\

Cassiopee: a CFD pre-and post-processing tool
C. Benoit, S. Péron, S. Landier

» To cite this version:

‘ C. Benoit, S. Péron, S. Landier. Cassiopee: a CFD pre-and post-processing tool. 2015. hal-01141585

HAL Id: hal-01141585
https://hal.science/hal-01141585

Preprint submitted on 13 Apr 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.science/hal-01141585
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Cassiopee: a CFD pre- and post-processing tool

Christophe Benoit*, Stéphanie Péron*, Sam Landier*
ONERA - The French Aerospace Lab, F-92322 Chdtillon, France

Abstract

This paper presents an overview of the capabilities of a new open-source
pre- and post-processing tool for Computational Fluid Dynamics simulations,
called Cassiopee. Its architecture, which is basically a set of Python modules,
and the handled data, which is based on CGNS standard, are described.
Some examples of workflows that can be built with Cassiopee functions are
provided. Finally, some applications of Cassiopee functions to realistic CFD
configurations are briefly presented.

Keywords: Computational Fluid Dynamics, Pre-processing,
Post-processing, CGNS, Open source software

1. Introduction

In 2008, ONERA started a project to gather pre- and post-processing
tools in a single software, called Cassiopee, following other initiatives as
Salome [1] or gmsh [2]. At that time, pre- and post-processing tools were
spread among scientists, each one generally having its file formats and data
representations. Thus, it seemed clear that capitalizing all the knowledge
in a single software environment and making it interoperable was worth the
effort. However, this effort pays off only if the common data representation
is well accepted and easily accessible to users.

For this reason, the Python language was chosen as a high level interface,
since it is very fast to start with, easy to use and is spread in the scientific
community (scipy, matplotlib, ...).

*Corresponding author
Email addresses: christophe.benoit@onera.fr (Christophe Benoit),
stephanie.peron@onera.fr (Stéphanie Péron), sam.landier@onera.fr (Sam Landier)

Preprint submitted to Aerospace Science and Technology March 27, 2015

To simplify the use of Cassiopee, two interfaces are provided: the first
one, that we call the “array” interface, is directly based on numpy arrays. In
this way, Cassiopee functions can be easily mixed with functions using the
numpy library.

The second interface is based on the Python representation of the CFD
General Notation System (CGNS) of data [3]. The data handled by Cassiopee
functions is then an imbricated set of lists describing a computation tree,
compliant with the CGNS standard, as described by Poinot [4]. We call this
interface the “pyTree” interface.

Functions are classified in thematic Python modules, according to their
features. Each Python module is independent and can be compiled and
installed separately from the others.

Currently, among all the available functionalities, one can for example
perform minor mesh modifications, mesh improvements (e.g. mesh smooth-
ing), preprocessing of a CFD computation (e.g. connectivity computation or
mesh splitting), code coupling or solution post-processing. These modules
are commonly used for CFD and CAA applications.

In 2013, Cassiopee modules were released under the GNU General Public
License GPL3, in the hope that it will be useful to the CFD community [5].

2. Design choices

As previously presented, the pyTree is one of the two choices of data
representations available in Cassiopee. From now on, we will focus on this
interface only. A pyTree is a hierarchical data set where each node is a
Python list of this type:

[’name’, v, [], ’Type’] (1)

The string ’name’ is simply the name of the node, v is a numpy array
defining the value of the node (for instance, for the first component of the grid
coordinates, say 'CoordinateX’, the numpy array stores all the x-coordinate
values for the corresponding zone), the string ’Type’ is a CGNS-compliant
name and describes the node type (e.g. ’Zone_t’ for a zone node). The
third element of the Python list is [] and define the list of nodes that are
the current node’s children.

This structure enables to store the mesh coordinates (in a node named
'GridCoordinates’), the flow solution (located at nodes and at centers), bound-

£as

— [E] CGMSLibraryversion

B[veine

5 (1 Zone

ZoneType

(3 FlowsSolution#End OfRun
— [E GridLocation

— [E] Density

— B Momentum

— B Momentum

- [l MomentumZ

— |£] EnergyStagnationDensity
— [E] cellnf

L [E indicm

-1 Zonen

G- Zoned

M- Zaone.?

