is generated
by conjugation by an element of SLay,+1(R).

(4) If g = sp(2n + 2,R), then Out(g) is isomorphic to Z/2Z and is generated
by conjugation by an element of GLay,2(R).

(5) If g = g2 then Out(g) is trivial.

(6) If g = sla(R), then Out(g) is isomorphic to Z/27Z and is generated by
conjugation by an element of GLa(R).

(7) If g = so(n,1,R), then Out(g) is isomorphic to Z/2Z and is generated by
conjugation by an element of GL,4+1(R).

Let p1 : m1(S) — PSLy,, (R) and pg : m1(S) — PSLy,, (R) be two Hitchin repre-

sentations such that

J(p1,p2) = 1.
Theorem 11.7 implies that G,, and G,, are simple and connected and have center
contained in {£1}.

Theorem 11.2 implies that there exists an isomorphism o : G,, — G,, such that
p2 = oo p1. If Gy is not conjugate to 7., (SL2(R)), then it follows from Theorem
11.7, that m; = ma = m, and that, after conjugation of p1, G,, = G,, = H so that
o is an automorphism of H.

We first observe that, since H is connected, there is an injective map from Out(H)
to Out(h). We now analyze the situation in a case-by-case manner using Giindogan’s
Theorem 11.9.

(1) If H = PGg, then o is an inner automorphism, so p; = p2 in H7(5).

(2) If H = PSO(n,n + 1) or H = PSp(2n,R), o is either the identity or the
conjugation by an element of PGLy, 11 (R) or PGLy,(R), so p1 = p2 in Hayi1(S) or
Han(S).

(3) If H = SL,,,(R), then, after conjugation of p; by an element of PGL,,(R), o
is either trivial or po = 10 p; where n(g) = transpose(g—!). If o is non-trivial, then
since J(p1, p2) = 1 Corollary 8.2 implies that there exists ¢ > 0 so that

cui(p1(7)) = p1((p2(7)) = —pm(p1(7))
for all v € I, where

(,ul,...,,um):SLm(R)%{(al,...,am)eRm:Zai:()andal>-~->am}

is the Jordan projection of SL,, (R). Thus, the limit cone of p; (") has empty interior.
Since p1(I') is Zariski dense, this contradicts Benoist’s Theorem 11.5. Therefore,
p1 = p2 in H,p,(S) in this case as well.

(4) If G,, is conjugate to Ty,, (SL2(R)), then G,, is conjugate to 7y,,(SL2(R)).
So, after conjugation, there exist Fuchsian representations, n; : m1(S) — SLa(R)
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and 7y : m1(S) — SLa(R), such that p1 = 7, 0n1, p2 = T, © 11 and there exists
an automorphism of o of SLy(R) such that o on; = 1. Case (6) of Giindogan’s
Theorem then implies that 7 is conjugate to 72 by an element of GL,(R). Therefore,
we are in the second case of Theorem 11.8. This completes the proof.

O

11.4. Benoist representations. We say that an open subset £ of RP(m) is prop-
erly convex if its intersection with any projective line is connected and its closure
) is contained in the complement of a projective hyperplane. Moreover, a properly
convex open set 2 is said to be strictly conver if its boundary 92 does not contain
a projective line segment. A subgroup A C Aut(2) = {g € PGL,,(R) : ¢Q2 = Q} is
said to divide the open properly convex set Q if the quotient A\ is compact.
Benoist [6, Thm. 1.1] proved that if A divides the properly convex open set €2,
then  is strictly convex if and only if A is hyperbolic.

Definition 11.10. IfT is a torsion-free hyperbolic group, a faithful representation
p: T = PGL,,(R) is a Benoist representation if p(I") divides an open strictly convex
set 2 C RP(m).

It is a consequence of Benoist’s work [6] that a Benoist representation is irre-
ducible and projective Anosov (see Guichard-Wienhard [26, Proposition 6.1] for a
detailed explanation).

Benoist [7, Corollary 1.2] (see also Koszul [40]) proved that the space By, (T")
of Benoist representations of I' into PSL,,(R) is a collection of components of
Hom(T", PSL,,(R)). Let

Bm(F) = Bm(r)/PGLm(R)

We call the components of B,,(I") Benoist components.

Benoist [5, Theorem 1.3] proved that the Zariski closure of any Benoist repre-
sentation is either PSL,,(R) or is conjugate to PSO(m — 1,1). We may thus apply
the technique of proof of Theorem 11.8 to prove:

Corollary 11.11. [BENOIST RIGIDITY]| Let p1, p2 € B, (T). If J(p1,p2) = 1, then

The same techniques also provide the following related rigidity result for Benoist
representations. Observe that if p is a projective Anosov representation, then so is
Adp : T — PGL(sl(m,R)) (see the discussion in Guichard-Wienhard [26, Section
10.2]) If n(g) = (g~ 1)t for all g € PGL,,(R), and p € B,,,(T'), then n o p is the dual
(or contragredient) representation of p.

