CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2 - Archive ouverte HAL
Article Dans Une Revue Annals of Mathematics Année : 2017

CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2

Résumé

We prove that given a Hitchin representation in a real split rank 2 group G 0 , there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we obtain a parametrization of the Hitchin components by a Hermit-ian bundle over Teichmüller space. The proof goes through introducing holomorphic curves in a suitable bundle over the symmetric space of G 0. Some partial extensions of the construction hold for cyclic bundles in higher rank.
Fichier principal
Vignette du fichier
1406.4637.pdf (466.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01141620 , version 1 (13-04-2015)

Identifiants

Citer

François Labourie. CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2. Annals of Mathematics, 2017. ⟨hal-01141620⟩
134 Consultations
118 Téléchargements

Altmetric

Partager

More