E-C0 Zone.d

B[] Conge

Figure 1: Example of a CGNS/Python (or pyTree) representation.

ary conditions (in a node of name "ZoneBC’ for each zone) or the grid con-
nectivity. An example of a representation of a pyTree is displayed in figure
1.

This data structure is common to all the modules of Cassiopee. In ad-
dition, the philosophy of Cassiopee modules is purely functional, hence a
Cassiopee function can be written as:

b= f(a) or _f(a) (2)

where a and b are pyTrees. Function f returns a copy b of the pyTree,
whereas function prefixed with a ”_” results in an in-place modification of
the pyTree (the given pyTree is directly modified by the function _f). For
the sake of generality, we try (as far as possible) to make all the Cassiopee
functions deal with all mesh types: structured meshes, unstructured meshes
with basic elements, and polyhedral meshes, as displayed in figure 2. Element
names are also defined according to the CGNS standard: for instance a

'NGON/NFACES’-type mesh describes a general polyhedral mesh.

‘ Sf—

HEXA TETRA 4&\

STRUCT S
</
) // NGON/
/ NFACES
A

QUAD PYRA PENTA

Figure 2: Mesh types compliant with Cassiopee functions.

Another original feature of Cassiopee functions is that boundary condi-
tions and solutions (defined both at nodes and centers) are also modified by
the functions wherever this is relevant.

For example, a simple ”subzoning” function, that extracts a subzone from
a zone, can be applied on structured grids (using min-max indices in the three
directions of the zone) or unstructured grids (given a list of element indices).
For instance, when a subzone is created, not only the grid coordinates are
extracted, but also the solutions at nodes and cell centers and the boundary
conditions as well.

3. Content of Cassiopee modules

The software is made of independent Python modules. Each module can
be compiled and installed separately. The release R-3 of Cassiopee contains
thirteen modules [5], including Converter, Geom, Generator, Transform,
Connector, Post, described briefly in the following.

3.1. Converter module

Converter module enables input/output between the in-memory data
representation and various file formats of discrete data, such as Tecplot,

plot3d, mesh, STL, OBJ... and of course CGNS/ADF and CGNS/HDFS5 for-
mats. Converter module also provides low-level functions to handle pyTrees,
such as pyTree node creation/removal or specific nodes search. Basic func-
tions are also implemented to add boundary conditions to a zone, to initialize
a solution, to convert a solution from centers to nodes and vice versa.

3.2. Geom module

Geom module is used to generate specific elements or surfaces, such as
points, lines, Bézier surfaces [6], spline surfaces, parametric surfaces...

3.3. Generator module

Generator module provides mesh generation functions. Classical transfi-
nite interpolation (TFI) from quadrangular mesh boundaries [7] is available.
A function that makes use of TFI and automatically performs a suitable de-
composition of the boundaries is also available to build structured meshes
starting from different boundary shapes. Some examples of 2D TFI meshes
starting from a half-moon curve and a triangle describing the mesh bound-
aries are displayed in figure 3. A generalization of the TFI to generate un-
structured meshes is also implemented, according to Perronnet algorithm [8].
Combined with a projection technique onto a surface, this method can be
used to generate structured patches on a surface that is not too distorted, as
displayed in figure 4.

A basic algorithm of algebraic extrusion starting from a discretized surface
mesh is also proposed. It is based on an iterative averaging of neighbouring
normals at a given point. It works on any type of surface meshes, defined by
a single zone or a set of abutting zones, as shown in figure 5. This algorithm
enables to generate a surface mesh by an orthogonal walk onto a surface S,
combined with a projection onto S at each step. In figure 6-(a), a O-type
2D structured mesh is generated starting from a closed curve onto a surface
and the surface.

Finally, such basic mesh generation functions can be assembled to create
more complex mesh functions, such as the generation of collar grids, which
are structured grids at the junction of two surfaces [9]. Figure 6-(b) provides
an example of a collar grid at the junction between a helicopter fuselage and
one of its horizontal tail planes (HTP). The orthogonal walk function is used
to create the surface mesh onto the fuselage and the HTP. Then the volume
mesh is obtained here by transfinite interpolation.

(a) (b)

Figure 3: Simple TFI meshes: (a) bounds defined by a half-moon shape, (b) bounds
defined by a triangle.