Corollary 11.12. If p1, p2 € B,,(T"), then J(Ad p1,Ad p2) = 1 if and only if either
p1 = pa 0T p2 =10 p1.

As a consequence, we recover a result of Cooper-Delp [18] and Kim [38] which
asserts that if p1, p2 € B, (I") are the holonomies of strictly convex projective struc-
tures with the same Hilbert marked length spectrum, then p; and ps either agree
or are dual. Recall that if p € B,,(I") and v € T', then the length, in the Hilbert
metric, of the closed geodesic on p(I")\(2, associated to [v] is

pa(p(y)) = m(p(7))
2
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(see, for example, Benoist [6, Proposition 5.1]). Furthermore, if g € PGL,,(R) then
log(A(Ad g)) = p1(g) — pm(9)-

Hence if p; and ps are the holonomies of strictly convex projective structures with
the same Hilbert marked length spectrum, then A(Ad p1(v)) = A(Ad pa(7)) for all
~v € I'. Hence, J(Ad p, Ad p2) = 1, so the result follows from Corollary 11.12.

12. PROOFS OF MAIN RESULTS

In this section, we assemble the proofs of the results claimed in the introduction.
Several of the results have already been established.

The inequality in Theorem 1.1 follows from Corollary 8.2 and rigidity follows
from Theorem 11.2. Theorem 1.2 is proven in Section 11 as Theorem 11.1, while
Corollary 1.5 is proven as Corollary 11.8.

Theorem 1.3 follows from Proposition 8.1 and Corollary 8.2. Theorem 1.10
combines the results of Propositions 4.1 and 5.7.

The proof of Theorem 1.4 is easily assembled.

Proof of Theorem 1./: Consider the pressure form defined on C4(I', G) as in Defini-
tion 8.3. Recall that by Corollary 8.2 the pressure form is non-negative. Moreover,
by Corollary 10.2 the pressure form is positive definite, so gives a Riemannian
metric. The invariance with respect to Out(T") follows directly from the definition.

Proof of Corollary 1.6: Corollary 7.6 implies that every Hitchin component lifts to
a component of Cy(m1(.5), SL,, (R)) which is an analytic manifold. Theorem 1.4 then
assures that the pressure form is an analytic Riemannian metric which is invariant
under the action of the mapping class group. Entropy is constant on the Fuchsian
locus, so if p1, p2 € T(S), the renormalized intersection has the form

. 1 log A(Tm © p2)(7)
I(Tim © p1, T = ey
(moprTmopa) = Jm o1 ))HERZ log A(7m © p1)(7)
Y Tmop1
log A(p2) (1)

1 )
7500 # (R, (1)) £ 7, log Alp1)(7)

Wolpert [68] showed that the Hessian of the final expression, regarded as a func-
tion on 7 (.S), is a multiple of the Weil-Petersson metric (see also Bonahon [11] and
McMullen [53, Theorem 1.12]).

Proof of Corollary 1.7: We may assume that I' is the fundamental group of a com-
pact 3-manifold with non-empty boundary, since otherwise C.(I', PSL(C)) consists
of 0 or 2 points.

We recall, from Theorem 7.5, that the deformation space C.(T", PSL2(C)) is an
analytic manifold. Let « : PSL2(C) — SL,,(R) be the Pliicker representation given
by Proposition 2.13.

If we choose co-prime infinite order elements « and [ of I', we may define a
global analytic lift

w: C(T',PSL2(C)) — Hom(T', PSL(C))

by choosing w([p]) to be a representative p € [p] so that p(«) has attracting fixed
point 0 and repelling fixed point co and p(f) has attracting fixed point 1. Then

A=aow:C(T,PSL(C)) — Hom(T, SL,,(R))
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is an analytic family of projective Anosov homomorphisms. -
We define the associated entropy h and renormalised intersection J functions on
C.(T, PSL2(C)) by setting

h(lp)) = h(A(p])) and I([p1], [p2]) = I(A([p1]), A([p2)))-

Since w is analytic, both h and J vary analytically over C.(I", PSLy(C)) and we may
again define a non-negative 2-tensor on the tangent space TC.(I', PSL2(C)) which
we again call the pressure form, by considering the Hessian of J.

Let G = «a(PSL2(C)). Then G is a reductive subgroup of SL,,(R). If p(T') is
Zariski dense, then A(p)(T') is Zariski dense in G, so Lemma 2.21 implies that p(T")

contains a G-generic element. Since « is an immersion,
a, s Hy(T,s12(C)) = Hy (T, 0)

is injective where g is the Lie algebra of G. Corollary 10.2 then implies that the
pressure form on T,C.(I", PSLy(C)) is Riemannian if p is Zariski dense.