(a) (b)

Figure 4: Projected TFI meshes: (a) bounds defined by a quadrangle, (b) bounds defined
by a circle.

(a) (b)

Figure 5: Normal extrusion from (a) a triangular surface, (b) a set of structured 2D
abutting grids.

(a) (b)

Figure 6: (a) Orthogonal walk onto a surface starting from a curve resulting in a surface
mesh (in blue) (b) generation of a collar grid at a fuselage/HTP junction.

(a) (b)

Figure 7: Surfaces resulting from (a) a boolean union and (b) a boolean difference between
a cube and a sphere.

In the context of triangular surfaces, Generator module provides boolean
operators (union, difference, intersection) [10] applied to a pair of triangular
surface meshes. Figure 7 represents the resulting meshes after a boolean
union and a boolean difference between a cube and a sphere, described by
triangular zones.

A remeshing algorithm depending on a metrics [11] based on Delaunay
triangulation is also available for triangular meshes. This algorithm can be
combined with a spline surface fitting to fix holes in surfaces, as shown in
figure 8.

Octree mesh generation [12] starting from a set of surfaces is available
as a Generator function. An octree mesh adaptation function enables to
refine or coarsen elements according to an indicator. These functions can be
used to generate adaptive set of Cartesian grids that are abutting or fully
overlapping (AMR-type), as described in reference [13]. An example of an
octree mesh generated around a helicopter fuselage and its strut is presented
in figure 9-(a). The set of Cartesian grids that are derived from this octree
are displayed in figure 9-(b).

3.4. Transform module

The Transform module gathers functions that operate on mesh coordi-
nates such as translation, rotation, homothety... Some split functions are
implemented for structured grids in this module. They can be used for par-
allel load balancing of a CFD computation or for post-processing purposes.

(a) (b)

Figure 8: (a) Hole to be fixed in a sphere; (b) fixed surface.

-

\ \

(a) (b

Figure 9: (a) Octree mesh around a helicopter fuselage; (b) corresponding Cartesian grids.

Figure 10 displays a 2D mesh around a NACAO0012 profile that is split ac-
cording to the maximum number of points required in each zone. For this
case, if the initial pyTree contains boundary conditions, flow solution or con-
nectivities, they are also subzoned by the split function.

Reverse algorithms enable to join pairs of structured grids or to merge
all grids automatically in a minimum number of blocks, according to the
algorithm of Rigby [14] (figure 11).

Finally, structured or unstructured meshes can be smoothed by functions
using Laplace/umbrella operators or Taubin smoothing [15]. Note that the
smoothing functions work for a set of abutting grids: when the function
is applied to a set of abutting grids, the borders are still abutting after
smoothing, as displayed in figure 12.

3.5. Connector module

Connector module contains three main capabilities: a hole-cutting func-
tion, the computation of 1-to-1 (and more generally n-to-m) abutting con-
nectivity and the computation of overset grid connectivity.

Hole-cutting or blanking is the action of determining mesh points that
are inside a solid. Two blanking algorithms exist: the first one is based on
the Object X-Rays technique [16] introduced by Meakin, for which the solid
is defined by a closed surface mesh; the second one is based on in-tetra tests:
points are blanked if they are inside a tetra cell. In that case, a 3D Tetra
mesh of the volume inside the solid is required. This mesh can be generated
by a 3D Delaunay mesh generation starting from a discrete representation
of the solid surface. A view of a Cartesian mesh blanked by a triangular
surface mesh defining a human body, using the X-Ray technique is displayed
in figure 13-(a).

The computation of the 1-to-1 abutting connectivity on a set of struc-
tured grids is performed automatically. It is achieved in three steps: first, a
k-d tree is built [17] in which are stored the centers of the borders of a pyTree
that are not already defined by a boundary condition or a grid connectivity.
Matching centers are sought in the k-d tree and are then tagged by pairs.
Finally, points are gathered into structured patches that define the abutting
connectivity between the corresponding zones, as displayed in figure 13-(b).

10

(a)

Figure 10: Split of a structured 2D mesh around a NACA0012 profile.

(a) (b)

Figure 11: Set of 2D structured grids (a) before and (b) after automatic block merging.

11

(a) (b)

Figure 12: Structured set of surface grids (a) before and (b) after smoothing.

(a) (b)

Figure 13: (a) Blanking of a Cartesian mesh inside a surface describing a human body;
(b) view of abutting borders in a mesh.

12

Overset grid assembly is broken down into two major functions: overlap
optimization and computation of the computation of overset grid connectiv-
ity.

The overlap optimization function aims at removing some points in over-
lapping regions in order to minimize the remaining overlap. The algorithm
is based on the one developed in [18]. In Connector module, it is further
split into two functions:

- first, Connector.optimizeOverlap results in marking points that can
be removed in overlapping regions as interpolated, depending on a qual-
ity criterion between donor and receptor points.

- then, Connector.maximizeBlankedCells maintains d layers of inter-
polated points, the other points marked initially as interpolated are
marked as blanked points.

The computation of the overset grid connectivity is achieved by the func-
tion Connector.setInterpData: receptor and donor points, interpolation
coefficients, interpolation method and the location of interpolated points are
stored in the pyTree as a ZoneSubRegion_t-type node for each pair of donor-
receptor zones. Different interpolation methods are available:

- the 2"-order interpolation works for structured and Tetra donor grids.
It is based on Tetra decomposition of cells [19]. The interpolation
coefficients are computed first on the tetrahedron containing the inter-
polated point. If the donor mesh is structured, then the coefficients are
passed on the corresponding structured cell.

- 371 [20] and 5% order Lagrangian interpolations are available for struc-
tured grids.

- Moving Least Squares approximations [21, 22| are available for all types
of grids, and are currently 3"%-order accurate.

Figure 14-(a) describes a structured mesh defining a high-lift configu-
ration of an aircraft, where the high-lift devices (colored in the figure) are
overlapping the initial configuration. In figure 14-(b), a slice in the mesh aft
the wing is displayed, where blanked points are not visualized. These blanked
points are determined by the blanking function followed by the overlap opti-
mization function. As it can be seen, the overlapping region has been made

13

Background Grid|

Figure 14: Overset grid assembly of a high-lift configuration (blanked points are not
visualized). Courtesy of C. Francois, ONERA, DAAP/ACI.

minimal.

An additional function, called Connector.setInterpTransfers, trans-
fers the solution from the donor zones to the receptor zones, using interpo-
lation data stored in the donor and receptor pyTrees.

3.6. Post module

Post module contains some classical post-processing tools, such as the
computation of classical variables (pressure, vorticity, gradients...), the ex-
traction of isosurfaces or slices, or the computation of field integrations.

An example of an isosurface of the Q-criterion in a CFD solution using March-
ing Cubes [23] is displayed in figure 15-(a).

In the case where the pyTree is defined by overset grids, the nature of
points (namely computed, interpolated, blanked) is automatically taken into
account by all post-processing functions.

Similarly, the connectivity between abutting grids, stored in the pyTree,
is used if relevant: for instance, when computing a gradient, ghost cells are
added temporarily within the function P.computeGrad such that gradients
are correctly estimated near the borders of the grids.

Post module can also perform interpolation from a set of volume grids
to another surface or volume mesh, as displayed in figure 15-(b) and (c). In

14

()

Figure 15: (a) Isosurface extraction; (b) and (c) interpolation of a CFD field to a CAA
surface mesh.

this example, the CFD solution on a structured overset mesh is interpolated
onto a given surface mesh used to propagate the acoustic field in a following
process. If the surface mesh intersects overlapping CFD grids, then the cell
with the smallest volume is chosen as donor for the interpolation onto the
surface mesh, provided it is not a blanked cell.

3.7. Distance fields

The Dist2Walls module provides functions to compute a distance field
with respect to a set of bodies, as displayed in figure 16. This distance field
can be signed, i.e. negative inside the bodies and positive outside. In that
case, the Object X-Ray technique [16] is applied to determine if a point is
inside or outside a body.

4. Some workflows using Cassiopee modules

In this section, two examples of workflows are presented, highlighting the
ability of Cassiopee modules to build in an easy and extensible way many
applications.

The first workflow consists in creating an offset surface starting from an
initial surface. The second workflow illustrates how to perform a geometrical
preprocessing for the Immersed Boundary Method.