If p = w([p]) is not Zariski dense, then its limit set is a subset of R  C, and the
Zariski closure of p(T") is either H; = PSL(2,R) or Hy = PSL(2,R) U (z — —z)PSL(2, R).
Since each H; is a real semi-simple Lie group, Proposition 7.2 then implies that the
subset of non-Zariski dense representations in C.(I', PSL2(C)) is an analytic subman-
ifold. We then again apply Corollary 10.2 to see that the restriction of the pressure
form to the submanifold of non-Zariski dense representations is Riemannian.

The pressure form determines a path pseudo-metric on the deformation space
C.(T, PSL2(C)), which is a Riemannian metric off the analytic submanifold of non-
Zariski dense representations and restricts to a Riemannian metric on the subman-
ifold. Lemma 13.1 then implies that the path metric is actually a metric. This
establishes the main claim.

Theorem 7.5 implies that if ' is not either virtually free or virtually a surface
group, then every p € C.(I',PSL2(C)) is Zariski dense. Auxiliary claim (1) then
follows from our main claim.

In the case that I' is the fundamental group of a closed orientable surface, then
the restriction of the pressure metric to the Fuchsian locus is given by the Hessian
of the intersection form I. It again follows from work of Wolpert [68] that the
restriction to the Fuchsian locus is a multiple of the Weil-Petersson metric. This
establishes auxiliary claim (2).

Proof of Corollary 1.8: Let « : G — SL,,,(R) be the Pliicker representation given
by Proposition 2.13. An analytic family {p, : I' = G}uenr of convex cocompact ho-
momorphisms parameterized by an analytic manifold M, gives rise to an analytic
family {a o py }uenr of projective Anosov homomorphisms of T' into SL,, (R). Theo-
rem 1.3, and Corollary 2.14 then imply that topological entropy varies analytically
for this family. Results of Patterson [56], Sullivan [66], Yue [69] and Corlette-Tozzi
[20] imply that the topological entropy agrees with the Hausdorff dimension of the
limit set, so Corollary 1.8 follows.

Proof of Corollary 1.9: Given a semi-simple real Lie group G with finite center
and a non-degenerate parabolic subgroup P, let « : G — SL,,,(R) be the Pliicker
representation given by Proposition 2.13. Then H = «(G) is a reductive subgroup
of SL,,,(R).

We will adapt the notation of Proposition 7.3. Let

Z(I;G,P) = Z(I;G,P) /Gy
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where Gq is the connected component of G. Then, 2(1“; G,P) is a finite analytic
manifold cover of the analytic orbifold Z(T"; G, P) with covering transformations
given by G/Go, see Proposition 7.4. Since G acts freely on 2,;(1"; G, P), the slice
theorem implies that if [p] € Z(I'; G, P), then there exists a neighborhood U of [p]
and a lift
B:U — Z(T;G,P) C Hom(T, G).

Then w = a0 is an analytic family of H-generic projective Anosov homomorphisms
parameterized by U. The Hessian of the pull-back of the renormalized intersection
gives rise to an analytic 2-tensor, again called the pressure form, on TU. Suppose
that v € T.U has pressure norm zero. Then Corollary 10.2 implies that Dw(v) is
trivial in Hi(z)(l", b) where b is the Lie algebra of H. Since « is an immersion,

a. s Hy (T 9) = HL (T, b)

is an isomorphism. Since [, identifies T, U with Hé(z)(l“, g) this implies that v = 0,
so the pressure form on TU is non-degenerate. Therefore, the pressure form is
an analytic Riemannian metric on zZ (T'; G, P). Since the pressure form is invariant
under the action of G/Go it descends to a Riemannian metric on Z(I'; G, P) This
completes the proof.

13. APPENDIX
We used the following lemma in the proof of Corollary 1.7.

Lemma 13.1. Let M be a smooth manifold and let W be a submanifold of M.
Suppose that g is a smooth non negative symmetric 2-tensor g such that

e ¢ is positive definite on T, M if v € M\ W,

e the restriction of g to T, W is positive definite if x € W.
Then the path pseudo metric defined by g is a metric.

Proof. 1t clearly suffices to show that if x € M, then there exists an open neigh-
borhood U of M such that the restriction of g to U gives a path metric on U. If
x € M\ W, then we simply choose a neighborhood U of x contained in M \ W and
the restriction of ¢ to U is Riemannian, so determines a path metric.

If x € W we can find a neighborhood U which is identified with a ball B in R"
so that W N U is identified with B N (R¥ x {0"~*}). Possibly after restricting to
a smaller neighborhood, we can assume that there exists » > 0 so that if v € T,B
and v is tangent to R* x {(zx+1,-..,2n)}, then g(v,v) > r?||v||?, where ||v]| is the
Euclidean norm of v. If z,w € B, z # w and one of them, say z, is contained
in M \ W, then g is Riemannian in a neighborhood of z, so dy 4(2,w) > 0 where
dy,q is the path pseudo-metric on U induced by g. If z,w € W, then the estimate
above implies that dy 4(z, w) > rdg(z, w) where dp is the Euclidean metric on B.
Therefore, dy 4 is a metric on U and we have completed the proof. il
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