4.1. Surface offset

The first example of workflow describes how to offset a surface at a given
distance d from this surface. The resulting offset surface can be used for

15

|

(a)

Figure 16: Signed distance field defined on an octree mesh.

instance to define a refinement region before adaptation. It can be also
useful for overset grid assembly, to inflate blanked regions to prevent them
from lying within the boundary layer. The algorithm is summarized in figure
17.

- First, a file describing the bodies, defined discretely as surface meshes,
is converted into a pyTree, named surfaces.

- An octree is generated around the surfaces, using Generator.octree
function, resulting in a pyTree zone named o.

- A signed distance field is computed on the octree, using the function
Dist2Walls.distance2Walls.
The result of this function consists in storing the distance field of name
TurbulentDistance as a FlowSolution node in the octree zone o.
The offset region can cross octree elements of different levels. In order
to ensure elements of finest level in that region, the octree o is refined
at a distance d from the initial surfaces.

16

- For that purpose, an indicator field is defined for each element, such
that an octree element is tagged for refinement if it is roughly at a
distance d from the body and if its refinement level is not the finest
one.

This is achieved using Converter.initVars function, using a formula
translating the previous condition. This function adds a tag field lo-
cated at elements of the octree o.

- The octree is then refined around a distance d, according to this tag
using Generator.adaptOctree.

- Once the octree mesh is refined enough in that region, an isosurface of
distance d, defined by a pyTree s, is extracted from the octree mesh,
using Post.isosurfMC.

- The resulting surface can then be smoothed for a better result, using
Transform.smooth.

4.2. Immersed Boundary Method: geometrical preprocessing

The second example describes the geometrical preprocessing of the Im-
mersed Boundary Method (IBM), using the Ghost Cell approach as described
in [24]. In this approach, the wall is defined by a surface mesh that is not a
boundary of the computational volume mesh. The wall boundary condition
is then imposed in the first layer of cells lying inside the surface. Those cells
are called ghost cells. To update the ghost cell field during computation,
the following process is used (see figure 18): first, the symmetric point B of
a ghost cell center A with respect to the wall boundaries is sought. Then,
the flow field is interpolated for point B, using a donor cell containing it.
Finally, using a no slip boundary condition onto the wall leads to us = —upg
and pa = pp.

The full algorithm using Cassiopee functions is described in figure 19.
The starting point in this case is the solid, defined by a cylinder, and the
spatial resolution required in its neighbourhood. The first three steps are
the setup of the case and then the geometrical preprocessing for the IBM is
performed:

- First, the cylinder is defined in a file as a surface mesh. It is converted
to a pyTree, named bodies, using Converter.convertFile2PyTree
function.

17

° o surfaces = C.convertFile2PyTree(bodies.plt)

\J
o=G.octree(surfaces)

\J
o=DTW.distance2Walls(o,surfaces)

\J
o=C.initVars(o,'{indicator}=...")
o=G.adaptOctree(0)

A
s=PisoSurfMC(o, TurbulentDistance'=d)

y
s=T.smooth(s)

Figure 17: Example of workflow to build an offset surface.

18

Figure 18: Immersed Boundary Method: A is a ghost point, B its symmetric, S the solid,
and [1,2,3,4] the donor points for interpolation to get the flow field at B.

- An octree unstructured zone is built around the cylinder, with a given
spacing near the cylinder.

- A set of abutting Cartesian grids are then built, using the same refine-
ment pattern as the octree mesh, using Generator.octree2Struct
function (the algorithm is detailed in [13]). The result is t, which is
once again a pyTree, where are stored the mesh coordinates and the
grid connectivity (one-to-one and n-to-m abutting connectivities).

- Cells lying inside the cylinder are marked as blanked thanks to the
function Connector.blankCells.
A field cellN is now stored in t, and is equal to 0 for blanked points,
and 1 elsewhere.

- Then ghost cells are identified using setHoleInterpolatedPts, such
that depth value is —2: this means that the first two layers of blanked
points (inside the solid) are marked as ghost cells. The pyTree t is thus
modified: the cellN field is equal to 2 for ghost cells.

- A signed distance is then computed using Dist2Wall.distance2Walls
function.

- The gradient of the distance is then computed in order to get the nor-
mals at ghost cells, using Post . computeGrad function.

19

Note that since the pyTree t contains the abutting connectivity infor-
mation, the gradient is estimated properly if the ghost cell region is
defined by a set of abutting grids.

- The wall points and the symmetric point of the ghost cells can be easily
determined then, since the distance to the cylinder and the normals are
defined for the ghost points.

- The interpolation of the flow field outside the cylinder at symmetric
points is achieved. The coordinates of the wall points and the sym-
metric points, but also the interpolation data (coefficients, indices of
donor points, interpolation method,...) are stored in the pyTree t using
Connector.setIBCData.

- Finally, the values of velocity and pressure are determined for ghost
cells using Connector.setIBCTransfers, which can be sent to the
CFD solver at each iteration.

5. Some CFD applications using Cassiopee

In this section are presented some CFD applications that use Cassiopee
modules, mainly achieved at the Applied Aerodynamics Department of ON-
ERA.

5.1. Adaptation of the wake past a helicopter fuselage

The first example concerns the application of the Cartesian mesh adapta-
tion to a helicopter fuselage configuration. The configuration and results are
discussed in [25]. The mesh is defined by near-body structured grids around
the fuselage. An off-body Cartesian mesh is generated using Generator
functions. The resulting mesh after blanking using Connector module is
represented on the left-hand side of figure 20-(a). A first computation using
elsA CEFD solver [26] is achieved and the mesh is adapted according to the
Q-criterion, using Generator and Post functions. The adapted Cartesian
mesh is represented on the right-hand side of figure 20-(a). Figure 20-(b)
highlights the better capture of the wake aft the helicopter fuselage due to
the Cartesian mesh refinement in this region.

20

bodies = C.convertFile2PyTree (bodies.plt)
o = G.octree(bodies)

\J
t=G.octree2Struct(o)

\
t=X.blankCells(t,bodies)

\j
t=X.setHoleInterpolatedPts(t,depth=-2)

\J
t=DTW.distance2Walls(t,bodies,signed=1)
t=PRcomputeGrad(t, TurbulentDistance')

\J
t=X.setIBCData(t)

\j
t=X.setIBCTransfers(t)

Figure 19: Example of workflow for geometrical preprocessing of the Immersed Boundary

21

Figure 20: (a) Cartesian off-body mesh before and after adaptation and (b) corresponding
isosurfaces of Q-criterion.

5.2. Embedded post-processing within the CFD simulation

This example demonstrates that it is possible to use Cassiopee functions
during an unsteady CFD simulation to extract some flow features. The CFD
simulation considered here is a ZDES simulation in poststall condition [27]
using ONERA elsA solver. Here, the number of points is roughly equal to 50
millions, thus the storage of the whole volumic data resulting from the com-
putation at each time step would be prohibitive and the storage of data on
a specific region is up to now the only realistic way. Here, Post.isoSurface
function is used to extract the isosurface of the Q-criterion every 500 itera-
tions in parallel mode. The pyTree is the common data structure used by
both elsA solver and Cassiopee modules during the following steps: first,
the velocity gradients required for the computation of the Q criterion are
computed in parallel by elsA solver for each block on its processor. The Q-
criterion field is then computed by Post.computeExtraVariable function
also locally. The isosurface of the Q) criterion at a given value is then ex-
tracted onto the processor by using Post.isoSurface. On each processor is
defined a part of the final surface mesh defining the isosurface, which part
corresponds to the local blocks to the processors. Then the different surface
grids are gathered on the same processor, and can be saved into a file.

Acknowledgements

The authors would like to thank Marc Poinot, for spreading the major
ideas concerning the software architecture upon which Cassiopee is based

22

Figure 21: Extraction of an isosurface of the Q-criterion during a CFD simulation. Cour-
tesy of A. Le Pape, ONERA, DAAP/H2T.

(CGNS/Python representation, independent modules...).
We are also extremely grateful to all the people that contribute to Cassiopee
by making suggestions, bringing new ideas and reporting bugs.

[1] http:http://www.salome-platform.org.

[2] C. Gueuzaine, J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities, International Journal for Numerical Methods in
Engineering 79 (2009) 1309-1331.

[3] http://cgns.sourceforge.net.

[4] http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/index.html.
[5] http://elsa.onera.fr/Cassiopee/Userguide.html.

[6] P. Bézier, Courbes et surfaces, HERMES, 1986.

[7] W. Gordon, C. Hall, Construction of curvilinear coordinate systems and applications
to mesh generation, Int. J. Num. Meth. Engr. 7 (1973) 461-477.

[8] A. Perronnet, Interpolation transfinie sur le triangle, le tétraédre et le pentagdre.

Application la création de maillages et la condition de Dirichlet, C.R. Acad. Sci.
Paris 326 (1) (1998) 117-122.

23

http:http://www.salome-platform.org
http://cgns.sourceforge.net
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/index.html
http://elsa.onera.fr/Cassiopee/Userguide.html

[9]

S. J. Parks, P. G. Buning, W. M. Chan, J. L. Steger, Collar grids for intersecting
geometric components within the Chimera overlapped grid scheme, 1991, pp. 672—
682.

A. A. G. Requicha, Representations for rigid solids: Theory, methods, and systems,
ACM Computational Survey 12 (4) (1980) 437-464.

P. L. George, H. Borouchaki, Delaunay triangulation and meshing : application to
finite elements, HERMES, 1998.

M. A. Yerry, M. S. Shephard, Three-dimensional mesh generation by modified octree
technique, International Journal for Numerical Methods in Engineering 20 (1984)
1965-1990.

S. Péron, C. Benoit, Automatic off-body overset adaptive Cartesian mesh method
based on an octree approach, Journal of Computational Physics 232 (1) (2013) 153
- 173.

D. L. Rigby, E. Steinthorsson, W. J. Coirier, Automatic Block Merging Methodology
using the Method of Weakest Descent, ATAA paper 97-0197, 1997.

G. Taubin, A signal processing approach to fair surface design, Proceedings of the
22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995,
pp- 351-358.

R. L. Meakin, Object X-Rays for Cutting Holes in Composite Overset Structured
Grids, AIAA paper 2001-2537, 2001.

J. Bentley, Multidimensional binary search trees used for associative searching, Com-
mun. ACM 18 (9) (1975) 509-517.

N. E. Suhs, S. E. Rogers, W. E. Dietz, PEGASUS5: an automated pre-processor for
Overset-grid CFD, ATAA paper 2002-3186, 2002.

C. Benoit, G. Jeanfaivre, E. Canonne, Synthesis of ONERA Chimera method devel-
oped in the frame of CHANCE program, 31°¢ European Rotorcraft Forum, 2005.

O. Saunier, C. Benoit, G. Jeanfaivre, A. Lerat, Third-order Cartesian Overset mesh
adaptation method for solving steady compressible flows, Intern. J. Numer. Meth.
Fluids 57 (7) (2007) 811-838.

P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods,
Mathematics of computation 37 (155) (1981) 141-158.

Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, S.-Y. Jin, A survey of methods
for moving least squares surfaces, in: Proceedings of the Fifth Eurographics/IEEE
VGTC conference on Point-Based Graphics, 2008, pp. 9-23.

24

23]

W. Lorensen, H. Cline, Marching Cubes: A High Resolution 3D Surface Construction
Algorithm, SIGGRAPH ’87 Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987.

R. Mittal, G. Taccarino, Immersed Boundary Methods, Annu. Rev. Fluid Mech. 37
(2005) 239-261.

T. Renaud, A. Le Pape, S. Péron, Numerical analysis of hub anf fuselage drag break-
down of a helicopter configuration, CEAS Aeronautical Journal 4 (4) (2013) 409-419.

L. Cambier, S. Heib, S. Plot, The Onera elsA CFD software: input from research
and feedback from industry, Mechanics & Industry 14 (03) (2013) 159-174.

A. Le Pape, F. Richez, S. Deck, Zonal Detached-Eddy Simulation of an Airfoil in
Poststall Condition, ATAA Journal 51 (8) (2013) 1919-1931.

25

	1 Introduction
	2 Design choices
	3 Content of Cassiopee modules
	3.1 Converter module
	3.2 Geom module
	3.3 Generator module
	3.4 Transform module
	3.5 Connector module
	3.6 Post module
	3.7 Distance fields

	4 Some workflows using Cassiopee modules
	4.1 Surface offset
	4.2 Immersed Boundary Method: geometrical preprocessing

	5 Some CFD applications using Cassiopee
	5.1 Adaptation of the wake past a helicopter fuselage
	5.2 Embedded post-processing within the CFD simulation

